• 研究论文 •
张建康1,2, 王文君1,2, 郭洪菊1,2, 白北辰1,2, 张亚飞1,2, 袁征1,2, 李彦辉1,2, 李航1,2
收稿日期:
2025-04-29
修回日期:
2025-06-25
出版日期:
2025-07-03
通讯作者:
李航
作者简介:
基金资助:
ZHANG Jiankang1,2, WANG Wenjun1,2, GUO Hong-ju1,2, BAI Beichen1,2, ZHANG Yafei1,2, YUAN Zheng1,2, LI Yanhui1,2, LI Hang1,2
Received:
2025-04-29
Revised:
2025-06-25
Online:
2025-07-03
Contact:
LI Hang
摘要:
微生物克隆挑选是基因工程生物实验中的关键环节,需要从生长有大量克隆菌落的培养皿中将符合质量要求的单菌落准确、快速挑取出来并接种到培养基中,以便进一步扩大培养或检测。在高通量实验中,克隆挑选环节任务量大、记录繁复、容易交叉污染,依靠人工操作难以在短时间准确完成。针对这一难题,本文提出一种自动化克隆挑选工作站,通过菌落图像的深度学习实现克隆定位和筛选,并利用机器人技术完成挑取-接种-清洗-高温灭菌过程。在所研制的可视化工作界面中,工作站系统能够个性化编辑适用于多种微生物克隆的多项实验操作流程。通过样机验证实验结果,证明了所提出系统和方法的可行性和有效性,为高通量实验室自动化发展提供了有效工具和有益实践。
中图分类号:
张建康, 王文君, 郭洪菊, 白北辰, 张亚飞, 袁征, 李彦辉, 李航. 基于机器视觉的高通量微生物克隆挑选工作站研制及应用[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-038.
ZHANG Jiankang, WANG Wenjun, GUO Hong-ju, BAI Beichen, ZHANG Yafei, YUAN Zheng, LI Yanhui, LI Hang. Development and Application of a High-Throughput Microbial Clone Picking Workstation Based on Machine Vision[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-038.
数据集 Data set | 训练集 Training set | 测试集 Test set |
---|---|---|
完整菌落图像 Complete colony images | 34 | 4 |
挑选出小图像块 Small image blocks Selected | 5160 | 1466 |
表1 数据集分布情况
Table 1 Distribution of the dataset
数据集 Data set | 训练集 Training set | 测试集 Test set |
---|---|---|
完整菌落图像 Complete colony images | 34 | 4 |
挑选出小图像块 Small image blocks Selected | 5160 | 1466 |
设备 型号 | CCD 分辨率(Pixel/mm) | (mm) | (%) | (%) | (万) | ||
---|---|---|---|---|---|---|---|
96 | 挑针 | 22 | ≥ 0.1 | ||||
单通道或8通道 | 吸头 | / | / | / | ≥ | ||
2或4 | 挑针 | / | ≥ 0.5 | / | 1 mm以上98% | ||
96 | 挑针 | 30 | ≥0.2 | ≥ | ≥ |
表2 本设备与其它3款克隆挑选工作站的技术参数对比
Table 2 A comparison of technical parameters of this device with other three cloning selection workstations
设备 型号 | CCD 分辨率(Pixel/mm) | (mm) | (%) | (%) | (万) | ||
---|---|---|---|---|---|---|---|
96 | 挑针 | 22 | ≥ 0.1 | ||||
单通道或8通道 | 吸头 | / | / | / | ≥ | ||
2或4 | 挑针 | / | ≥ 0.5 | / | 1 mm以上98% | ||
96 | 挑针 | 30 | ≥0.2 | ≥ | ≥ |
[1] | Macarrón R, Hertzberg R P. Design and Implementation of High Throughput Screening[J]. Assays.Mol Biotechnol(2011).47:270-285. |
[2] | Hughes Stephen R., Butt Tauseef R., Bartolett Scott, et al. Design and Construction of a First-Generation High-Throughput Integrated Robotic Molecular Biology Platform for Bioenergy Applications[J]. SLAS Technology, 2011,16(4) :292-307. |
[3] | 孙梦楚, 陆亮宇, 申晓林 等. 基于荧光检测的高通量筛选技术和装备助力细胞工厂构建[J]. 合成生物学, 2023, 4(5): 947-965. |
SUN Mengchu, LU Liangyu, SHEN Xiaolin, et al. Fluorescence detection-based high-throughput screening systems and devices facilitate cell factories construction[J]. Synthetic Biology Journal, 2023, 4(5): 947-965. | |
[4] | 卢挥, 张芳丽, 黄磊. 合成生物学自动化装置iBioFoundry的构建与应用[J]. 合成生物学, 2023, 4(5): 877-891. |
LU H, ZHANG F L, HUANG L. Establishment of iBioFoundry for synthetic biology applications[J]. Synthetic Biology Journal, 2023, 4(5): 877-89. | |
[5] | Stephenson A, Lastra L, Nguyen B, et al.. Physical Laboratory Automation in Synthetic Biology[J]. ACS Synth Biol. 2023 Nov 17;12(11):3156-3169. |
[6] | Pavan M. Setting Up an Automated Biomanufacturing Laboratory[J]. Methods Mol Biol. 2021;2229:137-155. |
[7] | MARTIN V J J, PITERA D J, WITHERS S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21(7): 796-802. |
[8] | WIN M N, SMOLKE C D. Higher-order cellular information processing with synthetic RNA devices[J]. Science, 2008, 322 (5900): 456-460. |
[9] | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin [J]. Nature, 2013, 496(7446): 528-532. |
[10] | CHAO R, MISHRA S, SI T, et al. Engineering biological systems using automated biofoundries[J]. Metabolic Engineering, 2017, 42: 98-108. |
[11] | 唐婷, 付立豪, 郭二鹏, 等.自动化合成生物技术与工程化设施平台[J].科学通报,2021, 66(3): 300-309. |
TANG T, FU L H, GUO E P, et al. Automation in synthetic biology using biological foundries[J]. Chinese Science Bulletin, 2021, 66(3): 300-309. | |
[12] | Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R . et al. Mapping human microbiome drug metabolism by gut bacteria and their genes[J]. Nature, 2019 Jun, 570(7762): 462–467. |
[13] | Cerbini T, Luo Y, Rao MS, et al.Transfection, selection, and colony-picking of human induced pluripotent stem cells TALEN-targeted with a GFP gene into the AAVS1 safe harbor[J]. J Vis Exp. 2015 Feb 1;(96):52504. |
[14] | Djatna T. and Hadi M. Z., "Implementation of an ant colony approach to solve multi-objective order picking problem in beverage warehousing with drive-in rack system[C]//2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Bali, Indonesia, 2017:137-142. |
[15] | Huang C, He K, Liu C,et al. A colny picking robot with multi-pin synchronous manipulator[C]//2018 IEEE International Conference on Information and Automation(ICIA), Wuyi Mountain, Fujian, China 2018:7-12. |
[16] | 张依朗. 基于机器视觉的高通量自动菌落挑取系统研究[D]. 北京:北京化工大学,2021. |
Zhang Yilang. Research on high throughput automatic colony picking sysetem based on machine vision[D].Beijing: Beijing University of Chemical Technology, 2021. | |
[17] | Guzman C M, et al. Automated Colony Counting System for Clonogenic Assay[J]. Cytotechnology, 2010. |
[18] | Singh T R, Chatterjee S. Morphological Analysis of Bacterial Colonies Using Image Processing[C]. IEEE ICET, 2011. |
[19] | Arteta T S, et al. A Hybrid Method for Cell Segmentation in Phase-Contrast Microscopy[J]. IEEE TIP, 2014. |
[20] | Payne G W, et al. Colonyzer: Automated Quantification of Microorganism Growth Characteristics[J]. BMC Microbiology, 2015. |
[21] | Tripathi A K, et al. Circular Hough Transform for Accurate Detection of Microbial Colonies[C]. IEEE ICIP, 2017. |
[22] | Russ J C. The Image Processing Handbook[M]. 7th ed. Boca Raton: CRC Press, 2016. |
[23] | Moen E, et al. Deep Learning for Cellular Image Analysis[J]. Nature Methods, 2019. |
[24] | Wakabayashi R,et al. Rapid counting of coliforms and Escherichia coli by deep learning based classifier[J]. Journal of Food Safety,2024. |
[25] | Zhang J, et al. Automated Bacterial Colony Counting Using Deep Learning[J]. Scientific Reports, 2020. |
[26] | Akbar S A,et al.Rapid bacterial colony classification using deep learning[J].Indonesian Journal of Electrical Engineering and Computer Science, 2022. |
[27] | Andreini P, et al.A Deep Learning Approach to Bacterial Colony Segmentation: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4–7, 2018, Proceedings, Part III[J]. 2018. |
[28] | Ronneberger O, et al. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]. MICCAI, 2015. |
[29] | Oktay O, et al. Attention U-Net: Learning Where to Look for the Pancreas[C]. MIDL, 2018. |
[30] | He K, et al. Mask R-CNN for Object Detection and Instance Segmentation[C]. ICCV, 2017. |
[31] | Jha D, et al. A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation[J]. IEEE Access, 2021. |
[32] | 曹淑艳、陈雪景、张洵洋.中国塑料行业绿色低碳发展研究报告[M].2022年11月:13 |
Cao Shuyan, Chen Xuejing, Zhangxunyang. Green and Low Carbon Development of the Plastics Industry in China[J].2022 Nov: 13 |
[1] | 吴柯, 罗家豪, 李斐然. 机器学习驱动的基因组规模代谢模型构建与优化[J]. 合成生物学, 2025, 6(3): 566-584. |
[2] | 田晓军, 张日新. 合成基因回路面临的细胞“经济学窘境”[J]. 合成生物学, 2025, 6(3): 532-546. |
[3] | 章益蜻, 刘高雯. 合成生物学视角下的基因功能探索与酵母工程菌株文库构建[J]. 合成生物学, 2025, 6(3): 685-700. |
[4] | 张成辛. 基于文本数据挖掘的蛋白功能预测:机遇与挑战[J]. 合成生物学, 2025, 6(3): 603-616. |
[5] | 李明辰, 钟博子韬, 余元玺, 姜帆, 张良, 谭扬, 虞慧群, 范贵生, 洪亮. DeepSeek模型分析及其在AI辅助蛋白质工程中的应用[J]. 合成生物学, 2025, 6(3): 636-650. |
[6] | 黄怡, 司同, 陆安静. 生物制造标准体系建设的现状、问题与建议[J]. 合成生物学, 2025, 6(3): 701-714. |
[7] | 宋成治, 林一瀚. AI+定向进化赋能蛋白改造及优化[J]. 合成生物学, 2025, 6(3): 617-635. |
[8] | 张梦瑶, 蔡鹏, 周雍进. 合成生物学助力萜类香精香料可持续生产[J]. 合成生物学, 2025, 6(2): 334-356. |
[9] | 张璐鸥, 徐丽, 胡晓旭, 杨滢. 合成生物学助力化妆品走进生物制造新时代[J]. 合成生物学, 2025, 6(2): 479-491. |
[10] | 伊进行, 唐宇琳, 李春雨, 吴鹤云, 马倩, 谢希贤. 氨基酸衍生物在化妆品中的应用及其生物合成研究进展[J]. 合成生物学, 2025, 6(2): 254-289. |
[11] | 韦灵珍, 王佳, 孙新晓, 袁其朋, 申晓林. 黄酮类化合物生物合成及其在化妆品中应用的研究[J]. 合成生物学, 2025, 6(2): 373-390. |
[12] | 肖森, 胡立涛, 石智诚, 王发银, 余思婷, 堵国成, 陈坚, 康振. 可控分子量透明质酸的生物合成研究进展[J]. 合成生物学, 2025, 6(2): 445-460. |
[13] | 王倩, 果士婷, 辛波, 钟成, 王钰. L-精氨酸的微生物合成研究进展[J]. 合成生物学, 2025, 6(2): 290-305. |
[14] | 左一萌, 张姣姣, 连佳长. 酿酒酵母使能技术在化妆品原料合成中的应用[J]. 合成生物学, 2025, 6(2): 233-253. |
[15] | 汤传根, 王璟, 张烁, 张昊宁, 康振. 功能肽合成和挖掘策略研究进展[J]. 合成生物学, 2025, 6(2): 461-478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||