合成生物学 ›› 2025, Vol. 6 ›› Issue (4): 806-828.DOI: 10.12211/2096-8280.2025-043

• 特约评述 • 上一篇    下一篇

高黏性蛋白材料的合成生物学及应用

李全飞1,2, 陈乾1,2, 刘浩1,2, 贺坤东1,2, 潘亮1,2, 雷鹏1,2, 谷益安1,2, 孙良1,2, 李莎1,2, 邱溢彬1,2, 王瑞1,2, 徐虹1,2   

  1. 1.南京工业大学食品与轻工学院,江苏 南京 210009
    2.材料化学工程全国重点实验室,江苏 南京 210009
  • 收稿日期:2025-05-08 修回日期:2025-07-02 出版日期:2025-08-31 发布日期:2025-09-03
  • 通讯作者: 王瑞
  • 作者简介:李全飞(1998—),男,博士研究生。研究方向为高黏性蛋白的生物合成及分离纯化。 E-mail:202462218257@njtech.edu.cn
    王瑞(1987—),男,教授,博士生导师。研究方向为高性能蛋白材料合成生物学与应用。 E-mail:ruiwang2013@njtech.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(22478185);江苏省合成生物学基础研究中心项目(BK20233003);南京工业大学材料化学工程全国重点实验室项目(KL-MCE-22A05);南京工业大学材料化学工程全国重点实验室项目(SKL-MCE-23A17)

Synthetic biology and applications of high-adhesion protein materials

LI Quanfei1,2, CHEN Qian1,2, LIU Hao1,2, HE Kundong1,2, PAN Liang1,2, LEI Peng1,2, GU Yi’an1,2, SUN Liang1,2, LI Sha1,2, QIU Yibin1,2, WANG Rui1,2, XU Hong1,2   

  1. 1.College of Food Science and Light Industry,Nanjing University of Technology,Nanjing 210009,Jiangsu,China
    2.State Key Laboratory of Materials-oriented Chemical Engineering,Nanjing 210009,Jiangsu,China
  • Received:2025-05-08 Revised:2025-07-02 Online:2025-08-31 Published:2025-09-03
  • Contact: WANG Rui

摘要:

高黏性蛋白材料因其卓越的生物黏附性和潜在的生物相容性,在生物医用材料和黏合剂领域展现出巨大的应用潜力。然而,传统方式获取的高黏蛋白材料面临诸多挑战,如产量低、结构复杂、难以规模化生产等。合成生物学作为新兴的交叉学科,为解决这些瓶颈提供了创新策略。本综述系统总结了近年来高黏性蛋白材料的生物合成、改性及应用进展,重点突出了合成生物学在解决高黏性蛋白材料产量、可控性以及功能多样性等方面的优势。全面梳理了基因工程实现对贻贝黏蛋白、藤壶胶蛋白和扇贝足丝蛋白等黏附蛋白的精确设计和高效表达,从而克服高黏蛋白材料在产量和可控性方面的限制。同时,综述了这些蛋白材料在生物黏合剂和医用功能涂层方面的独特优势,如贻贝蛋白的湿面黏附性、藤壶胶蛋白的强黏附性以及类弹性蛋白的可调控性。通过合成生物学方法,可以突破高黏蛋白材料在产量、性能和功能方面的限制,加速其在组织工程、表界面改性等领域的应用。最后,总结了当前合成生物学在高黏蛋白材料领域的最新进展和创新点,并展望了其未来的发展方向,为开发高性能、多功能的高黏蛋白材料提供了新的思路和策略。

关键词: 高黏性蛋白, 生物黏合剂, 功能涂层, 合成生物学

Abstract:

Due to their exceptional bioadhesive properties and potential biocompatibility, high-viscosity protein materials exhibit significant application prospects in the fields of biomedical materials and adhesives. However, traditionally sourced high-viscosity protein materials encounter numerous challenges, including low yields, structural complexity, and difficulties in scaling up production. Synthetic biology, as an emerging interdisciplinary field, offers innovative strategies to address these bottlenecks. This review systematically summarizes recent advances in the biosynthesis, modification, and applications of high-viscosity protein materials, focusing on the advantages of synthetic biology in addressing issues related to the yield, controllability, and functional diversity of these materials. The precise design and efficient expression of adhesive proteins, such as mussel adhesive proteins, barnacle cement proteins, and scallop foot proteins, achieved through genetic engineering, are comprehensively reviewed, demonstrating the overcoming of limitations in the production and controllability of high-viscosity protein materials. Furthermore, the unique advantages of these protein materials in bioadhesives and functional medical coatings, such as the wet adhesion of mussel proteins, the strong adhesion of barnacle cement proteins, and the tunable properties of elastin-like proteins, are summarized. By employing synthetic biology approaches, limitations in the yield, performance, and functionality of high-viscosity protein materials can be overcome, thereby accelerating their application in areas such as tissue engineering and surface modification. Finally, the latest advancements and innovations in the field of synthetic biology for high-viscosity protein materials are summarized, and future development directions are envisioned, offering new ideas and strategies for the development of high-performance, multifunctional high-viscosity protein materials. {L-End}

Key words: high-adhesion proteins, bioadhesives, functional coatings, synthetic biology

中图分类号: