合成生物学 ›› 2022, Vol. 3 ›› Issue (4): 709-727.DOI: 10.12211/2096-8280.2022-001

• 特约评述 • 上一篇    下一篇

抗菌肽的生物合成及医学应用

魏岱旭(), 龚海伦, 张旭维   

  1. 西北大学生命科学院与医学部,陕西 西安 710069
  • 收稿日期:2022-01-08 修回日期:2022-04-26 出版日期:2022-08-31 发布日期:2022-09-08
  • 通讯作者: 魏岱旭
  • 作者简介:魏岱旭(1986—),男,博士,教授,博士生导师。研究方向为生物材料、合成生物学、组织工程与再生医学、医用微纳米器件和智能递药系统、医学美容及化妆品、生物力学及空间生物学。E-mail:weidaixu@nwu.edu.cn; daviddxwei@163.com
  • 基金资助:
    国家自然科学基金(31900950)

Biosynthesis of antimicrobial peptides and its medical application

Daixu WEI(), Hailun GONG, Xuwei ZHANG   

  1. College of Life Sciences and Medicine,Northwest University,Xi'an 710069,Shaanxi,China
  • Received:2022-01-08 Revised:2022-04-26 Online:2022-08-31 Published:2022-09-08
  • Contact: Daixu WEI

摘要:

因具有广谱抗菌性和低耐药性,天然抗菌肽成为潜在的抗生素替代品之一,并有望解决长期困扰人类的耐药菌感染问题。除了抗细菌和真菌等微生物病原体,抗菌肽还具备抗癌、抗病毒、抗寄生虫和调节免疫等诸多作用,具有巨大的医学应用前景。本文介绍了抗菌肽的分布和抗性原理,重点归纳抗菌肽的生物合成方法,对比分析依托微生物表达系统的多种抗菌肽生物合成体系的利弊,并介绍合成生物学等新型交叉学科及手段在抗菌肽的设计策略,并总结了抗菌肽在消炎类药品、抗病毒药物、抗寄生虫药品、抗癌药物、医学组织工程、药物递送系统、皮肤护理与医疗美容七大医学领域的应用。同时,本文针对抗菌肽生物合成含量少、分离提取困难、成本高、稳定性差、生物安全不足等潜在问题,提出了潜在的解决方案,包括利用计算机预测与定向基因编辑技术创建新型抗菌肽,以提升其抗菌性能,降低生物毒性;完善抗菌肽生物合成的工业化体系,开发快速回收高纯度抗菌肽的策略;将抗菌肽与现有抗生素联合用药,预防传统抗生素的细菌耐药性;与新型生物材料结合,降低抗菌肽对体内其他组织器官的损伤等。

关键词: 抗菌肽, 防御素, 合成生物学, 生物工程, 组织工程

Abstract:

Due to their broad-spectrum antibacterial activity and low incidence of drug resistance, natural antimicrobial peptides have become a potential alternative to antibiotics. In addition to being able to control pathogenic bacteria and fungi, antimicrobial peptides also have many other biological effects, such as anticancer, antiviral, antiparasitic and immunomodulatory activity, exhibiting broad biomedical application prospects. This review introduces the distribution and mechanisms of antimicrobial peptides, and summarizes the biosynthesis methods of antimicrobial peptides. We further compare and analyze the advantages and disadvantages of various antimicrobial peptide biosynthesis approaches relying on microbial expression systems and introduce new interdisciplinary peptide-design strategies based on synthetic biology. In addition, we also briefly summarize the applications of antimicrobial peptides. The application prospects of antimicrobial peptides can be classified into seven medical fields, including antiinflammatory drugs, antiviral drugs, antiparasitic drugs, anticancer drugs, medical tissue engineering, drug delivery systems, skin care and cosmetology. Furthermore, we also identify potential problems such as low expression yield, difficulty in extraction, high process cost, poor stability and insufficient biosafety of existing antimicrobial peptides. To solve these issues, computational prediction and directed gene editing technology can be used to create new antimicrobial peptides with improved antibacterial properties and reduced toxicity. It is also important to improve the industrial infrastructure of antibacterial peptide biosynthesis and develop strategies for rapid recovery of high-purity antibacterial peptides. Antimicrobial peptides can also be combined with existing antibiotics to prevent bacterial resistance to traditional antibiotics. Finally, antimicrobial peptides can be combined with new biomaterials to reduce their toxicity to tissues and organs in vivo.

Key words: antimicrobial peptide, defensin, synthetic biology, bioengineering, tissue engineering

中图分类号: