合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 847-869.DOI: 10.12211/2096-8280.2022-034
杨健钊1,2, 朱新广1
收稿日期:
2022-06-11
修回日期:
2022-08-26
出版日期:
2022-10-31
发布日期:
2022-11-16
通讯作者:
朱新广
作者简介:
基金资助:
Jianzhao YANG1,2, Xinguang ZHU1
Received:
2022-06-11
Revised:
2022-08-26
Online:
2022-10-31
Published:
2022-11-16
Contact:
Xinguang ZHU
摘要:
合成生物学是一门包括生物学、数学、物理学、化学、工程及信息科学等多学科交叉的前沿学科。历经多年发展,目前在细菌、酵母等微生物和哺乳动物细胞底盘中已初步形成了完备的定量化研究体系,然而植物合成生物学依然处于起步阶段。植物合成生物学可在挖掘植物次生代谢天然产物、生产分子农业制品、提升光合作用光能利用效率、创制碳汇植物和建立植物工厂系统等方面发挥作用。特别是在当前面向碳达峰与碳中和过程中,植物合成生物学可以参与解决人类活动所面临的粮食短缺、能源危机及环境污染等问题。不同植物底盘中也在逐步建成和完善标准化的元件体系、基因线路设计以及定向进化等合成生物学技术。本文回顾了近年来植物合成生物学的主要研究进展,详述了植物合成生物学在“双碳”目标中的应用领域,包含植物天然产物合成与次生代谢、分子农业、光合作用、碳汇植物的创制、植物工厂等。提出了植物基因文件标准化、植物基因线路设计、植物基因编辑和定向进化等助力“双碳”目标的植物合成生物学技术,并展望和探讨了在实现“双碳”目标过程中植物合成生物学的重要作用和发展前景。
中图分类号:
杨健钊, 朱新广. 面向碳达峰与碳中和的植物合成生物学[J]. 合成生物学, 2022, 3(5): 847-869.
Jianzhao YANG, Xinguang ZHU. Plant synthetic biology for carbon peak and carbon neutrality[J]. Synthetic Biology Journal, 2022, 3(5): 847-869.
针对疾病 | 应用案例 | 植物底盘 | 参考文献 |
---|---|---|---|
霍乱 | 叶绿体表达霍乱弧菌毒素B亚基(CTB) | 烟草、生菜、玉米、水稻 | [ |
乙肝 | 玉米胚芽表达乙肝抗原HBsAg | 玉米 | [ |
脊髓灰质炎 | 烟草表达人脊髓灰质炎病毒L1蛋白 | 烟草 | [ |
疟疾 | 叶绿体表达疟原虫的AMA1和MSP1蛋白 | 衣藻 | [ |
糖尿病 | 表达人源小胰岛素原 | 番茄、灵芝 | [ |
口腔生物膜(龋齿) | 生菜叶绿体中表达脂肪酶、葡聚糖酶和抗菌肽 | 生菜 | [ |
新冠病毒肺炎 | 组装新冠病毒VLPs | 烟草 | [ |
表1 部分植物疫苗和口服药物应用案例
Tab. 1 Some examples of plant molecular farming
针对疾病 | 应用案例 | 植物底盘 | 参考文献 |
---|---|---|---|
霍乱 | 叶绿体表达霍乱弧菌毒素B亚基(CTB) | 烟草、生菜、玉米、水稻 | [ |
乙肝 | 玉米胚芽表达乙肝抗原HBsAg | 玉米 | [ |
脊髓灰质炎 | 烟草表达人脊髓灰质炎病毒L1蛋白 | 烟草 | [ |
疟疾 | 叶绿体表达疟原虫的AMA1和MSP1蛋白 | 衣藻 | [ |
糖尿病 | 表达人源小胰岛素原 | 番茄、灵芝 | [ |
口腔生物膜(龋齿) | 生菜叶绿体中表达脂肪酶、葡聚糖酶和抗菌肽 | 生菜 | [ |
新冠病毒肺炎 | 组装新冠病毒VLPs | 烟草 | [ |
图1 聪明冠层[聪明冠层中的叶片可以感受并传递周边的环境参数,比如红光与远红光的比例(F/FR)、光质、光强、湿度、温度和CO2浓度等。基于这些环境信息,叶片可以动态调整其光合特性及代谢通路,以优化光合光能利用效率。其中可以进行调整的光合特征包括光合天线大小、C3代谢(下左与下右图)与C4代谢途径(上右图)或者藻类CO2浓缩机制(上左图)之间的转换。]PEP—磷酸烯醇式丙酮酸;PYR—丙酮酸;MAL—苹果酸;OAA—草酰乙酸;PGA—3-磷酸甘油酸;RuBP—1,5-二磷酸核酮糖;M—线粒体;Ch—叶绿体;P—过氧化物酶体
Fig. 1 The concept of a smart canopy[Leaves in a smart canopy are capable of sensing and intercommunicating the local red/far-red ratio (R/FR), light wavelength and photon flux density (hν), humidity, temperature and [CO2]. Based on these information, a leaf in a smart canopy is capable of adjusting photosynthetic properties and metabolism for optimized photosynthetic energy conversion efficiency. These adjustments may include changing antenna size, switching between C3 photosynthesis (bottom left and bottom right figures) and C4 metabolism (upper right) or algae-type CO2 concentrating mechanism (upper left figure). ] PEP—phosphoenolpyruvate; PYR—pyruvate; MAL—malate; OAA—oxaloacetate; PGA—3-phosphoglycerate; RuBP—ribulose 1,5-bisphosphate; M—mitochondria; Ch—chloroplast; P—peroxisome
类型 | 改造方向 | 改造策略 | 改造效果 | 改造底盘 | 参考文献 |
---|---|---|---|---|---|
光反应 | 改良NPQ | 过表达拟南芥的NPQ相关元件VDE、ZEP、PsbS | 生物量积累增加15% | 烟草 | [ |
光合天线优化 | 减小或重分配天线尺寸 | 预测冠层光合可最多提升30% | 水稻 | [ | |
补充易损光合元件 | 核转基因过表达PS Ⅱ的D1转运进叶绿体 | 生物量较野生型显著增加(拟南芥43.7%~80.2%,烟草15.1%~22.3%,水稻20.6%~22.9%) | 拟南芥、烟草、 水稻 | [ | |
碳代谢 | 改造光呼吸支路 | 引入大肠杆菌的乙醛酸代谢途径 | 干重较野生型提高1倍以上 | 拟南芥 | [ |
构建乙醇酸-草酸(GOC)氧化途径 | 光合效率和生物量分别可提高15%~22%和14%~35% | 水稻 | [ | ||
叶绿体内建立GCGT捷径 | 光合效率可提高6%~16% | 水稻 | [ | ||
叶绿体内让乙醇酸转变为苹果酸 | 生物量可比野生型提高约40% | 烟草 | [ | ||
改造RuBisCO | 引入藻类Red-RuBisCO | 加快植物生长,并且可以作为定向进化改造目标蛋白 | 烟草 | [ | |
光合转 录调控 | 增强光合基因表达 | 过表达EmBP1 | 提高光合速率、生物量及产量可达25% | 水稻 | [ |
敲除光合表达 负调控因子 | 敲除NRP1 | 光合速率和生物量都有显著增加 | 水稻 | [ | |
调控光合和 氮素利用效率 | 过表达DREB1C | 可提高产量30%以上 | 水稻 | [ | |
人工光 合作用 | 人工光反应结合生物固碳体系 | 硅纳米线与固碳细菌共培养 | 最高能量转换效率可达3.6% | 卵型孢子菌(Sporomusaovata) | [ |
光伏电池与蓝细菌PS Ⅰ偶联驱动固碳体系 | 总能量转化效率可达到9% | 蓝细菌 | [ | ||
人工模拟叶绿体 | 微流控包裹类囊体 | 在光照下连续固定CO2转化为有机酸 | 菠菜 | [ | |
大肠杆菌内构建固碳通路 | 重组RuBisCO | 可以固定CO2 | 大肠杆菌 | [ | |
构建卡尔文循环 | 以CO2为碳源合成糖和其他有机物 | 大肠杆菌 | [ | ||
无细胞体系构建固碳通路 | CO2为碳源从头合成淀粉 | 较玉米中淀粉合成速率高约8.5倍 | 无细胞体系 | [ |
表2 部分光合作用合成生物学改造案例
Tab. 2 Some synthetic biology examples for improving photosynthesis
类型 | 改造方向 | 改造策略 | 改造效果 | 改造底盘 | 参考文献 |
---|---|---|---|---|---|
光反应 | 改良NPQ | 过表达拟南芥的NPQ相关元件VDE、ZEP、PsbS | 生物量积累增加15% | 烟草 | [ |
光合天线优化 | 减小或重分配天线尺寸 | 预测冠层光合可最多提升30% | 水稻 | [ | |
补充易损光合元件 | 核转基因过表达PS Ⅱ的D1转运进叶绿体 | 生物量较野生型显著增加(拟南芥43.7%~80.2%,烟草15.1%~22.3%,水稻20.6%~22.9%) | 拟南芥、烟草、 水稻 | [ | |
碳代谢 | 改造光呼吸支路 | 引入大肠杆菌的乙醛酸代谢途径 | 干重较野生型提高1倍以上 | 拟南芥 | [ |
构建乙醇酸-草酸(GOC)氧化途径 | 光合效率和生物量分别可提高15%~22%和14%~35% | 水稻 | [ | ||
叶绿体内建立GCGT捷径 | 光合效率可提高6%~16% | 水稻 | [ | ||
叶绿体内让乙醇酸转变为苹果酸 | 生物量可比野生型提高约40% | 烟草 | [ | ||
改造RuBisCO | 引入藻类Red-RuBisCO | 加快植物生长,并且可以作为定向进化改造目标蛋白 | 烟草 | [ | |
光合转 录调控 | 增强光合基因表达 | 过表达EmBP1 | 提高光合速率、生物量及产量可达25% | 水稻 | [ |
敲除光合表达 负调控因子 | 敲除NRP1 | 光合速率和生物量都有显著增加 | 水稻 | [ | |
调控光合和 氮素利用效率 | 过表达DREB1C | 可提高产量30%以上 | 水稻 | [ | |
人工光 合作用 | 人工光反应结合生物固碳体系 | 硅纳米线与固碳细菌共培养 | 最高能量转换效率可达3.6% | 卵型孢子菌(Sporomusaovata) | [ |
光伏电池与蓝细菌PS Ⅰ偶联驱动固碳体系 | 总能量转化效率可达到9% | 蓝细菌 | [ | ||
人工模拟叶绿体 | 微流控包裹类囊体 | 在光照下连续固定CO2转化为有机酸 | 菠菜 | [ | |
大肠杆菌内构建固碳通路 | 重组RuBisCO | 可以固定CO2 | 大肠杆菌 | [ | |
构建卡尔文循环 | 以CO2为碳源合成糖和其他有机物 | 大肠杆菌 | [ | ||
无细胞体系构建固碳通路 | CO2为碳源从头合成淀粉 | 较玉米中淀粉合成速率高约8.5倍 | 无细胞体系 | [ |
图2 数字植物模型指导碳汇植物的创制(数字植物模型基于植物光合、呼吸、氮同化、同化物分配、水分运输等基本过程,模拟植物生长发育、植物环境互作过程,从而实现对植物生长过程的精确预测,因而可以用于设计粮食或者生物量作物的理想株型、生理及调控特征[170]。碳汇植物具有高生物量、高光能及氮素利用效率、多年生、抗降解等特征。这些特征当前粮食作物具有极大差异。数字植物模型可以用于进行碳汇植物所需的理想株型设计,从而支撑碳汇植物培育)
Fig. 2 ePlant guided creation of plants for carbon farming(ePlant is a mathematical model to simulate the plant growth and development, the interaction between plant and environment etc. ePlant is based on modeling of photosynthesis, respiration, nitrogen assimilation, assimilate partitioning, water transport etc. ePlant can be used to guide design of ideal architectural, physiological and regulatory features for either food or biomass production[170]. Plants for carbon farming has features such as high biomass, high light and nitrogen use efficiencies, perennial and with biomass resistant to degradation. These features differ dramatically from food crops. ePlant can be used to design ideotypes for crops for carbon farming and hence guide breeding such crops)
类型 | 应用领域 | 内容 | 应用对象 | 参考文献 |
---|---|---|---|---|
标准化植物基因元件 | 克隆和元件标准化体系 | 植物标准化克隆体系 (Plant MoClo Syntax) | 蓝藻、衣藻等 | [ |
衣藻元件工具库 (Chlamy MoClo Toolkit) | 衣藻 | [ | ||
创制合成生物学底盘 | 衣藻突变体表型库 | 衣藻 | [ | |
酵母内融合蓝细菌内共生 | 衣藻 | [ | ||
植物基因线路设计 | 改造信号通路 | 人工脱落酸受体 | 拟南芥 | [ |
构建基因线路 | TEV蛋白酶逻辑门 | 烟草 | [ | |
叶绿体内乳糖操纵子 | 衣藻 | [ | ||
叶绿体核糖体开关(Riboswitch) | 衣藻 | [ | ||
植物基因编辑与定向进化技术 | 精准基因编辑 | 基因组先导编辑 | 水稻、番茄、玉米 | [ |
质体基因编辑 | 生菜、油菜 | [ | ||
定向进化 | 饱和靶向内源诱变编辑器(STEME) | 水稻 | [ |
表3 近期已发表的植物合成生物学工具
Tab. 3 Recently published plant synthetic biology tools
类型 | 应用领域 | 内容 | 应用对象 | 参考文献 |
---|---|---|---|---|
标准化植物基因元件 | 克隆和元件标准化体系 | 植物标准化克隆体系 (Plant MoClo Syntax) | 蓝藻、衣藻等 | [ |
衣藻元件工具库 (Chlamy MoClo Toolkit) | 衣藻 | [ | ||
创制合成生物学底盘 | 衣藻突变体表型库 | 衣藻 | [ | |
酵母内融合蓝细菌内共生 | 衣藻 | [ | ||
植物基因线路设计 | 改造信号通路 | 人工脱落酸受体 | 拟南芥 | [ |
构建基因线路 | TEV蛋白酶逻辑门 | 烟草 | [ | |
叶绿体内乳糖操纵子 | 衣藻 | [ | ||
叶绿体核糖体开关(Riboswitch) | 衣藻 | [ | ||
植物基因编辑与定向进化技术 | 精准基因编辑 | 基因组先导编辑 | 水稻、番茄、玉米 | [ |
质体基因编辑 | 生菜、油菜 | [ | ||
定向进化 | 饱和靶向内源诱变编辑器(STEME) | 水稻 | [ |
1 | CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12(5): 381-390. |
2 | HANCZYC M M. Engineering life: a review of synthetic biology[J]. Artificial Life, 2020, 26(2): 260-273. |
3 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338. |
4 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
5 | DI BLASI R, ZOUEIN A, ELLIS T, et al. Genetic toolkits to design and build mammalian synthetic systems[J]. Trends in Biotechnology, 2021, 39(10): 1004-1018. |
6 | LAWSON C E, HARCOMBE W R, HATZENPICHLER R, et al. Common principles and best practices for engineering microbiomes[J]. Nature Reviews Microbiology, 2019, 17(12): 725-741. |
7 | LIU W S, STEWART C N JR. Plant synthetic biology[J]. Trends in Plant Science, 2015, 20(5): 309-317. |
8 | BENNING C, SWEETLOVE L. Synthetic biology for basic and applied plant research[J]. The Plant Journal: for Cell and Molecular Biology, 2016, 87(1): 3-4. |
9 | KUBIS A, BAR-EVEN A. Synthetic biology approaches for improving photosynthesis[J]. Journal of Experimental Botany, 2019, 70(5): 1425-1433. |
10 | SCHILLBERG S, FINNERN R. Plant molecular farming for the production of valuable proteins-critical evaluation of achievements and future challenges[J]. Journal of Plant Physiology, 2021, 258/259: 153359. |
11 | SONNEWALD U. Plant synthetic biology: one answer to global challenges[J]. Journal of Integrative Plant Biology, 2018, 60(12): 1124-1126. |
12 | ROMANOWSKI S, EUSTÁQUIO A S. Synthetic biology for natural product drug production and engineering[J]. Current Opinion in Chemical Biology, 2020, 58: 137-145. |
13 | ROELL M S, ZURBRIGGEN M D. The impact of synthetic biology for future agriculture and nutrition[J]. Current Opinion in Biotechnology, 2020, 61: 102-109. |
14 | 张博, 马永硕, 尚轶, 等. 植物合成生物学研究进展[J]. 合成生物学, 2020, 1(2): 121-140. |
ZHANG B, MA Y S, SHANG Y, et al. Recent advances in plant synthetic biology[J]. Synthetic Biology Journal, 2020, 1(2): 121-140. | |
15 | 邵洁, 刘海利, 王勇. 植物合成生物学的现在与未来[J]. 合成生物学, 2020, 1(4): 395-412. |
SHAO J, LIU H L, WANG Y. Present and future of plant synthetic biology[J]. Synthetic Biology Journal, 2020, 1(4): 395-412. | |
16 | MØLLER B L, RATCLIFFE R G. Editorial overview: Synthetic plant biology: the roots of a bio-based society[J]. Current Opinion in Biotechnology, 2014, 26: ix-xvi. |
17 | DUSENGE M E, DUARTE A G, WAY D A. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration[J]. The New Phytologist, 2019, 221(1): 32-49. |
18 | MALHOTRA K, SUBRAMANIYAN M, RAWAT K, et al. Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells[J]. Molecular Plant, 2016, 9(11): 1464-1477. |
19 | JIANG Z D, KEMPINSKI C, BUSH C J, et al. Engineering triterpene and methylated triterpene production in plants provides biochemical and physiological insights into terpene metabolism[J]. Plant Physiology, 2015, 170(2): 702-716. |
20 | FRIEDLINGSTEIN P. Carbon cycle feedbacks and future climate change[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373(2054): 20140421. |
21 | LEVY B S, PATZ J A. Climate change, human rights, and social justice[J]. Annals of Global Health, 2015, 81(3): 310-322. |
22 | TIGCHELAAR M, BATTISTI D S, NAYLOR R L, et al. Future warming increases probability of globally synchronized maize production shocks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6644-6649. |
23 | GÉRARD M, VANDERPLANCK M, WOOD T, et al. Global warming and plant-pollinator mismatches[J]. Emerging Topics in Life Sciences, 2020, 4(1): 77-86. |
24 | MA C S, MA G, PINCEBOURDE S. Survive a warming climate: insect responses to extreme high temperatures[J]. Annual Review of Entomology, 2021, 66: 163-184. |
25 | HAMANN E, BLEVINS C, FRANKS S J, et al. Climate change alters plant-herbivore interactions[J]. The New Phytologist, 2021, 229(4): 1894-1910. |
26 | DUCHENNE-MOUTIEN R A, NEETOO H. Climate change and emerging food safety issues: a review[J]. Journal of Food Protection, 2021, 84(11): 1884-1897. |
27 | 新华社. 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[J]. 中华人民共和国国务院公报, 2021(31): 33-38. |
Xinhua News Agency. Opinions of the central committee of the CPC and the state council on carbon dioxide peaking and carbon neutrality in full and faithful implementation of the new development philosophy[J]. Gazette of the State Council of the People's Republic of China, 2021(31): 33-38. | |
28 | WALKER A P, DE KAUWE M G, BASTOS A, et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2 [J]. The New Phytologist, 2021, 229(5): 2413-2445. |
29 | MACREADIE P I, ANTON A, RAVEN J A, et al. The future of Blue Carbon science[J]. Nature Communications, 2019, 10: 3998. |
30 | PECL G T, ARAÚJO M B, BELL J D, et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being[J]. Science, 2017, 355(6332): eaai9214. |
31 | FANG J Y, YU G R, LIU L L, et al. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4015-4020. |
32 | ZHU X X, LIU X N, LIU T, et al. Synthetic biology of plant natural products: from pathway elucidation to engineered biosynthesis in plant cells[J]. Plant Communications, 2021, 2(5): 100229. |
33 | WU T, KERBLER S M, FERNIE A R, et al. Plant cell cultures as heterologous bio-factories for secondary metabolite production[J]. Plant Communications, 2021, 2(5): 100235. |
34 | LOU Y R, PICHERSKY E, LAST R L. Deep roots and many branches: origins of plant-specialized metabolic enzymes in general metabolism[J]. Current Opinion in Plant Biology, 2022, 66: 102192. |
35 | WANG J Y, NIELSEN J, LIU Z H. Synthetic biology advanced natural product discovery[J]. Metabolites, 2021, 11(11): 785. |
36 | UDREA A M, GRADISTEANU PIRCALABIORU G, BOBOC A A, et al. Advanced bioinformatics tools in the pharmacokinetic profiles of natural and synthetic compounds with anti-diabetic activity[J]. Biomolecules, 2021, 11(11): 1692. |
37 | 孙泽敏, 吕波, 冯永君. 罗汉果甜苷V的合成生物学研究进展[J]. 生物工程学报, 2020, 36(10): 2017-2028. |
SUN Z M, LÜ B, FENG Y J. Synthetic biology for the synthesis of mogroside V - a review[J]. Chinese Journal of Biotechnology, 2020, 36(10): 2017-2028. | |
38 | JAYAWARDENE K L T D, PALOMBO E A, BOAG P R. Natural products are a promising source for anthelmintic drug discovery[J]. Biomolecules, 2021, 11(10): 1457. |
39 | SUN Y W, CHEN Z, LI J X, et al. Diterpenoid UDP-glycosyltransferases from Chinese sweet tea and ashitaba complete the biosynthesis of rubusoside[J]. Molecular Plant, 2018, 11(10): 1308-1311. |
40 | WANG J F, LI S Y, XIONG Z Q, et al. Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli [J]. Cell Research, 2016, 26(2): 258-261. |
41 | DAI Z B, LIU Y, ZHANG X N, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J]. Metabolic Engineering, 2013, 20: 146-156. |
42 | BAI Y F, YIN H, BI H P, et al. De novo biosynthesis of gastrodin in Escherichia coli [J]. Metabolic Engineering, 2016, 35: 138-147. |
43 | YAO Y F, WANG C S, QIAO J J, et al. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway[J]. Metabolic Engineering, 2013, 19: 79-87. |
44 | XU P, BHAN N, KOFFAS M A. Engineering plant metabolism into microbes: from systems biology to synthetic biology[J]. Current Opinion in Biotechnology, 2013, 24(2): 291-299. |
45 | KOTOPKA B J, LI Y R, SMOLKE C D. Synthetic biology strategies toward heterologous phytochemical production[J]. Natural Product Reports, 2018, 35(9): 902-920. |
46 | THOLL D. Biosynthesis and biological functions of terpenoids in plants[M]// Biotechnology of Isoprenoids[M]// Advances in biochemical engineering/biotechnology (Volume 149). Springer, 2015: 63-106. |
47 | PADDON C J, KEASLING J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014, 12(5): 355-367. |
48 | FARHI M, MARHEVKA E, BEN-ARI J, et al. Generation of the potent anti-malarial drug artemisinin in tobacco[J]. Nature Biotechnology, 2011, 29(12): 1072-1074. |
49 | KHAIRUL IKRAM N, BEYRAGHDAR KASHKOOLI A, PERAMUNA A V, et al. Stable production of the antimalarial drug artemisinin in the moss physcomitrella patens[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5: 47. |
50 | FISCHER R, BUYEL J F. Molecular farming-The slope of enlightenment[J]. Biotechnology Advances, 2020, 40: 107519. |
51 | AZIZOGLU U. Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little-known plant growth-promoting properties of Bt [J]. Current Microbiology, 2019, 76(11): 1379-1385. |
52 | BONNY S. Genetically modified herbicide-tolerant crops, weeds, and herbicides: overview and impact[J]. Environmental Management, 2016, 57(1): 31-48. |
53 | BEYER P, AL-BABILI S, YE X D, et al. Golden Rice: Introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency[J]. The Journal of Nutrition, 2002, 132(3): 506S-510S. |
54 | CLARK M, MASELKO M. Transgene biocontainment strategies for molecular farming[J]. Frontiers in Plant Science, 2020, 11: 210. |
55 | TSCHOFEN M, KNOPP D, HOOD E, et al. Plant molecular farming: much more than medicines[J]. Annual Review of Analytical Chemistry, 2016, 9(1): 271-294. |
56 | YASHVEER S, SINGH V, KASWAN V, et al. Green biotechnology, nanotechnology and bio-fortification: Perspectives on novel environment-friendly crop improvement strategies[J]. Biotechnology and Genetic Engineering Reviews, 2014, 30(2): 113-126. |
57 | MCNULTY M J, XIONG Y, YATES K, et al. Molecular pharming to support human life on the moon, Mars, and beyond[J]. Critical Reviews in Biotechnology, 2021, 41(6): 849-864. |
58 | MORTIMER J C, GILLIHAM M. SpaceHort: redesigning plants to support space exploration and on-earth sustainability[J]. Current Opinion in Biotechnology, 2022, 73: 246-252. |
59 | RAMKUMAR T R, LENKA S K, ARYA S S, et al. A short history and perspectives on plant genetic transformation[M]//. Biolistic DNA delivery in plants. Springer, 2020: 39-68. |
60 | LEÓN R, GALVÁN A, FERNÁNDEZ E. Transgenic microalgae as green cell factories[M]. Springer Science+Business Media, 2007. |
61 | ESLAND L, LARREA-ALVAREZ M, PURTON S. Selectable markers and reporter genes for engineering the chloroplast of Chlamydomonas reinhardtii [J]. Biology, 2018, 7(4): 46. |
62 | BUYEL J F. Plant molecular farming - integration and exploitation of side streams to achieve sustainable biomanufacturing[J]. Frontiers in Plant Science, 2019, 9: 1893. |
63 | 冯晴晴, 张天鲛, 赵潇, 等. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022, 3(2): 260-278. |
FENG Q Q, ZHANG T J, ZHAO X, et al. Synthetic nanobiology - fusion of synthetic biology and nanobiology[J]. Synthetic Biology Journal, 2022, 3(2): 260-278. | |
64 | YAN Y, ZHU X J, YU Y, et al. Nanotechnology strategies for plant genetic engineering[J]. Advanced Materials, 2022, 34(7): e2106945. |
65 | SCHWARTZ S H, HENDRIX B, HOFFER P, et al. Carbon dots for efficient small interfering RNA delivery and gene silencing in plants[J]. Plant Physiology, 2020, 184(2): 647-657. |
66 | DEMIRER G S, ZHANG H, GOH N S, et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown[J]. Science Advances, 2020, 6(26): eaaz0495. |
67 | HURTADO C R, COSTA WACHESK C DA, QUEIROZ R C, et al. A simple procedure to obtain nanodiamonds from leftover of HFCVD system for biological application[J]. SN Applied Sciences, 2020, 2(3): 1-14. |
68 | ZHAO X, MENG Z G, WANG Y, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers[J]. Nature Plants, 2017, 3(12): 956-964. |
69 | TORNEY F, TREWYN B G, LIN V S Y, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J]. Nature Nanotechnology, 2007, 2(5): 295-300. |
70 | MITTER N, WORRALL E A, ROBINSON K E, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nature Plants, 2017, 3: 16207. |
71 | SILVA A T, NGUYEN A, YE C M, et al. Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts[J]. BMC Plant Biology, 2010, 10: 291. |
72 | MAO S R, SUN W, KISSEL T. Chitosan-based formulations for delivery of DNA and siRNA[J]. Advanced Drug Delivery Reviews, 2010, 62(1): 12-27. |
73 | PASUPATHY K, LIN S J, HU Q, et al. Direct plant gene delivery with a poly(amidoamine) dendrimer[J]. Biotechnology Journal, 2008, 3(8): 1078-1082. |
74 | JAT S K, BHATTACHARYA J, SHARMA M K. Nanomaterial based gene delivery: a promising method for plant genome engineering[J]. Journal of Materials Chemistry B, 2020, 8(19): 4165-4175. |
75 | ZHU Q L, LIU Y G. TransGene stacking II vector system for plant metabolic engineering and synthetic biology[M]//Methods in molecular biology. New York, NY: Springer US, 2021: 19-35. |
76 | ZHAO Y C, HAN J L, TAN J T, et al. Efficient assembly of long DNA fragments and multiple genes with improved nickase-based cloning and Cre/loxP recombination[J/OL]. Plant Biotechnology Journal, 2022. |
77 | ZHU Q L, ZENG D C, YU S Z, et al. From golden rice to aSTARice: Bioengineering astaxanthin biosynthesis in rice endosperm[J]. Molecular Plant, 2018, 11(12): 1440-1448. |
78 | CHAN H T, DANIELL H. Plant-made oral vaccines against human infectious diseases-are we there yet? [J]. Plant Biotechnology Journal, 2015, 13(8): 1056-1070. |
79 | DANIELL H, LEE S B, PANCHAL T, et al. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts[J]. Journal of Molecular Biology, 2001, 311(5): 1001-1009. |
80 | KARAMAN S, CUNNICK J, WANG K. Expression of the cholera toxin B subunit (CT-B) in maize seeds and a combined mucosal treatment against cholera and traveler's diarrhea[J]. Plant Cell Reports, 2012, 31(3): 527-537. |
81 | HAYDEN C A, FISCHER M E, ANDREWS B L, et al. Oral delivery of wafers made from HBsAg-expressing maize germ induces long-term immunological systemic and mucosal responses[J]. Vaccine, 2015, 33(25): 2881-2886. |
82 | WAHEED M T, THÖNES N, MÜLLER M, et al. Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines[J]. Transgenic Research, 2011, 20(2): 271-282. |
83 | GREGORY J A, MAYFIELD S P. Developing inexpensive malaria vaccines from plants and algae[J]. Applied Microbiology and Biotechnology, 2014, 98(5): 1983-1990. |
84 | 倪挺, 胡鸢雷, 林忠平. 表达人胰岛素基因的转基因灵芝[C]//中国生物工程学会2006年学术年会暨全国生物反应器学术研讨会, 2006. |
NI T, HU N L, LIN Z P. Transgenic Ganoderma lucidum expressing human insulin gene[C]// 2006 Academic Annual Meeting of Chinese Society of Bioengineering and National Bioreactor Academic Seminar, 2006. | |
85 | SINGH R, REN Z, SHI Y, et al. Affordable oral health care: dental biofilm disruption using chloroplast made enzymes with chewing gum delivery[J]. Plant Biotechnology Journal, 2021, 19(10): 2113-2125. |
86 | JUNG J W, ZAHMANOVA G, MINKOV I, et al. Plant-based expression and characterization of SARS-CoV-2 virus-like particles presenting a native spike protein[J]. Plant Biotechnology Journal, 2022, 20(7): 1363-1372. |
87 | 朱新广, 熊燕, 阮梅花, 等. 光合作用合成生物学研究现状及未来发展策略[J]. 中国科学院院刊, 2018, 33(11): 1239-1248. |
ZHU X G, XIONG Y, RUAN M H, et al. Research status and future development strategies of synthetic biology in photosynthesis[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1239-1248. | |
88 | ZHU X G, LONG S P, ORT D R. Improving photosynthetic efficiency for greater yield[J]. The Annual Review of Plant Biology, 2010, 61: 235-61. |
89 | RAMZI A B. Metabolic engineering and synthetic biology[M]// Advances in experimental medicine and biology (Volume 1102). Springer, 2018: 81-95. |
90 | NAJAFPOUR M M, CARPENTIER R, ALLAKHVERDIEV S I. Artificial photosynthesis[J]. Journal of Photochemistry and Photobiology B: Biology, 2015, 152(Pt A): 1-3. |
91 | LONG S P, MARSHALL-COLON A, ZHU X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential[J]. Cell, 2015, 161(1): 56-66. |
92 | RENGER G, KÜHN P. Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2007, 1767(6): 458-471. |
93 | OOMS M D, DINH C T, SARGENT E H, et al. Photon management for augmented photosynthesis[J]. Nature Communications, 2016, 7: 12699. |
94 | LEISTER D. Genetic engineering, synthetic biology and the light reactions of photosynthesis[J]. Plant Physiology, 2018, 179(3): 778-793. |
95 | HORTON P, RUBAN A. Molecular design of the photosystem II light-harvesting antenna: photosynthesis and photoprotection[J]. Journal of Experimental Botany, 2004, 56(411): 365-373. |
96 | ÉVA C, OSZVALD M, TAMÁS L. Current and possible approaches for improving photosynthetic efficiency[J]. Plant Science, 2019, 280: 433-440. |
97 | KROMDIJK J, GŁOWACKA K, LEONELLI L, et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection[J]. Science, 2016, 354(6314): 857-861. |
98 | LACOUR T, BABIN M, LAVAUD J. Diversity in xanthophyll cycle pigments content and related nonphotochemical quenching (NPQ) among microalgae: implications for growth strategy and ecology[J]. Journal of Phycology, 2020, 56(2): 245-263. |
99 | DIKAIOS I, SCHIPHORST C, DALL'OSTO L, et al. Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana [J]. Photosynthesis Research, 2019, 142(3): 249-264. |
100 | SONG Q F, WANG Y, QU M N, et al. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-development of a new canopy photosynthesis model scaling from metabolism to canopy level processes[J]. Plant, Cell & Environment, 2017, 40(12): 2946-2957. |
101 | CHEN J H, CHEN S T, HE N Y, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield[J]. Nature Plants, 2020, 6(5): 570-580. |
102 | HOLTROP T, HUISMAN J, STOMP M, et al. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans[J]. Nature Ecology & Evolution, 2021, 5(1): 55-66. |
103 | CROCE R, VAN AMERONGEN H. Natural strategies for photosynthetic light harvesting[J]. Nature Chemical Biology, 2014, 10(7): 492-501. |
104 | SHEN L L, TANG K L, WANG W D, et al. Architecture of the chloroplast PSI-NDH super complex in hordeum vulgare[J]. Nature, 2022, 601(7894): 649-654. |
105 | LIU F S, SONG Q F, ZHAO J K, et al. Canopy occupation volume as an indicator of canopy photosynthetic capacity[J]. The New Phytologist, 2021, 232(2): 941-956. |
106 | PERVEEN S, QU M N, CHEN F M, et al. Overexpression of maize transcription factor mEmBP-1 increases photosynthesis, biomass, and yield in rice[J]. Journal of Experimental Botany, 2020, 71(16): 4944-4957. |
107 | CHEN F M, ZHENG G Y, QU M N, et al. Knocking out negative regulator of photosynthesis 1 increases rice leaf photosynthesis and biomass production in the field[J]. Journal of Experimental Botany, 2021, 72(5): 1836-1849. |
108 | QU M N, ESSEMINE J, XU J L, et al. Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions[J]. The Plant Journal: for Cell and Molecular Biology, 2020, 104(5): 1334-1347. |
109 | WEI S B, LI X, LU Z F, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice[J]. Science, 2022, 377(6604): eabi8455. |
110 | MIYAO M, MASUMOTO C, MIYAZAWA S I, et al. Lessons from engineering a single-cell C4 photosynthetic pathway into rice[J]. Journal of Experimental Botany, 2011, 62(9): 3021-3029. |
111 | FURBANK R T. Walking the C4 pathway: past, present, and future[J]. Journal of Experimental Botany, 2016, 67(14): 4057-4066. |
112 | SEDELNIKOVA O V, HUGHES T E, LANGDALE J A. Understanding the genetic basis of C4 kranz anatomy with a view to engineering C3 crops[J]. Annual Review of Genetics, 2018, 52: 249-270. |
113 | WANG P, KHOSHRAVESH R, KARKI S, et al. Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy[J]. Current Biology, 2017, 27(21): 3278-3287.e6. |
114 | SAGE R F, SAGE T L, KOCACINAR F. Photorespiration and the evolution of C4 photosynthesis[J]. Annual Review of Plant Biology, 2012, 63: 19-47. |
115 | WANG L M, SHEN B R, LI B D, et al. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice[J]. Molecular Plant, 2020, 13(12): 1802-1815. |
116 | M-S ROELL, VON BORZYSKOWSKI L S, WESTHOFF P, et al. A synthetic C4 shuttle via the β-hydroxyaspartate cycle in C3 plants[J]. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 2021, 118(40): e2022307118. |
117 | KEBEISH R, NIESSEN M, THIRUVEEDHI K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana [J]. Nature Biotechnology, 2007, 25(5): 593-599. |
118 | SHEN B R, WANG L M, LIN X L, et al. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice[J]. Molecular Plant, 2019, 12(2): 199-214. |
119 | SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field[J]. Science, 2019, 363(6422): eaat9077. |
120 | SHARWOOD R E, GHANNOUM O, WHITNEY S M. Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity[J]. Current Opinion in Plant Biology, 2016, 31: 135-142. |
121 | PARTO S, LARTILLOT N. Molecular adaptation in Rubisco: discriminating between convergent evolution and positive selection using mechanistic and classical codon models[J]. PLoS One, 2018, 13(2): e0192697. |
122 | BELTRÁN-LÓPEZ J I, ROMERO-MALDONADO A, MONREAL-ESCALANTE E, et al. Chlamydomonas reinhardtii chloroplasts express an orally immunogenic protein targeting the p210 epitope implicated in atherosclerosis immunotherapies[J]. Plant Cell Reports, 2016, 35(5): 1133-1141. |
123 | MALLIKARJUNA K, NARENDRA K, RAGALATHA R, et al. Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity[J]. Journal of Biosciences, 2020, 45: 115. |
124 | IÑIGUEZ C, AGUILÓ-NICOLAU P, GALMÉS J. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity[J]. Biochemical Society Transactions, 2021, 49(5): 2007-2019. |
125 | YOUNG J N, HEUREUX A M C, SHARWOOD R E, et al. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms[J]. Journal of Experimental Botany, 2016, 67(11): 3445-3456. |
126 | BADGER M R, BEK E J. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle[J]. Journal of Experimental Botany, 2008, 59(7): 1525-1541. |
127 | GUNN L H, MARTIN AVILA E, BIRCH R, et al. The dependency of red Rubisco on its cognate activase for enhancing plant photosynthesis and growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25890-25896. |
128 | KING J L, EDWARDS G E, COUSINS A B. The efficiency of the CO2-concentrating mechanism during single-cell C4 photosynthesis[J]. Plant, Cell & Environment, 2012, 35(3): 513-523. |
129 | OFFERMANN S, OKITA T W, EDWARDS G E. Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species bienertia sinuspersici[J]. Plant Physiology, 2011, 155(4): 1612-1628. |
130 | AIGNER H, WILSON R H, BRACHER A, et al. Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2[J]. Science, 2017, 358(6368): 1272-1278. |
131 | ORT D R, MERCHANT S S, ALRIC J, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8529-8536. |
132 | COX N, PANTAZIS D A, NEESE F, et al. Artificial photosynthesis: understanding water splitting in nature[J]. Interface Focus, 2015, 5(3): 20150009. |
133 | TIAN L Q, XIN Q, ZHAO C, et al. Nanoarray structures for artificial photosynthesis[J]. Small, 2021, 17(38): e2006530. |
134 | YE S, DING C M, LIU M Y, et al. Water oxidation catalysts for artificial photosynthesis[J]. Advanced Materials, 2019, 31(50): 1902069. |
135 | NI Y, HOLLMANN F. Artificial photosynthesis: hybrid systems[M]// Advances in biochemical engineering/biotechnology (Volume 158. Springer International Publishing. 2016: 137-158. |
136 | YU S, KIM D, QI Z Y, et al. Nanoparticle assembly induced ligand interactions for enhanced electrocatalytic CO2 conversion[J]. Journal of the American Chemical Society, 2021, 143(47): 19919-19927. |
137 | LIU C, GALLAGHER J J, SAKIMOTO K K, et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Letters, 2015, 15(5): 3634-3639. |
138 | SU Y D, CESTELLOS-BLANCO S, KIM J M, et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation[J]. Joule, 2020, 4(4): 800-811. |
139 | CESTELLOS-BLANCO S, ZHANG H, KIM J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis, 2020, 3(3): 245-255. |
140 | LI Z D, WU C, GAO X, et al. Exogenous electricity flowing through cyanobacterial photosystem I drives CO2 valorization with high energy efficiency[J]. Energy & Environmental Science, 2021, 14(10): 5480-5490. |
141 | MILLER T E, BENEYTON T, SCHWANDER T, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts[J]. Science, 2020, 368(6491): 649-654. |
142 | ANTONOVSKY N, GLEIZER S, NOOR E, et al. Sugar synthesis from CO2 in Escherichia coli [J]. Cell, 2016, 166(1): 115-125. |
143 | CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
144 | JANSSON C, FAIOLA C, WINGLER A, et al. Crops for carbon farming[J]. Frontiers in Plant Science, 2021, 12: 636709. |
145 | ZHU X G, ZHU J K. Precision genome editing heralds rapid de novo domestication for new crops[J]. Cell, 2021, 184(5): 1133-1134. |
146 | XIAO Y, CHANG T G, SONG Q F, et al. ePlant for quantitative and predictive plant science research in the big data era-lay the foundation for the future model guided crop breeding, engineering and agronomy[J]. Quantitative Biology, 2017, 5(3): 260-271. |
147 | 朱新广, 常天根, 宋青峰, 等. 数字植物:科学内涵、瓶颈及发展策略[J]. 合成生物学, 2020, 1(3): 285-297. |
ZHU X G, CHANG T G, SONG Q F, et al. ePlant: scientific connotations, bottlenecks, and development strategies[J]. Synthetic Biology Journal, 2020, 1(3): 285-297. | |
148 | GUO W, CHEN L M, HERRERA-ESTRELLA L, et al. Altering plant architecture to improve performance and resistance[J]. Trends in Plant Science, 2020, 25(11): 1154-1170. |
149 | TEICHMANN T, MUHR M. Shaping plant architecture[J]. Frontiers in Plant Science, 2015, 6: 233. |
150 | DE DORLODOT S, FORSTER B, PAGÈS L, et al. Root system architecture: opportunities and constraints for genetic improvement of crops[J]. Trends in Plant Science, 2007, 12(10): 474-481. |
151 | WANG B, SMITH S M, LI J Y. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 2018, 69: 437-468. |
152 | CHANG T G, CHANG S, SONG Q F, et al. Systems models, phenomics and genomics: three pillars for developing high-yielding photosynthetically efficient crops[J]. In Silico Plants, 2019, 1(1): diy003. |
153 | KANNAN K, WANG Y, LANG M, et al. Combining gene network, metabolic and leaf-level models shows means to future-proof soybean photosynthesis under rising CO2 [J]. In Silico Plants, 2019, 1(1): diz008. |
154 | KUMAR L, FUTSCHIK M E. Mfuzz: a software package for soft clustering of microarray data[J]. Bioinformation, 2007, 2(1): 5-7. |
155 | ZHAO H L, CHANG T G, XIAO Y, et al. Potential metabolic mechanisms for inhibited chloroplast nitrogen assimilation under high CO2 [J]. Plant Physiology, 2021, 187(3): 1812-1833. |
156 | ZHAO H, XIAO Y, ZHU X G. Kinetic modeling of photorespiration[M]// FERNIE A R, BAUWE H, WEBER A P M. Photorespiration: methods and protocols. New York, NY: Springer New York. 2017: 203-216. |
157 | ZHAO H L, TANG Q M, CHANG T G, et al. Why an increase in activity of an enzyme in the Calvin-Benson cycle does not always lead to an increased photosynthetic CO2 uptake rate? —a theoretical analysis[J]. In Silico Plants, 2020, 3(1): diaa009. |
158 | XIAO Y, ZHU X G. Components of mesophyll resistance and their environmental responses: a theoretical modelling analysis[J]. Plant, Cell & Environment, 2017, 40(11): 2729-2742. |
159 | QU M N, ZHENG G Y, HAMDANI S, et al. Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity survey[J]. Plant Physiology, 2017, 175(1): 248-258. |
160 | XIAO Y, SLOAN J, HEPWORTH C, et al. Estimating uncertainty: a Bayesian approach to modelling photosynthesis in C3 leaves[J]. Plant, Cell & Environment, 2021, 44(5): 1436-1450. |
161 | LI P, CHANG T G, CHANG S Q, et al. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow[J]. Journal of Integrative Plant Biology, 2018, 60(12): 1154-1180. |
162 | CHANG T-G, ZHU X-G. Systematic optimization of whole plant carbon nitrogen interaction (WACNI) to support crop design for greater yield[EB/OL]. bioRxiv, 2018. |
163 | CHANG T G, ZHU X G. Source-sink interaction: a century old concept under the light of modern molecular systems biology[J]. Journal of Experimental Botany, 2017, 68(16): 4417-4431. |
164 | SONG Q F, WANG Y, QU M N, et al. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-development of a new canopy photosynthesis model scaling from metabolism to canopy level processes[J]. Plant, Cell & Environment, 2017, 40(12): 2946-2957. |
165 | SONG Q F, ZHU X G. Measuring canopy gas exchange using canopy photosynthesis and transpiration systems (CAPTS)[M]// COVSHOFF S. Photosynthesis: methods and protocols. New York, NY: Springer New York. 2018: 69-81. |
166 | CHANG S Q, CHANG T G, SONG Q F, et al. Architectural and physiological features to gain high yield in an elite rice line YLY1[J]. Rice (New York, N Y), 2020, 13(1): 60. |
167 | ZHU X G, ZHANG G L, DANNY T, et al. The next generation models for crops and agro-ecosystems[J]. Science China (Information Sciences), 2011, 54(3): 589-597. |
168 | RODRIGUEZ P A, ROTHBALLER M, CHOWDHURY S P, et al. Systems biology of plant-microbiome interactions[J]. Molecular Plant, 2019, 12(6): 804-821. |
169 | MATEOS FERNÁNDEZ R, PETEK M, GERASYMENKO I, et al. Insect pest management in the age of synthetic biology[J]. Plant Biotechnology Journal, 2022, 20(1): 25-36. |
170 | ZHU Q L, WANG B, TAN J T, et al. Plant synthetic metabolic engineering for enhancing crop nutritional quality[J]. Plant Communications, 2020, 1(1): 100017. |
171 | TABASHNIK B E, CARRIÈRE Y. Surge in insect resistance to transgenic crops and prospects for sustainability[J]. Nature Biotechnology, 2017, 35(10): 926-935. |
172 | 张广胜, 王珊珊. 中国农业碳排放的结构、效率及其决定机制[J]. 农业经济问题, 2014, 35(7): 18-26, 110. |
ZHANG G S, WANG S S. China's agricultural carbon emission: structure, efficiency and its determinants[J]. Issues in Agricultural Economy, 2014, 35(7): 18-26, 110. | |
173 | 农业减“肥”行[J]. 中国农村科技, 2016(2): 33. |
Agricultural “fertilizer reduction” action [J]. China Rural Science & Technology, 2016(2):33. | |
174 | XIE K, REN Y H, CHEN A Q, et al. Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi[J]. Journal of Plant Physiology, 2022, 269: 153591. |
175 | RYLOTT E L, BRUCE N C. How synthetic biology can help bioremediation[J]. Current Opinion in Chemical Biology, 2020, 58: 86-95. |
176 | MIZOI J, YAMAGUCHI-SHINOZAKI K. Molecular approaches to improve rice abiotic stress tolerance [M]//YANG Y. Rice protocols. Totowa, NJ: Humana Press. 2013: 269-83. |
177 | LIU Y, MOUSAVI S, PANG Z B, et al. Plant factory: a new playground of industrial communication and computing[J]. Sensors, 2021, 22(1): 147. |
178 | 崔佳维, 陈智杰, 郑胤建, 等. 人工光利用型植物工厂核心技术研究进展[J]. 农业工程技术, 2017, 37(28): 46-53. |
CUI J W, CHEN Z J, ZHENG Y J, et al. Research progress on core technology of artificial light utilization plant factory [J]. Agricultural Engineering Technology, 2017, 37(28):46-53. | |
179 | 余锡寿, 刘跃萍. 植物工厂的产生, 发展与未来[J]. 农业展望, 2012, 8(4): 39-43. |
YU X S, LIU Y P. The origin, development and future of plant factories [J]. Agricultural Outlook, 2012, 8(4): 39-43. | |
180 | NOZUE M. New development and challenges in plant factory[J]. Oleoscience, 2013, 13(6): 267-73. |
181 | SØRENSEN M, ANDERSEN-RANBERG J, HANKAMER B, et al. Circular biomanufacturing through harvesting solar energy and CO2 [J]. Trends in Plant Science, 2022, 27(7): 655-673. |
182 | BALTES N J, VOYTAS D F. Enabling plant synthetic biology through genome engineering[J]. Trends in Biotechnology, 2015, 33(2): 120-131. |
183 | MADSEN C, GONI MORENO A, PALCHICK Z, et al. Synthetic biology open language visual (SBOL Visual) Version 2.1 [J]. Journal of Integrative Bioinformatics, 2019, 16(2): 20180101. |
184 | HUSSEY S G, GRIMA-PETTENATI J, MYBURG A A, et al. A standardized synthetic eucalyptus transcription factor and promoter panel for re-engineering secondary cell wall regulation in biomass and bioenergy crops[J]. ACS Synthetic Biology, 2019, 8(2): 463-465. |
185 | 田晨菲, 李建华, 王勇. 植物合成生物学调控元件的研究进展[J]. 植物生理学报, 2020, 56(11): 2261-2274. |
TIAN C F, LI J H, WANG Y. Research advances of regulatory elements in plant synthetic biology[J]. Plant Physiology Journal, 2020, 56(11): 2261-2274. | |
186 | CROZET P, NAVARRO F J, WILLMUND F, et al. Birth of a photosynthetic chassis: a MoClo toolkit enabling synthetic biology in the microalga Chlamydomonas reinhardtii [J]. ACS Synthetic Biology, 2018, 7(9): 2074-2086. |
187 | FAUSER F, VILARRASA-BLASI J, ONISHI M, et al. Systematic characterization of gene function in the photosynthetic alga Chlamydomonas reinhardtii [J]. Nature Genetics, 2022, 54(5): 705-714. |
188 | COURNOYER J E, ALTMAN S D, GAO Y L, et al. Engineering artificial photosynthetic life-forms through endosymbiosis[J]. Nature Communications, 2022, 13: 2254. |
189 | WRIGHT R C, NEMHAUSER J. Plant synthetic biology: quantifying the “known unknowns” and discovering the “unknown unknowns”[J]. Plant Physiology, 2019, 179(3): 885-893. |
190 | PARK S Y, PETERSON F C, MOSQUNA A, et al. Agrochemical control of plant water use using engineered abscisic acid receptors[J]. Nature, 2015, 520(7548): 545-548. |
191 | CORDERO T, ROSADO A, MAJER E, et al. Boolean computation in plants using post-translational genetic control and a visual output signal[J]. ACS Synthetic Biology, 2018, 7(10): 2322-2330. |
192 | MICHELET L, LEFEBVRE-LEGENDRE L, BURR S E, et al. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas [J]. Plant Biotechnology Journal, 2011, 9(5): 565-574. |
193 | KATO K, MARUI T, KASAI S, et al. Artificial control of transgene expression in Chlamydomonas reinhardtii chloroplast using the lac regulation system from Escherichia coli [J]. Journal of Bioscience and Bioengineering, 2007, 104(3): 207-213. |
194 | RAMUNDO S, ROCHAIX J D. Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch[J]. Methods in Enzymology, 2015, 550: 267-281. |
195 | LLOYD J P B, LY F, GONG P, et al. Synthetic memory circuits for stable cell reprogramming in plants[J]. Nature Biotechnology, 2022: 1-11. |
196 | BROPHY J A N, MAGALLON K J, DUAN L N, et al. Synthetic genetic circuits as a means of reprogramming plant roots[J]. Science, 2022, 377(6607): 747-751. |
197 | MANGHWAR H, LINDSEY K, ZHANG X L, et al. CRISPR/cas system: Recent advances and future prospects for genome editing[J]. Trends in Plant Science, 2019, 24(12): 1102-1125. |
198 | ABDELRAHMAN M, WEI Z, ROHILA J S, et al. Multiplex genome-editing technologies for revolutionizing plant biology and crop improvement[J]. Frontiers in Plant Science, 2021, 12: 721203. |
199 | BAO A L, BURRITT D J, CHEN H F, et al. The CRISPR/Cas9 system and its applications in crop genome editing[J]. Critical Reviews in Biotechnology, 2019, 39(3): 321-336. |
200 | MIKI D, ZHANG W X, ZENG W J, et al. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation[J]. Nature Communications, 2018, 9: 1967. |
201 | LU Y M, TIAN Y F, SHEN R D, et al. Targeted, efficient sequence insertion and replacement in rice[J]. Nature Biotechnology, 2020, 38(12): 1402-1407. |
202 | LIN Q P, JIN S, ZONG Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants[J]. Nature Biotechnology, 2021, 39(8): 923-927. |
203 | LU Y M, TIAN Y F, SHEN R D, et al. Precise genome modification in tomato using an improved prime editing system[J]. Plant Biotechnology Journal, 2021, 19(3): 415-417. |
204 | JIANG Y Y, CHAI Y P, LU M H, et al. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize[J]. Genome Biology, 2020, 21(1): 257. |
205 | KANG B C, BAE S J, LEE S, et al. Chloroplast and mitochondrial DNA editing in plants[J]. Nature Plants, 2021, 7(7): 899-905. |
206 | SÁNCHEZ Á, VILA J C C, CHANG C Y, et al. Directed evolution of microbial communities[J]. Annual Review of Biophysics, 2021, 50: 323-341. |
207 | BLOOM J D, ARNOLD F H. In the light of directed evolution: Pathways of adaptive protein evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(): 9995-10000. |
208 | D'OELSNITZ S, ELLINGTON A. Continuous directed evolution for strain and protein engineering[J]. Current Opinion in Biotechnology, 2018, 53: 158-163. |
209 | KUHLMAN B, BRADLEY P. Advances in protein structure prediction and design[J]. Nature Reviews Molecular Cell Biology, 2019, 20(11): 681-697. |
210 | ESVELT K M, CARLSON J C, LIU D R. A system for the continuous directed evolution of biomolecules[J]. Nature, 2011, 472(7344): 499-503. |
211 | RAVIKUMAR A, ARZUMANYAN G A, OBADI M K A, et al. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds[J]. Cell, 2018, 175(7): 1946-1957.e13. |
212 | HEINS Z J, MANCUSO C P, KIRIAKOV S, et al. Designing automated, high-throughput, continuous cell growth experiments using eVOLVER[J]. Journal of Visualized Experiments: JoVE, 2019(147): 59652. |
213 | RICHTER M F, ZHAO K T, ETON E, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity[J]. Nature Biotechnology, 2020, 38(7): 883-891. |
214 | KANTOR A, MCCLEMENTS M E, MACLAREN R E. CRISPR-cas9 DNA base-editing and prime-editing[J]. International Journal of Molecular Sciences, 2020, 21(17): 6240. |
215 | XU R F, LI J, LIU X S, et al. Development of plant prime-editing systems for precise genome editing[J]. Plant Communications, 2020, 1(3): 100043. |
216 | TAMBORSKI J, KRASILEVA K V. Evolution of plant NLRs: from natural history to precise modifications[J]. Annual Review of Plant Biology, 2020, 71: 355-378. |
217 | LI C, ZHANG R, MENG X B, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nature Biotechnology, 2020, 38(7): 875-882. |
218 | LIN Q P, ZONG Y, XUE C X, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5): 582-585. |
219 | RAZZAQ A, SALEEM F, KANWAL M, et al. Modern trends in plant genome editing: an inclusive review of the CRISPR/Cas9 toolbox[J]. International Journal of Molecular Sciences, 2019, 20(16): 4045. |
220 | GIONFRIDDO M, DE GARA L, LORETO F. Directed evolution of plant processes: Towards a green (r)evolution? [J]. Trends in Plant Science, 2019, 24(11): 999-1007. |
221 | NELLEMANN C, CORCORAN E, DUARTE C M, et al. Blue carbon: the role of healthy oceans in binding carbon[R]. Norway: Birkeland Trykkeri, 2009. |
222 | 方精云. 碳中和的生态学透视[J]. 植物生态学报, 2021, 45(11): 1173-1176. |
FANG J Y. Ecological perspectives of carbon neutrality[J]. Chinese Journal of Plant Ecology, 2021, 45(11): 1173-1176. |
[1] | 胡哲辉, 徐娟, 卞光凯. 自动化高通量技术在天然产物生物合成中的应用[J]. 合成生物学, 2023, 4(5): 932-946. |
[2] | 张凡忠, 相长君, 张骊駻. 进化与大数据导向生物信息学在天然产物研究中的发展及应用[J]. 合成生物学, 2023, 4(4): 629-650. |
[3] | 董佳钰, 李敏, 肖宗华, 胡明, 松田侑大, 汪伟光. 米曲霉异源表达天然产物研究进展[J]. 合成生物学, 2022, 3(6): 1126-1149. |
[4] | 吕靖伟, 邓子新, 张琪, 丁伟. 基于深度学习识别RiPPs前体肽及裂解位点[J]. 合成生物学, 2022, 3(6): 1262-1276. |
[5] | 朱振, 田晶, 江静, 王旺银, 曹旭鹏. 微藻叶绿体细胞器工厂研究进展[J]. 合成生物学, 2022, 3(6): 1218-1234. |
[6] | 史梦琳, 周琳, 王庆, 赵磊. 植物二氧化碳代谢途径改造研究进展[J]. 合成生物学, 2022, 3(5): 985-1005. |
[7] | 陶飞, 孙韬, 王钰, 魏婷, 倪俊, 许平. “双碳”背景下聚球藻底盘研究的挑战与机遇[J]. 合成生物学, 2022, 3(5): 932-952. |
[8] | 赵权宇. 面向碳中和的微藻适应性实验室进化研究进展[J]. 合成生物学, 2022, 3(5): 901-914. |
[9] | 董正鑫, 孙韬, 陈磊, 张卫文. 调控工程在光合蓝细菌中的应用[J]. 合成生物学, 2022, 3(5): 966-984. |
[10] | 盛阳阳, 徐秀美, 张巧红, 张立新. 光合作用碳同化的合成生物学研究进展[J]. 合成生物学, 2022, 3(5): 870-883. |
[11] | 王松, 吴莎, 江亚男, 胡章立. 微藻光合作用的优化升级助力“双碳”目标[J]. 合成生物学, 2022, 3(5): 915-931. |
[12] | 王雪云, 杨文君, 钟超, 高翔. 材料-生物杂化体的光驱生物催化[J]. 合成生物学, 2022, 3(1): 98-115. |
[13] | 杨谦, 程伯涛, 汤志军, 刘文. 基因组挖掘在天然产物发现中的应用和前景[J]. 合成生物学, 2021, 2(5): 697-715. |
[14] | 张发光, 曲戈, 孙周通, 马军安. 从化学合成到生物合成——天然产物全合成新趋势[J]. 合成生物学, 2021, 2(5): 674-696. |
[15] | 刘裕, 韦惠玲, 刘骥翔, 王少杰, 苏海佳. 人工多菌体系的设计与构建:合成生物学研究新前沿[J]. 合成生物学, 2021, 2(4): 635-650. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||