Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (1): 98-115.DOI: 10.12211/2096-8280.2021-078
• Invited Review • Previous Articles Next Articles
Xueyun WANG1,2, Wenjun YANG1,2, Chao ZHONG1,2, Xiang GAO1,2
Received:
2021-07-23
Revised:
2021-10-14
Online:
2022-03-14
Published:
2022-02-28
Contact:
Xiang GAO
王雪云1,2, 杨文君1,2, 钟超1,2, 高翔1,2
通讯作者:
高翔
作者简介:
基金资助:
CLC Number:
Xueyun WANG, Wenjun YANG, Chao ZHONG, Xiang GAO. Biohybrid materials for light-driven biocatalysis[J]. Synthetic Biology Journal, 2022, 3(1): 98-115.
王雪云, 杨文君, 钟超, 高翔. 材料-生物杂化体的光驱生物催化[J]. 合成生物学, 2022, 3(1): 98-115.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-078
Fig. 1 Diagram for natural photosynthesis and artificial photosynthesis(a) Schematic diagram of natural photosynthesis with light reaction (lower) and dark reaction (upper). Photoreaction uses light energy to generate NADPH and ATP, and in the dark reaction, NADPH and ATP are used to drive CO2 fixation through the CBB cycle. (b) The artificial photosynthesis composed of a semiconductor material system and an electrode system [3, 10-12]. The semiconductor material absorbs light and generates electron (e-), e- transitions from the valence band (V.B.) to the conduction band (C.B.) to reduces H+ to H2[6]. The holes (h+) left on V.B. are consumed using water as reducing agent and O2 is released. (c) The photoanode material oxidizes water to generate O2 and provide e-, and the electron is transferred to the photocathode for reducing H+ to H2[3]
Fig. 2 Diagram for biological photosensitizer-material hybrids(a) PSⅠ photosensitizer harvests light and generates e-, which is then transferred to non-biological catalyst for reducing H+ to H2[44]. (b) PSⅡ and Ru/SrTiO3:Rh form a Z-scheme structure. Photoelectrons from PSⅡ neutralize h+ on V.B. of Ru/SrTiO3:Rh, leaving electrons with higher reduction potential on C.B. of Ru/SrTiO3:Rh to reduce H+ to H2[45]. (c) PSⅡ and DPP dye form a Z-scheme electron transfer structure, and together with formate dehydrogenase (H2ase) or formate dehydrogenase (FDHase) to build semiconductor-enzyme hybrid. Electrons on C.B. of DPP dye participate in catalytic reaction of enzyme to reduce H+ to H2 or fix carbon dioxide into formate[46]. (d) PSⅡ acts as photoanode to catalyze water splitting to provide electrons, and enzyme at photocathode uses the electrons to drive reduction reaction[3, 47-48]
Fig. 3 Diagram for components in materials-enzymes hybrid systems(a) Major photosensitizers including proteins, organic photosensitizers and semiconductor materials[57]. (b) Representative enzymes used in the material-enzyme hybrids[3]. (c) Major electron donors[57]. (d) Redox mediators. [Cp*Rh(bpy)H2O]2+ and NAD(P)H are the most widely used mediators[57]. PSP—Photo-sensitive protein[59]
Fig. 4 Diagram for materials biohybrid systems[In semiconductor/electrode-enzyme hybrid systems, there are two electron transfer routes: direct (a) and indirect electron transfer (b) [3, 57]; In semiconductor-microbial hybrid systems (c), the nanoparticles are distributed at different sites of the cell, including extracellular, surface and intracellular[3]; Electrode-bacteria hybrids (d) include free and immobilized cell systems[3, 9, 61]]
1 | ARMAROLI N, BALZANI V. The future of energy supply: challenges and opportunities[J]. Angewandte Chemie International Edition, 2007, 46(1/2): 52-66. |
2 | LI X B, TUNG C H, WU L Z. Semiconducting quantum dots for artificial photosynthesis[J]. Nature Reviews Chemistry, 2018, 2(8): 160-173. |
3 | FANG X, KALATHIL S, REISNER E. Semi-biological approaches to solar-to-chemical conversion[J]. Chemical Society Reviews, 2020, 49(14): 4926-4952. |
4 | NAYAK P K, MAHESH S, SNAITH H J, et al. Photovoltaic solar cell technologies: analysing the state of the art[J]. Nature Reviews Materials, 2019, 4(4): 269-285. |
5 | TACHIBANA Y, VAYSSIERES L, DURRANT J R. Artificial photosynthesis for solar water-splitting[J]. Nature Photonics, 2012, 6(8): 511-518. |
6 | ALBERO J, PENG Y, GARCÍA H. Photocatalytic CO2 reduction to C2+ products[J]. ACS Catalysis, 2020, 10(10): 5734-5749. |
7 | BROWN K A, HARRIS D F, WILKER M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. |
8 | KORNIENKO N, ZHANG J Z, SAKIMOTO K K, et al. Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis[J]. Nature Nanotechnology, 2018, 13(10): 890-899. |
9 | CESTELLOS-BLANCO S, ZHANG H, KIM J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis, 2020, 3(3): 245-255. |
10 | BROWN K A, KING P W. Coupling biology to synthetic nanomaterials for semi-artificial photosynthesis[J]. Photosynthesis Research, 2020, 143(2): 193-203. |
11 | ZUO W L, ZHANG L, ZHANG Z D, et al. Degradation of organic pollutants by intimately coupling photocatalytic materials with microbes: a review[J]. Critical Reviews in Biotechnology, 2021, 41(2): 273-299. |
12 | SAHOO P C, PANT D, KUMAR M, et al. Material-microbe interfaces for solar-driven CO2 bioelectrosynthesis[J]. Trends in Biotechnology, 2020, 38(11): 1245-1261. |
13 | 熊威, 冯建勇, 马为民, 等. 基于无机材料-微生物复合的半人工光合作用[J]. 无机化学学报, 2019, 35(9): 1521-1534. |
XIONG W, FENG J Y, MA W M, et al. Semi-artificial photosynthesis based on inorganic material-microbe hybrids[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(9): 1521-1534. | |
14 | FLEMING G R, SCHLAU-COHEN G S, AMARNATH K, et al. Design principles of photosynthetic light-harvesting[J]. Faraday Discussions, 2012, 155: 27-41. |
15 | ZHANG J Z, BOMBELLI P, SOKOL K P, et al. Photoelectrochemistry of photosystem Ⅱ in vitro vs in vivo [J]. Journal of the American Chemical Society, 2018, 140(1): 6-9. |
16 | SCHMERMUND L, JURKAŠ V, ÖZGEN F F, et al. Photo-biocatalysis: Biotransformations in the presence of light[J]. ACS Catalysis, 2019, 9(5): 4115-4144. |
17 | BLANKENSHIP R E, TIEDE D M, BARBER J, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332(6031): 805-809. |
18 | ZHU X G, LONG S P, ORT D R. Improving photosynthetic efficiency for greater yield[J]. Annual Review of Plant Biology, 2010, 61: 235-261. |
19 | CHEN M. Chapter Four-Chlorophylls d and f: Synthesis, occurrence, light-harvesting, and pigment organization in chlorophyll-binding protein complexes[M]//GRIMM B. Advances in Botanical Research. Academic Press. 2019: 121-139. |
20 | CHEN M, SCHLIEP M, WILLOWS R D, et al. A red-shifted chlorophyll[J]. Science, 2010, 329(5997): 1318-1319. |
21 | TROS M, BERSANINI L, SHEN G Z, et al. Harvesting far-red light: Functional integration of chlorophyll f into Photosystem Ⅰ complexes of Synechococcus sp. PCC 7002[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2020, 1861(8): 148206. |
22 | JARCHUM I. Photosynthesis gets a boost[J]. Nature Biotechnology, 2017, 35(1): 30. |
23 | KROMDIJK J, GŁOWACKA K, LEONELLI L, et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection[J]. Science, 2016, 354(6314): 857-861. |
24 | CHEN J H, CHEN S T, HE N Y, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem Ⅱ increases photosynthetic efficiency and crop yield[J]. Nature Plants, 2020, 6(5): 570-580. |
25 | MELIS A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency[J]. Plant Science, 2009, 177(4): 272-280. |
26 | KRAMER D M, EVANS J R. The importance of energy balance in improving photosynthetic productivity[J]. Plant Physiology, 2010, 155(1): 70-78. |
27 | HASUNUMA T, MATSUDA M, SENGA Y H, et al. Overexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 by enhancement of alternative electron flow[J]. Biotechnology for Biofuels, 2014, 7(1): 493. |
28 | CHEN Q, STEEN J B VAN DER, DEKKER H L, et al. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803[J]. Metabolic Engineering, 2016, 35: 83-94. |
29 | DUCAT D C, SILVER P A. Improving carbon fixation pathways[J]. Current Opinion in Chemical Biology, 2012, 16(3/4): 337-344. |
30 | KAMENNAYA N A, AHN S, PARK H, et al. Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production[J]. Metabolic Engineering, 2015, 29: 76-85. |
31 | TAMOI M, NAGAOKA M, MIYAGAWA Y, et al. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants[J]. Plant and Cell Physiology, 2006, 47(3): 380-390. |
32 | ZHU X G, DE STURLER E, LONG S P. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm[J]. Plant Physiology, 2007, 145(2): 513-526. |
33 | JABLONSKY J, BAUWE H, WOLKENHAUER O. Modeling the Calvin-Benson cycle[J]. BMC Systems Biology, 2011, 5: 185. |
34 | ROSENTHAL D M, LOCKE A M, KHOZAEI M, et al. Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1-7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE)[J]. BMC Plant Biology, 2011, 11: 123. |
35 | KÖHLER I H, RUIZ-VERA U M, VANLOOCKE A, et al. Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions[J]. Journal of Experimental Botany, 2017, 68(3): 715-726. |
36 | JANASCH M, ASPLUND-SAMUELSSON J, STEUER R, et al. Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation[J]. Journal of Experimental Botany, 2018, 70(3): 973-983. |
37 | HU G P, ZHOU J, CHEN X L, et al. Engineering synergetic CO2-fixing pathways for malate production[J]. Metabolic Engineering, 2018, 47: 496-504. |
38 | BAR-EVEN A, NOOR E, LEWIS N E, et al. Design and analysis of synthetic carbon fixation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8889-8894. |
39 | SCHWANDER T, BORZYSKOWSKI L S VON, BURGENER S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro [J]. Science, 2016, 354(6314): 900-904. |
40 | MILLER T E, BENEYTON T, SCHWANDER T, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts[J]. Science, 2020, 368(6491): 649-654. |
41 | CARDONA T, SHAO S X, NIXON P J. Enhancing photosynthesis in plants: The light reactions[J]. Essays in Biochemistry, 2018, 62(1): 85-94. |
42 | CIAMICIAN G. The Photochemistry of the future[J]. Science, 1912, 36(926): 385-394. |
43 | ZHOU G, SHAN Y, HU Y Y, et al. Half-metallic carbon nitride nanosheets with micro grid mode resonance structure for efficient photocatalytic hydrogen evolution[J]. Nature Communications, 2018, 9: 3366. |
44 | GRIMME R A, LUBNER C E, BRYANT D A, et al. Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2 [J]. Journal of the American Chemical Society, 2008, 130(20): 6308-6309. |
45 | WANG W Y, LI Z, CHEN J, et al. Crucial roles of electron-proton transport relay in the photosystem Ⅱ-photocatalytic hybrid system for overall water splitting[J]. The Journal of Physical Chemistry C, 2017, 121(5): 2605-2612. |
46 | MERSCH D, LEE C Y, ZHANG J Z, et al. Wiring of photosystem Ⅱ to hydrogenase for photoelectrochemical water splitting[J]. Journal of the American Chemical Society, 2015, 137(26): 8541-8549. |
47 | TIAN Y, ZHOU Y N, ZONG Y C, et al. Construction of functionally compartmental inorganic photocatalyst-enzyme system via imitating chloroplast for efficient photoreduction of CO2 to formic acid[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34795-34805. |
48 | LI Z, WANG W Y, DING C M, et al. Biomimetic electron transport via multiredox shuttles from photosystem Ⅱ to a photoelectrochemical cell for solar water splitting[J]. Energy & Environmental Science, 2017, 10(3): 765-771. |
49 | UTSCHIG L M, SOLTAU S R, TIEDE D M. Light-driven hydrogen production from Photosystem I-catalyst hybrids[J]. Current Opinion in Chemical Biology, 2015, 25: 1-8. |
50 | UTSCHIG L M, DIMITRIJEVIC N M, POLUEKTOV O G, et al. Photocatalytic hydrogen production from noncovalent biohybrid photosystem I/Pt nanoparticle complexes[J]. The Journal of Physical Chemistry Letters, 2011, 2(3): 236-241. |
51 | NOJI T, SUZUKI T, KONDO M, et al. Light-induced hydrogen production by photosystem I-Pt nanoparticle conjugates immobilized in porous glass plate nanopores[J]. Research on Chemical Intermediates, 2016, 42(11): 7731-7742. |
52 | ZHAO F Y, CONZUELO F, HARTMANN V, et al. Light induced H2 evolution from a biophotocathode based on photosystem 1-Pt nanoparticles complexes integrated in solvated redox polymers films[J]. The Journal of Physical Chemistry B, 2015, 119(43): 13726-13731. |
53 | LUBITZ W, CHRYSINA M, COX N. Water oxidation in photosystem Ⅱ[J]. Photosynthesis Research, 2019, 142(1): 105-125. |
54 | UTSCHIG L M, SOLTAU S R, MULFORT K L, et al. Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes[J]. Chemical Science, 2018, 9(45): 8504-8512. |
55 | ZHANG J Z, BOMBELLI P, SOKOL K P, et al. Photoelectrochemistry of photosystem Ⅱ in vitro vs in vivo [J]. Journal of the American Chemical Society, 2018, 140(1): 6-9. |
56 | MCCORMICK A J, BOMBELLI P, BRADLEY R W, et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems[J]. Energy & Environmental Science, 2015, 8(4): 1092-1109. |
57 | LEE S H, CHOI D S, KUK S K, et al. Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons[J]. Angewandte Chemie International Edition, 2018, 57(27): 7958-7985. |
58 | CHEN S Y, WANG L W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution[J]. Chemistry of Materials, 2012, 24(18): 3659-3666. |
59 | FU Y, HUANG J, WU Y Z, et al. Biocatalytic cross-coupling of aryl halides with a genetically engineered photosensitizer artificial dehalogenase[J]. Journal of the American Chemical Society, 2021, 143(2): 617-622. |
60 | PARK J H, LEE S H, CHA G S, et al. Cofactor-free light-driven whole-cell cytochrome P450 catalysis[J]. Angewandte Chemie International Edition, 2015, 54(3): 969-973. |
61 | LIU C, GALLAGHER J J, SAKIMOTO K K, et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Letters, 2015, 15(5): 3634-3639. |
62 | BROWN K A, WILKER M B, BOEHM M, et al. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe]hydrogenase complexes[J]. Journal of the American Chemical Society, 2012, 134(12): 5627-5636. |
63 | BROWN K A, SONG Q, MULDER D W, et al. Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes[J]. ACS Nano, 2014, 8(10): 10790-10798. |
64 | HUTTON G A M, REUILLARD B, MARTINDALE B C M, et al. Carbon dots as versatile photosensitizers for solar-driven catalysis with redox enzymes[J]. Journal of the American Chemical Society, 2016, 138(51): 16722-16730. |
65 | CAPUTO C A, WANG L D, BERANEK R, et al. Carbon nitride-TiO2 hybrid modified with hydrogenase for visible light driven hydrogen production[J]. Chemical Science, 2015, 6(10): 5690-5694. |
66 | REISNER E, ARMSTRONG F A. A TiO2 nanoparticle system for sacrificial solar h2 production prepared by rational combination of a hydrogenase with a ruthenium photosensitizer[M]//WANG P. Nanoscale biocatalysis: methods and protocols. Totowa, NJ; Humana Press, 2011: 107-117. |
67 | REISNER E, POWELL D J, CAVAZZA C, et al. Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2009, 131(51): 18457-18466. |
68 | SAKAI T, MERSCH D, REISNER E. Photocatalytic hydrogen evolution with a hydrogenase in a mediator-free system under high levels of oxygen[J]. Angewandte Chemie International Edition, 2013, 52(47): 12313-12316. |
69 | WOOLERTON T W, SHEARD S, REISNER E, et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light[J]. Journal of the American Chemical Society, 2010, 132(7): 2132-2133. |
70 | ZHANG Y Y, ZHAO Y J, LI R, et al. Bioinspired NADH regeneration based on conjugated photocatalytic systems[J]. Solar RRL, 2021, 5(2): 2000339. |
71 | LIU J, ANTONIETTI M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates[J]. Energy & Environmental Science, 2013, 6(5): 1486. |
72 | LIU W, HU W, YANG L, et al. Single cobalt atom anchored on carbon nitride with well-defined active sites for photo-enzyme catalysis[J]. Nano Energy, 2020, 73: 104750. |
73 | ZHANG S H, ZHANG Y S, CHEN Y, et al. Metal hydride-embedded titania coating to coordinate electron transfer and enzyme protection in photo-enzymatic catalysis[J]. ACS Catalysis, 2021, 11(1): 476-483. |
74 | SEELAJAROEN H, BAKANDRITSOS A, OTYEPKA M, et al. Immobilized enzymes on graphene as nanobiocatalyst[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 250-259. |
75 | SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
76 | GURUNATHAN K. Photobiocatalytic production of hydrogen using sensitized TiO2-MV2+ system coupled Rhodopseudomonas capsulata [J]. Journal of Molecular Catalysis A: Chemical, 2000, 156(1/2): 59-67. |
77 | WANG B, JIANG Z F, YU J C, et al. Enhanced CO2 reduction and valuable C2 + chemical production by a CdS-photosynthetic hybrid system[J]. Nanoscale, 2019, 11(19): 9296-9301. |
78 | WANG B, ZENG C P, CHU K H, et al. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles[J]. Advanced Energy Materials, 2017, 7(20): 1700611. |
79 | WEI W, SUN P Q, LI Z, et al. A surface-display biohybrid approach to light-driven hydrogen production in air[J]. Science Advances, 2018, 4(2): eaap9253. |
80 | GUO J L, SUÁSTEGUI M, SAKIMOTO K K, et al. Light-driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362(6416): 813-816. |
81 | NICHOLS E M, GALLAGHER J J, LIU C, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11461-11466. |
82 | YE J, YU J, ZHANG Y Y, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid[J]. Applied Catalysis B: Environmental, 2019, 257: 117916. |
83 | TORELLA J P, GAGLIARDI C J, CHEN J S, et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): 2337-2342. |
84 | HUANG S F, TANG J H, LIU X, et al. Fast light-driven biodecolorization by a geobacter sulfurreducens-CdS biohybrid[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15427-15433. |
85 | WANG X N, NIU M T, FAN J X, et al. Photoelectric bacteria enhance the in situ production of tetrodotoxin for antitumor therapy[J]. Nano Letters, 2021, 21(10): 4270-4279. |
86 | LI X J, SUN H, MAO X M, et al. Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(20): 7600-7608. |
87 | ZHANG H, LIU H, TIAN Z Q, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology, 2018, 13(10): 900-905. |
88 | DING Y C, BERTRAM J R, ECKERT C, et al. Nanorg microbial factories: Light-driven renewable biochemical synthesis using quantum dot-bacteria nanobiohybrids[J]. Journal of the American Chemical Society, 2019, 141(26): 10272-10282. |
89 | LUO B F, WANG Y Z, LI D, et al. A periplasmic photosensitized biohybrid system for solar hydrogen production[J]. Advanced Energy Materials, 2021, 11(19): 2100256. |
90 | GUENGERICH F P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity[J]. Chemical Research in Toxicology, 2001, 14(6): 611-650. |
91 | ZENG Y, ZHOU X, QI R L, et al. Photoactive conjugated polymer-based hybrid biosystems for enhancing cyanobacterial photosynthesis and regulating redox state of protein[J]. Advanced Functional Materials, 2021, 31(8): 2007814. |
92 | GAI P P, YU W, ZHAO H, et al. Solar-powered organic semiconductor-bacteria biohybrids for CO2 reduction into acetic acid[J]. Angewandte Chemie International Edition, 2020, 59(18): 7224-7229. |
93 | DAI N, ZHAO H, YU W, et al. Oligo(p-phenylenevinylene)-rhodium complex as intracellular catalyst for enhancing biosynthesis of polyhydroxybutyrate biomaterials[J]. Science China Chemistry, 2021, 64(1): 143-150. |
94 | ZHOU X, ZENG Y, TANG Y Y, et al. Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials[J]. Science Advances, 2020, 6(35): eabc5237. |
95 | QI R L, ZHAO H, ZHOU X, et al. In situ synthesis of photoactive polymers on a living cell surface via bio-palladium catalysis for modulating biological functions[J]. Angewandte Chemie International Edition, 2021, 60(11): 5759-5765. |
96 | LIU C, COLÓN B C, ZIESACK M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290): 1210-1213. |
97 | LIU C, SAKIMOTO K K, COLÓN B C, et al. Ambient nitrogen reduction cycle using a hybrid inorganic-biological system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(25): 6450-6455. |
98 | RODRIGUES R M, GUAN X, IÑIGUEZ J A, et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction[J]. Nature Catalysis, 2019, 2(5): 407-414. |
99 | SU Y D, CESTELLOS-BLANCO S, KIM J M, et al. Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation[J]. Joule, 2020, 4(4): 800-811. |
100 | JI Z, ZHANG H, LIU H, et al. Cytoprotective metal-organic frameworks for anaerobic bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(42): 10582-10587. |
101 | ZHANG R T, HE Y, YI J, et al. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system[J]. Chemistry, 2020, 6(1): 234-249. |
102 | KORNIENKO N, SAKIMOTO K K, HERLIHY D M, et al. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11750-11755. |
103 | LI Z D, WU C, GAO X, et al. Exogenous electricity flowing through cyanobacterial photosystem I drives CO2 valorization with high energy efficiency[J]. Energy & Environmental Science, 2021, 14(10): 5480-5490. |
[1] | Jianzhao YANG, Xinguang ZHU. Plant synthetic biology for carbon peak and carbon neutrality [J]. Synthetic Biology Journal, 2022, 3(5): 847-869. |
[2] | Song WANG, Sha WU, Yanan JIANG, Zhangli HU. Optimization and upgradation of microalgal photosynthesis for carbon peak and carbon neutrality goals [J]. Synthetic Biology Journal, 2022, 3(5): 915-931. |
[3] | Yangyang SHENG, Xiumei XU, Qiaohong ZHANG, Lixin ZHANG. Advances in synthetic biology for photosynthetic carbon assimilation [J]. Synthetic Biology Journal, 2022, 3(5): 870-883. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||