合成生物学 ›› 2025, Vol. 6 ›› Issue (2): 445-460.DOI: 10.12211/2096-8280.2024-062
肖森1,2,3, 胡立涛1,2,3, 石智诚1,2, 王发银1,2, 余思婷1,2, 堵国成2,4, 陈坚2,3,4, 康振1,2,3
收稿日期:
2024-08-14
修回日期:
2024-10-24
出版日期:
2025-04-30
发布日期:
2025-05-20
通讯作者:
康振
作者简介:
基金资助:
XIAO Sen1,2,3, HU Litao1,2,3, SHI Zhicheng1,2, WANG Fayin1,2, YU Siting1,2, DU Guocheng2,4, CHEN Jian2,3,4, KANG Zhen1,2,3
Received:
2024-08-14
Revised:
2024-10-24
Online:
2025-04-30
Published:
2025-05-20
Contact:
KANG Zhen
摘要:
透明质酸(hyaluronic acid, HA)是一种在化妆品、食品和医疗领域广泛应用的天然直链酸性黏多糖。根据分子量大小,HA可分为高、中、低三类,不同分子量的HA具有不同的功能和应用场景。随着微生物发酵技术取代传统动物组织提取法,HA工业化生产取得了巨大进步。然而,天然HA合成菌株兽疫链球菌的缺点(如潜在致病性以及难以分子改造),限制了不同分子量HA的生物合成研究。近年来,随着特定分子量HA需求的不断增长,代谢工程和合成生物技术已广泛应用于HA生物合成与分子量调控。本文首先分析了中高分子量HA合成的限制性因素,重点讨论了HA前体合成途径的基因调控及竞争支路的弱化。其次,探讨了HA合酶、前体供应和发酵条件对超高分子量HA合成的影响。最后,总结了低分子量HA的制备策略,包括物理化学法、酶法和微生物直接发酵法。还针对HA的生物合成与分子量调控面临的挑战——高分子量HA分子量不够高、中高分子量HA合成能力弱和低分子量HA分子量可控性差三方面展开系统性综述,加强对HA生物合成与分子量调控策略的理解,助力实现可控分子量HA的高效生物合成。
中图分类号:
肖森, 胡立涛, 石智诚, 王发银, 余思婷, 堵国成, 陈坚, 康振. 可控分子量透明质酸的生物合成研究进展[J]. 合成生物学, 2025, 6(2): 445-460.
XIAO Sen, HU Litao, SHI Zhicheng, WANG Fayin, YU Siting, DU Guocheng, CHEN Jian, KANG Zhen. Research advances in biosynthesis of hyaluronic acid with controlled molecular weights[J]. Synthetic Biology Journal, 2025, 6(2): 445-460.
工程菌株 | 改造策略 | HA产量 /(g/L) | HA分子量 /Da | 参考文献 |
---|---|---|---|---|
S. zooepidemicus ATCC 39920 | 敲除HA裂解酶编码基因hylB | 3.40 | 2.28×106 | [ |
S. zooepidemicus | 过表达HAS编码基因sehasA,提高碳源浓度 | 6.90 | 2.75×106 | [ |
S. zooepidemicus MTCC 3523 | 调节溶解氧水平与N-乙酰葡萄糖胺供应水平 | 2.4 | 2.53×106 | [ |
S. zooepidemicus | 添加铁纳米颗粒 | 0.435 | 1.48×106 | [ |
S. zooepidemicus ATCC 39920 | 紫外诱变策略,开发两阶段半连续发酵工艺 | 29.38 | — | [ |
E. coli K12 W3110 | 敲除6-磷酸果糖激酶Ⅰ编码基因pfkA和葡萄糖-6-磷酸脱氢酶编码基因zwf,表达HA合成途径基因簇galU-ugd和glmS-glmM-glmU | 0.02998 | — | [ |
E. coli Top10 | 表达兽疫链球菌来源HAS编码基因sehasA和UDP-葡萄糖脱氢酶编码基因ugdA | 0.19 | 0.35×106~1.9×106 | [ |
E. coli JM109 | 表达多杀巴斯德杆菌来源HAS编码基因pmhasA和大肠杆菌K5来源UDP-葡萄糖脱氢酶编码基因ugdA | 3.8 | — | [ |
Lactobacillus acidophilus | 表达兽疫链球菌来源HAS编码基因sehasA和UDP-葡萄糖脱氢酶编码基因ugdA | 1.7 | — | [ |
Lactococcus lactis CES15 | PnisA启动子调控兽疫链球菌来源HAS编码基因sehasA表达 | 6.09 | — | [ |
Streptomyces albulus | 表达兽疫链球菌来源HAS编码基因sehasA和阿维米蒂利斯链霉菌来源UDP-葡萄糖脱氢酶编码基因ugdA、乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因glmU、葡萄糖-6-磷酸尿酰胺转移酶编码基因gtaB | 6.2 | 2×106 | [ |
Pichia pastoris | 表达非洲爪蟾来源HAS编码基因xhasA2和UDP-葡萄糖脱氢酶编码基因xhasB,毕赤酵母来源的葡萄糖-6-磷酸尿酰胺转移酶编码基因hasC,乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因hasD,磷酸葡萄糖异构酶编码基因hasE | 1.7 | 1.2×106~2.5×106 | [ |
B. subtilis 168 | 表达兽疫链球菌来源HAS编码基因sehasA,枯草芽孢杆菌来源UDP-葡萄糖脱氢酶编码基因tuaD,葡萄糖-6-磷酸尿酰胺转移酶编码基因gtaB,乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因glmU,磷酸葡萄糖胺变位酶编码基因glmM和谷氨酰胺-果糖-6-磷酸氨基转移酶编码基因glmS;下调6-磷酸果糖激酶Ⅰ编码基因pfkA表达 | 3.16 | 1.4×106~1.83×106 | [ |
B. subtilis BGSC 1A751 | 表达细菌血红蛋白编码基因vhb、C组链球菌来源HAS编码基因hasA、枯草芽孢杆菌来源UDP-葡萄糖脱氢酶编码基因tuaD | 1.8 | — | [ |
C. glutamicum 13032 | 表达酿脓链球菌来源HAS编码基因spHasA,恶臭假单胞菌来源谷氨酰胺-果糖-6-磷酸氨基转移酶编码基因ptglmS,谷氨酸棒杆菌来源UDP-葡萄糖脱氢酶编码基因cgugdA2;敲除糖基转移酶编码基因cg0420和cg0424 | 34.2 | 3.21×105 | [ |
C. glutamicum 13032 | 表达兽疫链球菌来源HAS编码基因sehasA,谷氨酸棒杆菌来源UDP-葡萄糖脱氢酶编码基因hasB | 8.3 | 1.3×106 | [ |
C. glutamicum 13032 | 表达兽疫链球菌来源HAS编码基因seHasA,UDP-葡萄糖脱氢酶编码基因hasB,敲除果糖1,6-二磷酸醛缩酶编码基因fba,葡萄糖-6-磷酸脱氢酶编码基因zwf,阻断乳酸和乙酸合成 | 28.7 | 2.1×105 | [ |
表1 代谢工程改造微生物合成HA
Table 1 Metabolic engineered microorganisms to synthesize HAs
工程菌株 | 改造策略 | HA产量 /(g/L) | HA分子量 /Da | 参考文献 |
---|---|---|---|---|
S. zooepidemicus ATCC 39920 | 敲除HA裂解酶编码基因hylB | 3.40 | 2.28×106 | [ |
S. zooepidemicus | 过表达HAS编码基因sehasA,提高碳源浓度 | 6.90 | 2.75×106 | [ |
S. zooepidemicus MTCC 3523 | 调节溶解氧水平与N-乙酰葡萄糖胺供应水平 | 2.4 | 2.53×106 | [ |
S. zooepidemicus | 添加铁纳米颗粒 | 0.435 | 1.48×106 | [ |
S. zooepidemicus ATCC 39920 | 紫外诱变策略,开发两阶段半连续发酵工艺 | 29.38 | — | [ |
E. coli K12 W3110 | 敲除6-磷酸果糖激酶Ⅰ编码基因pfkA和葡萄糖-6-磷酸脱氢酶编码基因zwf,表达HA合成途径基因簇galU-ugd和glmS-glmM-glmU | 0.02998 | — | [ |
E. coli Top10 | 表达兽疫链球菌来源HAS编码基因sehasA和UDP-葡萄糖脱氢酶编码基因ugdA | 0.19 | 0.35×106~1.9×106 | [ |
E. coli JM109 | 表达多杀巴斯德杆菌来源HAS编码基因pmhasA和大肠杆菌K5来源UDP-葡萄糖脱氢酶编码基因ugdA | 3.8 | — | [ |
Lactobacillus acidophilus | 表达兽疫链球菌来源HAS编码基因sehasA和UDP-葡萄糖脱氢酶编码基因ugdA | 1.7 | — | [ |
Lactococcus lactis CES15 | PnisA启动子调控兽疫链球菌来源HAS编码基因sehasA表达 | 6.09 | — | [ |
Streptomyces albulus | 表达兽疫链球菌来源HAS编码基因sehasA和阿维米蒂利斯链霉菌来源UDP-葡萄糖脱氢酶编码基因ugdA、乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因glmU、葡萄糖-6-磷酸尿酰胺转移酶编码基因gtaB | 6.2 | 2×106 | [ |
Pichia pastoris | 表达非洲爪蟾来源HAS编码基因xhasA2和UDP-葡萄糖脱氢酶编码基因xhasB,毕赤酵母来源的葡萄糖-6-磷酸尿酰胺转移酶编码基因hasC,乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因hasD,磷酸葡萄糖异构酶编码基因hasE | 1.7 | 1.2×106~2.5×106 | [ |
B. subtilis 168 | 表达兽疫链球菌来源HAS编码基因sehasA,枯草芽孢杆菌来源UDP-葡萄糖脱氢酶编码基因tuaD,葡萄糖-6-磷酸尿酰胺转移酶编码基因gtaB,乙酰葡萄糖胺焦磷酸化酶/葡萄糖-1-磷酸乙酰转移酶双功能酶编码基因glmU,磷酸葡萄糖胺变位酶编码基因glmM和谷氨酰胺-果糖-6-磷酸氨基转移酶编码基因glmS;下调6-磷酸果糖激酶Ⅰ编码基因pfkA表达 | 3.16 | 1.4×106~1.83×106 | [ |
B. subtilis BGSC 1A751 | 表达细菌血红蛋白编码基因vhb、C组链球菌来源HAS编码基因hasA、枯草芽孢杆菌来源UDP-葡萄糖脱氢酶编码基因tuaD | 1.8 | — | [ |
C. glutamicum 13032 | 表达酿脓链球菌来源HAS编码基因spHasA,恶臭假单胞菌来源谷氨酰胺-果糖-6-磷酸氨基转移酶编码基因ptglmS,谷氨酸棒杆菌来源UDP-葡萄糖脱氢酶编码基因cgugdA2;敲除糖基转移酶编码基因cg0420和cg0424 | 34.2 | 3.21×105 | [ |
C. glutamicum 13032 | 表达兽疫链球菌来源HAS编码基因sehasA,谷氨酸棒杆菌来源UDP-葡萄糖脱氢酶编码基因hasB | 8.3 | 1.3×106 | [ |
C. glutamicum 13032 | 表达兽疫链球菌来源HAS编码基因seHasA,UDP-葡萄糖脱氢酶编码基因hasB,敲除果糖1,6-二磷酸醛缩酶编码基因fba,葡萄糖-6-磷酸脱氢酶编码基因zwf,阻断乳酸和乙酸合成 | 28.7 | 2.1×105 | [ |
1 | WEISSMANN B, MEYER K. The structure of hyalobiuronic acid and of hyaluronic acid from umbilical Cord1, 2 [J]. Journal of the American Chemical Society, 1954, 76(7): 1753-1757. |
2 | SERRA M, CASAS A E, TOUBARRO D, et al. Microbial hyaluronic acid production: a review[J]. Molecules, 2023, 28(5): 2084. |
3 | KOGAN G, SOLTÉS L, STERN R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology Letters, 2007, 29(1): 17-25. |
4 | KUMARI K, BAGGENSTOSS B A, PARKER A L, et al. Mutation of two intramembrane polar residues conserved within the hyaluronan synthase family alters hyaluronan product size[J]. Journal of Biological Chemistry, 2006, 281(17): 11755-11760. |
5 | NECAS J, BARTOSIKOVA L, BRAUNER P, et al. Hyaluronic acid (hyaluronan): a review[J]. Veterinární Medicína, 2008, 53(8): 397-411. |
6 | HYNNEKLEIV L, MAGNO M, VERNHARDSDOTTIR R R, et al. Hyaluronic acid in the treatment of dry eye disease[J]. Acta Ophthalmologica, 2022, 100(8): 844-860. |
7 | RODRIGUEZ-MARQUEZ C D, ARTEAGA-MARIN S, RIVAS-SÁNCHEZ A, et al. A review on current strategies for extraction and purification of hyaluronic acid[J]. International Journal of Molecular Sciences, 2022, 23(11): 6038. |
8 | CHONG B F, BLANK L M, MCLAUGHLIN R, et al. Microbial hyaluronic acid production[J]. Applied Microbiology and Biotechnology, 2005, 66(4): 341-351. |
9 | DEANGELIS P L, JING W, DRAKE R R, et al. Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida [J]. Journal of Biological Chemistry, 1998, 273(14): 8454-8458. |
10 | ZHANG Y J, DONG J J, XU G C, et al. Efficient production of hyaluronic acid by Streptococcus zooepidemicus using two-stage semi-continuous fermentation[J]. Bioresource Technology, 2023, 377: 128896. |
11 | LIU L, LIU Y F, LI J H, et al. Microbial production of hyaluronic acid: current state, challenges, and perspectives[J]. Microbial Cell Factories, 2011, 10: 99. |
12 | ZHANG X Z, WANG M, LI T J, et al. Construction of efficient Streptococcus zooepidemicus strains for hyaluoronic acid production based on identification of key genes involved in sucrose metabolism[J]. AMB Express, 2016, 6(1): 121. |
13 | PIRES A M B, SANTANA M H A. Metabolic effects of the initial glucose concentration on microbial production of hyaluronic acid[J]. Applied Biochemistry and Biotechnology, 2010, 162(6): 1751-1761. |
14 | WEI M M, HUANG Y, ZHU J Y, et al. Advances in hyaluronic acid production: biosynthesis and genetic engineering strategies based on Streptococcus: a review[J]. International Journal of Biological Macromolecules, 2024, 270: 132334. |
15 | MENAA F, MENAA A, MENAA B. Hyaluronic acid and derivatives for tissue engineering[J]. Journal of Biotechnology & Biomaterials, 2013, S3: 001. |
16 | BUFFA R, NEŠPOROVÁ K, BASARABOVÁ I, et al. Synthesis and study of branched hyaluronic acid with potential anticancer activity[J]. Carbohydrate Polymers, 2019, 223: 115047. |
17 | DOSIO F, ARPICCO S, STELLA B, et al. Hyaluronic acid for anticancer drug and nucleic acid delivery[J]. Advanced Drug Delivery Reviews, 2016, 97: 204-236. |
18 | KIM J H, MOON M J, KIM D Y, et al. Hyaluronic acid-based nanomaterials for cancer therapy[J]. Polymers, 2018, 10(10): 1133. |
19 | PEDRON S, WOLTER G L, CHEN J W E, et al. Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens[J]. Biomaterials, 2019, 219: 119371. |
20 | LU J F, ZHU Y, SUN H L, et al. Highly efficient production of hyaluronic acid by Streptococcus zooepidemicus R42 derived from heterologous expression of bacterial haemoglobin and mutant selection[J]. Letters in Applied Microbiology, 2016, 62(4): 316-322. |
21 | KIMURA M, MAESHIMA T, KUBOTA T, et al. Absorption of orally administered hyaluronan[J]. Journal of Medicinal Food, 2016, 19(12): 1172-1179. |
22 | TIAN X, AZPURUA J, HINE C, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat[J]. Nature, 2013, 499(7458): 346-349. |
23 | TAKASUGI M, FIRSANOV D, TOMBLINE G, et al. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties[J]. Nature Communications, 2020, 11(1): 2376. |
24 | LAGUNAS-RANGEL F A. Naked mole-rat hyaluronan[J]. Biochimie, 2024, 220: 58-66. |
25 | DEL MARMOL D, HOLTZE S, KICHLER N, et al. Abundance and size of hyaluronan in naked mole-rat tissues and plasma[J]. Scientific Reports, 2021, 11(1): 7951. |
26 | RANKIN K S, FRANKEL D. Hyaluronan in cancer-from the naked mole rat to nanoparticle therapy[J]. Soft Matter, 2016, 12(17): 3841-3848. |
27 | BUKHARI S N A, ROSWANDI N L, WAQAS M, et al. Hyaluronic acid, a promising skin rejuvenating biomedicine: a review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects[J]. International Journal of Biological Macromolecules, 2018, 120: 1682-1695. |
28 | DOUSE-DEAN T, JACOB C I. Fast and easy treatment for reduction of the Tyndall effect secondary to cosmetic use of hyaluronic acid[J]. Journal of Drugs in Dermatology, 2008, 7(3): 281-283. |
29 | XUE Y, CHEN H Y, XU C, et al. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether[J]. RSC Advances, 2020, 10(12): 7206-7213. |
30 | ANDRADE DEL OLMO J, ALONSO J M, SÁEZ MARTÍNEZ V, et al. Biocompatible hyaluronic acid-divinyl sulfone injectable hydrogels for sustained drug release with enhanced antibacterial properties against Staphylococcus aureus [J]. Materials Science and Engineering: C, 2021, 125: 112102. |
31 | HUERTA-ÁNGELES G, ONDREÁŠ F, BRANDEJSOVÁ M, et al. Formulation of hyaluronan grafted with dodecanoic acid as a potential ophthalmic treatment[J]. Carbohydrate Polymers, 2020, 246: 116578. |
32 | MARINHO A, NUNES C, REIS S. Hyaluronic acid: a key ingredient in the therapy of inflammation[J]. Biomolecules, 2021, 11(10): 1518. |
33 | DONG Y F, ARIF A, OLSSON M, et al. Endotoxin free hyaluronan and hyaluronan fragments do not stimulate TNF-α, interleukin-12 or upregulate co-stimulatory molecules in dendritic cells or macrophages[J]. Scientific Reports, 2016, 6: 36928. |
34 | AUDAM T N, DASSANAYAKA S, JURKOVIC A, et al. Abstract 823: the extracellular matrix component, hyaluronan, provokes a pro-inflammatory phenotype in macrophages[J]. Circulation Research, 2019, 125(S1): 823. |
35 | POHLIG F, GUELL F, LENZE U, et al. Hyaluronic acid suppresses the expression of metalloproteinases in osteoarthritic cartilage stimulated simultaneously by interleukin 1β and mechanical load[J]. PLoS One, 2016, 11(3): e0150020. |
36 | DU W L, YANG X P, HE S F, et al. Novel hyaluronic acid oligosaccharide-loaded and CD44v6-targeting oxaliplatin nanoparticles for the treatment of colorectal cancer[J]. Drug Delivery, 2021, 28(1): 920-929. |
37 | CUI Y L, WANG F, VOORHEES J J, et al. Rejuvenation of aged human skin by injection of cross-linked hyaluronic acid[J]. Plastic and Reconstructive Surgery, 2021, 147(1S-2): 43S-49S. |
38 | JANG M, BAEK S, KANG G, et al. Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal density and elasticity[J]. International Journal of Cosmetic Science, 2020, 42(3): 302-309. |
39 | MISRA S, HASCALL V C, MARKWALD R R, et al. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer[J]. Frontiers in Immunology, 2015, 6: 201. |
40 | BHATTACHARYA D, SVECHKAREV D, SOUCHEK J J, et al. Impact of structurally modifying hyaluronic acid on CD44 interaction[J]. Journal of Materials Chemistry B, 2017, 5(41): 8183-8192. |
41 | KHEGAI I I. Hyaluronan metabolism and tumor progression[J]. Russian Journal of Bioorganic Chemistry, 2022, 48(5): 896-905. |
42 | CAMACHO K M, MENEGATTI S, MITRAGOTRI S. Low-molecular-weight polymer-drug conjugates for synergistic anticancer activity of camptothecin and doxorubicin combinations[J]. Nanomedicine, 2016, 11(9): 1139-1151. |
43 | PASSI A, VIGETTI D. Hyaluronan as tunable drug delivery system[J]. Advanced Drug Delivery Reviews, 2019, 146: 83-96. |
44 | WOO J E, SEONG H J, LEE S Y, et al. Metabolic engineering of Escherichia coli for the production of hyaluronic acid from glucose and galactose[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 351. |
45 | YU H M, STEPHANOPOULOS G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid[J]. Metabolic Engineering, 2008, 10(1): 24-32. |
46 | LAI Z W, ABDUL RAHIM R, ARIFF A B, et al. Comparison of hyaluronic acid biosynthesis by the recombinant Escherichia coli strains in different mode of bioreactor operation[J]. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 6(3): 905-910. |
47 | YU H M, TYO K, ALPER H, et al. A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors[J]. Biotechnology and Bioengineering, 2008, 101(4): 788-796. |
48 | MAO Z C, SHIN H D, CHEN R. A recombinant E. coli bioprocess for hyaluronan synthesis[J]. Applied Microbiology and Biotechnology, 2009, 84(1): 63-69. |
49 | SCHULTE S, DOSS S S, JEEVA P, et al. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight-tailored hyaluronan[J]. Applied Microbiology and Biotechnology, 2019, 103(18): 7567-7581. |
50 | PUVENDRAN K, JAYARAMAN G. Enhancement of acetyl-CoA by acetate co-utilization in recombinant Lactococcus lactis cultures enables the production of high molecular weight hyaluronic acid[J]. Applied Microbiology and Biotechnology, 2019, 103(17): 6989-7001. |
51 | JEEVA P, SHANMUGA DOSS S, SUNDARAM V, et al. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures[J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4363-4375. |
52 | SUNGUROĞLU C, SEZGIN D E, AYTAR ÇELIK P, et al. Higher titer hyaluronic acid production in recombinant Lactococcus lactis [J]. Preparative Biochemistry & Biotechnology, 2018, 48(8): 734-742. |
53 | LI Y Y, LI G Q, ZHAO X, et al. Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis [J]. 3 Biotech, 2019, 9(6): 225. |
54 | WESTBROOK A W, REN X, OH J, et al. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis [J]. Metabolic Engineering, 2018, 47: 401-413. |
55 | WIDNER B, BEHR R, VON DOLLEN S, et al. Hyaluronic acid production in Bacillus subtilis [J]. Applied and Environmental Microbiology, 2005, 71(7): 3747-3752. |
56 | WESTBROOK A W, REN X, MOO-YOUNG M, et al. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis [J]. Biotechnology and Bioengineering, 2018, 115(1): 216-231. |
57 | JIA Y N, ZHU J, CHEN X F, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights[J]. Bioresource Technology, 2013, 132: 427-431. |
58 | CHIEN L J, LEE C K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin[J]. Biotechnology Progress, 2007, 23(5): 1017-1022. |
59 | JEONG E J, SHIM W Y, KIM J H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight[J]. Journal of Biotechnology, 2014, 185: 28-36. |
60 | CHENG F Y, YU H M, STEPHANOPOULOS G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid[J]. Metabolic Engineering, 2019, 55: 276-289. |
61 | CHENG F Y, GONG Q Y, YU H M, et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum [J]. Biotechnology Journal, 2016, 11(4): 574-584. |
62 | HOFFMANN J, ALTENBUCHNER J. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight[J]. Journal of Applied Microbiology, 2014, 117(3): 663-678. |
63 | CHENG F Y, LUOZHONG S J, GUO Z G, et al. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum via metabolic pathway regulation[J]. Biotechnology Journal, 2017, 12(10): 1700191. |
64 | WANG Y, HU L T, HUANG H, et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum [J]. Nature Communications, 2020, 11(1): 3120. |
65 | UCM R, AEM M, LHB Z, et al. Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications[J]. Bioengineered, 2022, 13(4): 9645-9661. |
66 | WANG J, HE W, WANG T, et al. Sucrose-modified iron nanoparticles for highly efficient microbial production of hyaluronic acid by Streptococcus zooepidemicus [J]. Colloids and Surfaces B, Biointerfaces, 2021, 205: 111854. |
67 | SUN X Q, WANG Z, BI Y L, et al. Genetic and functional characterization of the hyaluronate lyase HylB and the beta-N-acetylglucosaminidase HylZ in Streptococcus zooepidemicus [J]. Current Microbiology, 2015, 70(1): 35-42. |
68 | ZAKERI A, RASAEE M J, POURZARDOSHT N. Enhanced hyluronic acid production in Streptococcus zooepidemicus by over expressing HasA and molecular weight control with niscin and glucose[J]. Biotechnology Reports, 2017, 16: 65-70. |
69 | MOHAN N, TADI S R R, PAVAN S S, et al. Deciphering the role of dissolved oxygen and N-acetyl glucosamine in governing higher molecular weight hyaluronic acid synthesis in Streptococcus zooepidemicus cell factory[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3349-3365. |
70 | CHAHUKI F F, AMINZADEH S, JAFARIAN V, et al. Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus [J]. International Journal of Biological Macromolecules, 2019, 121: 870-881. |
71 | YOSHIMURA T, SHIBATA N, HAMANO Y, et al. Heterologous production of hyaluronic acid in an ε-poly-L-lysine producer, Streptomyces albulus [J]. Applied and Environmental Microbiology, 2015, 81(11): 3631-3640. |
72 | JIN P, KANG Z, YUAN P H, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168[J]. Metabolic Engineering, 2016, 35: 21-30. |
73 | CHEN W Y, MARCELLIN E, HUNG J, et al. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus [J]. Journal of Biological Chemistry, 2009, 284(27): 18007-18014. |
74 | WEIGEL P H, HASCALL V C, TAMMI M. Hyaluronan synthases[J]. Journal of Biological Chemistry, 1997, 272(22): 13997-14000. |
75 | JOHNS M R, GOH L T, OEGGERLI A. Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus [J]. Biotechnology Letters, 1994, 16(5): 507-512. |
76 | LI Y Y, SHI Z Z, SHAO Y Z, et al. Temperature-controlled molecular weight of hyaluronic acid produced by engineered Bacillus subtilis [J]. Biotechnology Letters, 2021, 43(1): 271-277. |
77 | HUANG W C, CHEN S J, CHEN T L. The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation[J]. Biochemical Engineering Journal, 2006, 32(3): 239-243. |
78 | SKANDALIS S S, KARALIS T, HELDIN P. Intracellular hyaluronan: importance for cellular functions[J]. Seminars in Cancer Biology, 2020, 62: 20-30. |
79 | HMAR R V, PRASAD S B, JAYARAMAN G, et al. Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis [J]. Biotechnology Journal, 2014, 9(12): 1554-1564. |
80 | AGARWAL G, K V K, PRASAD S B, et al. Biosynthesis of hyaluronic acid polymer: dissecting the role of sub structural elements of hyaluronan synthase[J]. Scientific Reports, 2019, 9(1): 12510. |
81 | MALONEY F P, KUKLEWICZ J, COREY R A, et al. Structure, substrate recognition and initiation of hyaluronan synthase[J]. Nature, 2022, 604(7904): 195-201. |
82 | HUBBARD C, MCNAMARA J T, AZUMAYA C, et al. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan[J]. Journal of Molecular Biology, 2012, 418(1-2): 21-31. |
83 | WEIGEL P H, BAGGENSTOSS B A. Hyaluronan synthase polymerizing activity and control of product size are discrete enzyme functions that can be uncoupled by mutagenesis of conserved cysteines[J]. Glycobiology, 2012, 22(10): 1302-1310. |
84 | YANG J, CHENG F Y, YU H M, et al. Key role of the carboxyl terminus of hyaluronan synthase in processive synthesis and size control of hyaluronic acid polymers[J]. Biomacromolecules, 2017, 18(4): 1064-1073. |
85 | MANDAWE J, INFANZON D B, EISELE A, et al. Directed evolution of hyaluronic acid synthase from Pasteurella multocida towards high-molecular-weight hyaluronic acid[J]. ChemBioChem, 2018, 19(13): 1414-1423. |
86 | DUAN X J, NIU H X, TAN W S, et al. Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus [J]. Journal of Microbiology and Biotechnology, 2009, 19(3): 299-306. |
87 | LAI Z W, RAHIM R A, ARIFF A B, et al. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed[J]. Journal of Bioscience and Bioengineering, 2012, 114(3): 286-291. |
88 | ABDULLAH THAIDI N I, MOHAMAD R, WASOH H, et al. Development of in situ product recovery (ISPR) system using amberlite IRA67 for enhanced biosynthesis of hyaluronic acid by Streptococcus zooepidemicus [J]. Life, 2023, 13(2): 558. |
89 | HU L T, WANG Y, HU Y X, et al. Biosynthesis of non-sulfated high-molecular-weight glycosaminoglycans and specific-sized oligosaccharides[J]. Carbohydrate Polymers, 2022, 295: 119829. |
90 | ZHANG X, DUAN X J, TAN W S. Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus [J]. Food Chemistry, 2010, 119(4): 1643-1646. |
91 | WU Y. Preparation of low-molecular-weight hyaluronic acid by ozone treatment[J]. Carbohydrate Polymers, 2012, 89(2): 709-712. |
92 | KARAMI M, SHAHRAKY M K, RANJBAR M, et al. Preparation, purification, and characterization of low-molecular-weight hyaluronic acid[J]. Biotechnology Letters, 2021, 43(1): 133-142. |
93 | PANG B, WANG H, HUANG H, et al. Enzymatic production of low-molecular-weight hyaluronan and its oligosaccharides: a review and prospects[J]. Journal of Agricultural and Food Chemistry, 2022, 70(44): 14129-14139. |
94 | GURA E, HÜCKEL M, MÜLLER P J. Specific degradation of hyaluronic acid and its rheological properties[J]. Polymer Degradation and Stability, 1998, 59(1-3): 297-302. |
95 | HUANG Y C, HUANG K Y, LEW W Z, et al. Gamma-irradiation-prepared low molecular weight hyaluronic acid promotes skin wound healing[J]. Polymers, 2019, 11(7): 1214. |
96 | CHEN H Y, QIN J, HU Y. Efficient degradation of high-molecular-weight hyaluronic acid by a combination of ultrasound, hydrogen peroxide, and copper ion[J]. Molecules, 2019, 24(3): 617. |
97 | HUANG H, LIANG Q X, WANG Y, et al. High-level constitutive expression of leech hyaluronidase with combined strategies in recombinant Pichia pastoris [J]. Applied Microbiology and Biotechnology, 2020, 104(4): 1621-1632. |
98 | JIN P, KANG Z, ZHANG N, et al. High-yield novel leech hyaluronidase to expedite the preparation of specific hyaluronan oligomers[J]. Scientific Reports, 2014, 4: 4471. |
99 | WANG L, LIU Q Q, GONG X, et al. Cloning and biochemical characterization of a hyaluronate lyase from Bacillus sp. CQMU-D[J]. Journal of Microbiology and Biotechnology, 2023, 33(2): 235-241. |
100 | LI Y J, ZHANG S L, WU H, et al. Biochemical characterization of a thermophilic hyaluronate lyase TcHly8C from Thermasporomyces composti DSM22891[J]. International Journal of Biological Macromolecules, 2020, 165: 1211-1218. |
101 | NGUYEN V A, OGURA K, MATSUE M, et al. Novel hyaluronate lyase involved in pathogenicity of Streptococcus dysgalactiae subsp. equisimilis [J]. Frontiers in Microbiology, 2020, 11: 552418. |
102 | NEHMÉ R, NASREDDINE R, ORLIC L, et al. Kinetic theory of hyaluronan cleavage by bovine testicular hyaluronidase in standard and crowded environments[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2021, 1865(3): 129837. |
103 | LIU L, DU G C, CHEN J, et al. Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcus zooepidemicus [J]. Food Chemistry, 2008, 110(4): 923-926. |
104 | HE J, HUANG H, ZOU X P, et al. Construction of saturated odd- and even-numbered hyaluronan oligosaccharide building block library[J]. Carbohydrate Polymers, 2020, 231: 115700. |
[1] | 高琪, 肖文海. 酵母合成单萜类化合物的研究进展[J]. 合成生物学, 2025, 6(2): 357-372. |
[2] | 盛周煌, 陈智仙, 张彦. 酵母甘露糖蛋白的研究进展[J]. 合成生物学, 2025, 6(2): 408-421. |
[3] | 张梦瑶, 蔡鹏, 周雍进. 合成生物学助力萜类香精香料可持续生产[J]. 合成生物学, 2025, 6(2): 334-356. |
[4] | 张璐鸥, 徐丽, 胡晓旭, 杨滢. 合成生物学助力化妆品走进生物制造新时代[J]. 合成生物学, 2025, 6(2): 479-491. |
[5] | 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造[J]. 合成生物学, 2025, 6(2): 422-444. |
[6] | 伊进行, 唐宇琳, 李春雨, 吴鹤云, 马倩, 谢希贤. 氨基酸衍生物在化妆品中的应用及其生物合成研究进展[J]. 合成生物学, 2025, 6(2): 254-289. |
[7] | 韦灵珍, 王佳, 孙新晓, 袁其朋, 申晓林. 黄酮类化合物生物合成及其在化妆品中应用的研究[J]. 合成生物学, 2025, 6(2): 373-390. |
[8] | 王倩, 果士婷, 辛波, 钟成, 王钰. L-精氨酸的微生物合成研究进展[J]. 合成生物学, 2025, 6(2): 290-305. |
[9] | 左一萌, 张姣姣, 连佳长. 酿酒酵母使能技术在化妆品原料合成中的应用[J]. 合成生物学, 2025, 6(2): 233-253. |
[10] | 汤传根, 王璟, 张烁, 张昊宁, 康振. 功能肽合成和挖掘策略研究进展[J]. 合成生物学, 2025, 6(2): 461-478. |
[11] | 郭婷婷, 韩湘凝, 黄熙婷, 张婷婷, 孔健. 乳酸菌的合成生物学工具及在合成益肤因子中的应用[J]. 合成生物学, 2025, 6(2): 320-333. |
[12] | 张萍, 张维娇, 胥睿睿, 李江华, 陈坚, 康振. 防晒化合物类菌孢素氨基酸的生物合成[J]. 合成生物学, 2025, 6(2): 306-319. |
[13] | 黄姝涵, 马赫, 罗云孜. 生物合成红景天苷的研究进展[J]. 合成生物学, 2025, 6(2): 391-407. |
[14] | 郭姝媛, 张倩楠, 姑丽克孜·买买提热夏提, 杨一群, 于涛. 液体生物燃料合成与炼制的研究进展[J]. 合成生物学, 2025, 6(1): 18-44. |
[15] | 高歌, 边旗, 王宝俊. 合成基因线路的工程化设计研究进展与展望[J]. 合成生物学, 2025, 6(1): 45-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||