Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (1): 116-137.DOI: 10.12211/2096-8280.2021-079
• Invited Review • Previous Articles Next Articles
Shuyuan GUO1,2, Lianghuan WU1,2, Xiangjian LIU1,2, Bo WANG1,2, Tao YU1,2
Received:
2021-07-23
Revised:
2021-10-21
Online:
2022-03-14
Published:
2022-02-28
Contact:
Tao YU
郭姝媛1,2, 吴良焕1,2, 刘香健1,2, 王博1,2, 于涛1,2
通讯作者:
于涛
作者简介:
基金资助:
CLC Number:
Shuyuan GUO, Lianghuan WU, Xiangjian LIU, Bo WANG, Tao YU. Developing C1-based metabolic network in methylotrophy for biotransformation[J]. Synthetic Biology Journal, 2022, 3(1): 116-137.
郭姝媛, 吴良焕, 刘香健, 王博, 于涛. 微生物中一碳代谢网络构建的进展与挑战[J]. 合成生物学, 2022, 3(1): 116-137.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-079
宿主 | 发酵培养基 | 产物(产量) | 备注 | 参考 文献 |
---|---|---|---|---|
巴斯德毕赤酵母 | 甲醇,基础盐培养基 | 6-甲基水杨酸(2.2 g/L) | ①表达磷酸泛酰巯基乙胺基转移酶(Aspergillus nidulans)、6-甲基水杨酸合成酶(Aspergillus terrus);②5 L生物反应器 | [ |
甲醇,葡萄糖,基础盐培养基 | 香柏酮(208 mg/L) | ①表达前二烯加氧酶(Hyoscyamus muticus)、细胞色素P450还原酶(Arabidopsis thaliana)、缬烯合酶(Callitropsis nootkatensis)、乙醇脱氢酶(Pichia pastoris)、部分羟基戊二酰辅酶A还原酶(Saccharomyces cerevisiae);②补料分批 | [ | |
葡萄糖(40 g/L),草酸(0.2 g/L),酵母提取物(7.5 g/L),蛋白胨(10 g/L),基础盐培养基 | 透明质酸 (2.5 MDa;0.8~1.7 g/L) | ①表达透明质酸合成酶2(Xenopus laevis)、UDP-葡萄糖脱氢酶(Xenopus laevis)、UDP-葡萄糖焦磷酸化酶(P. pastoris)、UDP-N-乙酰氨基葡萄糖焦磷酸化酶(P. pastoris)、磷酸葡萄糖异构酶(P. pastoris);②1 L生物反应器 | [ | |
甲醇(1%),组氨酸(0.05%),生物素(0.01%) | 富马酸(0.76 g/L),苹果酸(42.28 g/L),琥珀酸(9.42 g/L) | ①表达丙酮酸羧化酶(Pichia pastoris)、苹果酸脱氢酶1(Pichia pastoris)、富马酸酶(Pichia pastoris);②0.6 L生物反应器 | [ | |
酵母提取物(1%),蛋白胨(2%),葡萄糖(2%) | 番茄红素(1.141 μg/g细胞干重),β-胡萝卜素(339 μg/g细胞干重) | ①表达香叶酰二磷酸合成酶(Erwinia uredovora)、茄红素合成酶(Erwinia uredovora)、茄红素去饱和酶(Erwinia uredovora)、番茄红素环化酶(Ficus carica);②摇瓶培养 | [ | |
甲醇(0.5%),甘油,基础盐培养基 | 单那可林 J(593.9 mg/L),洛伐他汀(250.8 mg/L) | ①途径分割策略;②5 L生物反应器 | [ | |
甲醇(0.5%),甘油,基础盐培养基 | 洛伐他汀(419 mg/L) | ①表达洛伐他汀合成模块B-C-A-F-D-G(Aspergillus terreus)、细胞色素P450还原酶(Aspergillus terreus)、磷酸泛酰巯基乙胺基转移酶(Aspergillus nidulans)、他汀外排蛋白(Aspergillus terreus);②5 L生物反应器 | [ | |
汉逊酵母 | 甲醇(0.2%),胆碱(0.2%),葡萄糖(0.25%) | 青霉素(1 mg/L) | ①表达非核糖体肽合成酶(Penicillium chrysogenum)、异青霉素N合成酶(Penicillium chrysogenum)、异青霉素素N酰基转移酶(Penicillium chrysogenum)、苯乙酰CoA连接酶(Penicillium chrysogenum);②恒化器 | [ |
甲醇芽孢杆菌 | 甲醇,基础盐培养基 | L-谷氨酸(58 g/L) | ① 50 ℃培养;②补料分批 | [ |
甲醇(150 mmol/L),酵母提取物(0.25 g/L),基础盐培养基 | L-赖氨酸(11 g/L) | ①表达天冬氨酸激酶(Bacillus methanolicus);② 3 L生物反应器 | [ | |
甲醇(150 mmol/L),基础盐培养基 | L-赖氨酸(65 g/L), L-谷氨酸(28 g/L) | ①表达丙酮酸羧化酶(Bacillus methanolicus)、高丝氨酸脱氢酶(Bacillus methanolicus);②3 L生物反应器 | [ | |
甲醇(200 mmol/L),酵母提取物(0.025%),基础盐培养基 | L-赖氨酸(777 mg/L) | ①表达赖氨酸外排基因(Corynebacterium glutamicum);② 500 mL摇瓶发酵 | [ | |
甲醇(200 mmol/L),酵母提取物(0.025%),基础盐培养基 | 尸胺(11.3 g/L) | ①表达赖氨酸脱羧酶(Escherichia coli);② 3 L生物反应器 | [ | |
甲醇(200 mmol/L),诱导剂,基础盐培养基 | 尸胺(10.2 g/L) | ①诱导的启动子系统和θ-and rolling circle-复制系统;② 3 L生物反应器 | [ | |
甲醇(200 mmol/L),5'-磷酸吡哆醛(20 μmol/L),基础盐培养基 | γ-氨基丁酸(9 g/L) | ①表达谷氨酸脱羧酶(Sulfobacillus thermosulfidooxidans);② 3 L生物反应器 | [ | |
扭脱甲基杆菌 AM1 | 甲醇(0.5%),琥珀酸(0.5%),基础盐培养基 | 聚羟基烷酸酯 (PHA,35.1%±4.36%) | ①表达PHA合成酶(Aeromonas caviae);② Co2+缺陷条件;③摇瓶培养 | [ |
甲醇(125 mmol/L),琥珀酸(20 mmol/L),乙胺(20 mmol/L),基础盐培养基 | 1-丁醇(15.2 mg/L) | ①表达烯酰辅酶A还原酶(Treponema denticola)、乙醇脱氢酶(Clostridium acetobutylicum)、巴豆酸酶(Methylobacterium extorquens AM1);②摇瓶培养 | [ | |
甲醇(240 mmol/L),基础盐培养基 | 衣康酸(31.6 mg/L± 5.5 mg/L) | ①表达乌头酸脱羧酶(Aspergillus terreus);② 2 L生物反应器 | [ | |
甲醇(125 mmol/L),基础盐培养基 | 1-丁醇(25.5 mg/L) | ①适应性进化筛选突变株耐受丁醇达到0.5%;②摇瓶培养 | [ | |
甲醇(1%),基础盐培养基 | 甲羟戊酸(2.67 g/L) | ①生物感应器辅助;②产率0.55 mol乙酰CoA/mol甲醇;③ 5 L-生物反应器 | [ | |
甲醇(3 g/L),基础盐培养基 | 2-羟基异丁酸(2.1 g/L) | ①表达(R)-3-羟基丁基辅酶A特异性辅酶B12依赖性诱变酶(Bacillus massiliosenegalensis JC6);②产率0.11 g/g甲醇,生物反应器 | [ | |
甲醇(125 mmol/L),琥珀酸(15 mmol/L),基础盐培养基 | 3-羟基丙酸(69.8 mg/L) | ①表达丙二酰辅酶A还原酶(Chlorofexus aurantiacus);②摇瓶培养 | [ | |
甲醇(0.5%),琥珀酸(15 mmol/L),基础盐培养基 | 3-羟基丙酸(0.857 g/L) | ①ΔhprA,表达己糖磷酸合成酶(Bacillus methanolicus)、磷酸己糖异构酶(Bacillus methanolicus)、磷酸果糖激酶(Bacillus methanolicus)、6-磷酸葡萄糖脱氢酶(Bacillus methanolicus)、丙二酰辅酶A还原酶(Chlorofexus aurantiacus);② 2.5 L生物反应器 | [ | |
甲醇(125 mmol/L),琥珀酸(15 mmol/L),基础盐培养基 | 异丁醇(19 mg/L) | ①ΔldhA,表达2-酮异戊酸脱羧酶(Lactococcus lactis)、醇脱氢酶(Lactococcus lactis)、乙酰乳酸合酶(Bacillus subtilis);②摇瓶培养 | [ | |
甲醇(123 mmol/L),基础盐培养基 | 甲基富马酸,(2S)-甲基琥珀酸(0.65 g/L) | ①ΔphaC,表达硫酯酶;②摇瓶培养;产率0.17 g/g甲醇;③钴缺陷条件 | [ | |
甲醇(123 mmol/L),基础盐培养基 | α-蛇麻烯(1.65 g/L) | ①表达α-蛇麻烯合成酶(Zingiber zerumbet)、法尼焦磷酸合成酶(Saccharomyces cerevisiae)、异源甲羟戊酸途径;② 2.4 L生物反应器 | [ | |
甲醇(1%),基础盐培养基 | 甲羟戊酸(2.22 g/L) | ①表达HMG-CoA 合成酶(Enterococcus faecalistiters)、HMG-CoA还原酶(Enterococcus faecalistiters)、乙酰乙酰CoA 硫解酶(Ralstonia eutropha);②产率28.4 mg/g甲醇,5 L生物反应器 | [ | |
甲醇,琥珀酸盐,基础盐 培养基 | 丁二烯前体(0.6 mg/L) | ①表达羟乙烷基噻唑激酶(Escherichia coli)、磷酸异戊烯基激酶(Methanothermobacter thermautotrophicus)、乙醇脱氢酶(Clostridium acetobutylicum);②摇瓶培养 | [ | |
扭脱甲基杆菌 ATCC 55366 | 甲醇,基础盐培养基 | 绿色荧光蛋白(4 g/L) | ①表达不同的启动子;产率80 mg/g甲醇;② 20 L生物反应器 | [ |
甲醇(1%),异丙基苯甲酸(20 mg/L),基础盐培养基 | 功能性聚羟基烷酸酯(PHA,35.1%±4.36%) | ①表达聚羟基脂肪酸酯合成酶2(Pseudomonas fluorescens GK13);②含有碳碳双键的功能性PHA;3.摇瓶培养 | [ | |
甲基杆菌 MB200 | 甲醇(1.2%),基础盐培养基 | 乙醛酸(14.38 mg/mL) | ①表达羟基丙酮酸还原酶(M. extorquens);②摇瓶培养 | [ |
甲醇(1.2%),基础盐培养基 | L-丝氨酸(11.4 g/L) | ①表达丝氨酸羟甲基转移酶(SHMT,M. extorquens);②静息发酵 | [ | |
甲醇(1.2%),基础盐培养基 | L-丝氨酸(6.6 g/L) | ①表达甲醇脱氢酶(Methylobacterium sp. MB200);②静息发酵 | [ | |
甲醇(1.2%),基础盐培养基 | L-丝氨酸(9.1 g/L) | Δgnd(6-磷酸葡萄糖脱氢酶) | [ | |
甲基杆菌MB 126 | 甲醇(125 mmol/L),基础盐培养基 | (R)-3-羟基丁酸(2.8 g/L) | ① Δhbd(3-羟基丁酸降解酶)、Δlip(硫辛酸合成酶)② 2 L生物反应器 | [ |
Protomonas extorquens NR-1 | 甲醇(1%),基础盐培养基 | L-丝氨酸(54.5 g/L) | ①静息发酵;② 2 L生物反应器,产率0.183 mol丝氨酸/mol甲醇 | [ |
甲基菌属糖原ATCC突变体 | 甲醇(0.5%),蛋白胨(3 g/L),基础盐培养基 | L-谷氨酸(38.3 g/L),L-苏氨酸(11 g/L),L-赖氨酸(5.6 g/L) | ①NTG突变获取不同突变体,RV3、AL119、DHL122;② 5 L生物反应器 | [ |
嗜甲基菌属 Methylotrophus | 甲醇(500 mmol/L),硫酸铵 | L-赖氨酸(112 mmol) | ①表达ED 途径;② 1 L生物反应器 | [ |
甲烷球菌属 Maripaludis | 甲酸,乙酸(10 mmol/L),丙酮酸(20 mmol/L),丙氨酸(1 mmol/L),CO2/H2 | 香叶醇 | ①表达香叶醇合成酶(Ocimum basilicum);② 产率4.6 mg/g甲酸 | [ |
Tab. 1 Chemicals produced by native methylotrophs
宿主 | 发酵培养基 | 产物(产量) | 备注 | 参考 文献 |
---|---|---|---|---|
巴斯德毕赤酵母 | 甲醇,基础盐培养基 | 6-甲基水杨酸(2.2 g/L) | ①表达磷酸泛酰巯基乙胺基转移酶(Aspergillus nidulans)、6-甲基水杨酸合成酶(Aspergillus terrus);②5 L生物反应器 | [ |
甲醇,葡萄糖,基础盐培养基 | 香柏酮(208 mg/L) | ①表达前二烯加氧酶(Hyoscyamus muticus)、细胞色素P450还原酶(Arabidopsis thaliana)、缬烯合酶(Callitropsis nootkatensis)、乙醇脱氢酶(Pichia pastoris)、部分羟基戊二酰辅酶A还原酶(Saccharomyces cerevisiae);②补料分批 | [ | |
葡萄糖(40 g/L),草酸(0.2 g/L),酵母提取物(7.5 g/L),蛋白胨(10 g/L),基础盐培养基 | 透明质酸 (2.5 MDa;0.8~1.7 g/L) | ①表达透明质酸合成酶2(Xenopus laevis)、UDP-葡萄糖脱氢酶(Xenopus laevis)、UDP-葡萄糖焦磷酸化酶(P. pastoris)、UDP-N-乙酰氨基葡萄糖焦磷酸化酶(P. pastoris)、磷酸葡萄糖异构酶(P. pastoris);②1 L生物反应器 | [ | |
甲醇(1%),组氨酸(0.05%),生物素(0.01%) | 富马酸(0.76 g/L),苹果酸(42.28 g/L),琥珀酸(9.42 g/L) | ①表达丙酮酸羧化酶(Pichia pastoris)、苹果酸脱氢酶1(Pichia pastoris)、富马酸酶(Pichia pastoris);②0.6 L生物反应器 | [ | |
酵母提取物(1%),蛋白胨(2%),葡萄糖(2%) | 番茄红素(1.141 μg/g细胞干重),β-胡萝卜素(339 μg/g细胞干重) | ①表达香叶酰二磷酸合成酶(Erwinia uredovora)、茄红素合成酶(Erwinia uredovora)、茄红素去饱和酶(Erwinia uredovora)、番茄红素环化酶(Ficus carica);②摇瓶培养 | [ | |
甲醇(0.5%),甘油,基础盐培养基 | 单那可林 J(593.9 mg/L),洛伐他汀(250.8 mg/L) | ①途径分割策略;②5 L生物反应器 | [ | |
甲醇(0.5%),甘油,基础盐培养基 | 洛伐他汀(419 mg/L) | ①表达洛伐他汀合成模块B-C-A-F-D-G(Aspergillus terreus)、细胞色素P450还原酶(Aspergillus terreus)、磷酸泛酰巯基乙胺基转移酶(Aspergillus nidulans)、他汀外排蛋白(Aspergillus terreus);②5 L生物反应器 | [ | |
汉逊酵母 | 甲醇(0.2%),胆碱(0.2%),葡萄糖(0.25%) | 青霉素(1 mg/L) | ①表达非核糖体肽合成酶(Penicillium chrysogenum)、异青霉素N合成酶(Penicillium chrysogenum)、异青霉素素N酰基转移酶(Penicillium chrysogenum)、苯乙酰CoA连接酶(Penicillium chrysogenum);②恒化器 | [ |
甲醇芽孢杆菌 | 甲醇,基础盐培养基 | L-谷氨酸(58 g/L) | ① 50 ℃培养;②补料分批 | [ |
甲醇(150 mmol/L),酵母提取物(0.25 g/L),基础盐培养基 | L-赖氨酸(11 g/L) | ①表达天冬氨酸激酶(Bacillus methanolicus);② 3 L生物反应器 | [ | |
甲醇(150 mmol/L),基础盐培养基 | L-赖氨酸(65 g/L), L-谷氨酸(28 g/L) | ①表达丙酮酸羧化酶(Bacillus methanolicus)、高丝氨酸脱氢酶(Bacillus methanolicus);②3 L生物反应器 | [ | |
甲醇(200 mmol/L),酵母提取物(0.025%),基础盐培养基 | L-赖氨酸(777 mg/L) | ①表达赖氨酸外排基因(Corynebacterium glutamicum);② 500 mL摇瓶发酵 | [ | |
甲醇(200 mmol/L),酵母提取物(0.025%),基础盐培养基 | 尸胺(11.3 g/L) | ①表达赖氨酸脱羧酶(Escherichia coli);② 3 L生物反应器 | [ | |
甲醇(200 mmol/L),诱导剂,基础盐培养基 | 尸胺(10.2 g/L) | ①诱导的启动子系统和θ-and rolling circle-复制系统;② 3 L生物反应器 | [ | |
甲醇(200 mmol/L),5'-磷酸吡哆醛(20 μmol/L),基础盐培养基 | γ-氨基丁酸(9 g/L) | ①表达谷氨酸脱羧酶(Sulfobacillus thermosulfidooxidans);② 3 L生物反应器 | [ | |
扭脱甲基杆菌 AM1 | 甲醇(0.5%),琥珀酸(0.5%),基础盐培养基 | 聚羟基烷酸酯 (PHA,35.1%±4.36%) | ①表达PHA合成酶(Aeromonas caviae);② Co2+缺陷条件;③摇瓶培养 | [ |
甲醇(125 mmol/L),琥珀酸(20 mmol/L),乙胺(20 mmol/L),基础盐培养基 | 1-丁醇(15.2 mg/L) | ①表达烯酰辅酶A还原酶(Treponema denticola)、乙醇脱氢酶(Clostridium acetobutylicum)、巴豆酸酶(Methylobacterium extorquens AM1);②摇瓶培养 | [ | |
甲醇(240 mmol/L),基础盐培养基 | 衣康酸(31.6 mg/L± 5.5 mg/L) | ①表达乌头酸脱羧酶(Aspergillus terreus);② 2 L生物反应器 | [ | |
甲醇(125 mmol/L),基础盐培养基 | 1-丁醇(25.5 mg/L) | ①适应性进化筛选突变株耐受丁醇达到0.5%;②摇瓶培养 | [ | |
甲醇(1%),基础盐培养基 | 甲羟戊酸(2.67 g/L) | ①生物感应器辅助;②产率0.55 mol乙酰CoA/mol甲醇;③ 5 L-生物反应器 | [ | |
甲醇(3 g/L),基础盐培养基 | 2-羟基异丁酸(2.1 g/L) | ①表达(R)-3-羟基丁基辅酶A特异性辅酶B12依赖性诱变酶(Bacillus massiliosenegalensis JC6);②产率0.11 g/g甲醇,生物反应器 | [ | |
甲醇(125 mmol/L),琥珀酸(15 mmol/L),基础盐培养基 | 3-羟基丙酸(69.8 mg/L) | ①表达丙二酰辅酶A还原酶(Chlorofexus aurantiacus);②摇瓶培养 | [ | |
甲醇(0.5%),琥珀酸(15 mmol/L),基础盐培养基 | 3-羟基丙酸(0.857 g/L) | ①ΔhprA,表达己糖磷酸合成酶(Bacillus methanolicus)、磷酸己糖异构酶(Bacillus methanolicus)、磷酸果糖激酶(Bacillus methanolicus)、6-磷酸葡萄糖脱氢酶(Bacillus methanolicus)、丙二酰辅酶A还原酶(Chlorofexus aurantiacus);② 2.5 L生物反应器 | [ | |
甲醇(125 mmol/L),琥珀酸(15 mmol/L),基础盐培养基 | 异丁醇(19 mg/L) | ①ΔldhA,表达2-酮异戊酸脱羧酶(Lactococcus lactis)、醇脱氢酶(Lactococcus lactis)、乙酰乳酸合酶(Bacillus subtilis);②摇瓶培养 | [ | |
甲醇(123 mmol/L),基础盐培养基 | 甲基富马酸,(2S)-甲基琥珀酸(0.65 g/L) | ①ΔphaC,表达硫酯酶;②摇瓶培养;产率0.17 g/g甲醇;③钴缺陷条件 | [ | |
甲醇(123 mmol/L),基础盐培养基 | α-蛇麻烯(1.65 g/L) | ①表达α-蛇麻烯合成酶(Zingiber zerumbet)、法尼焦磷酸合成酶(Saccharomyces cerevisiae)、异源甲羟戊酸途径;② 2.4 L生物反应器 | [ | |
甲醇(1%),基础盐培养基 | 甲羟戊酸(2.22 g/L) | ①表达HMG-CoA 合成酶(Enterococcus faecalistiters)、HMG-CoA还原酶(Enterococcus faecalistiters)、乙酰乙酰CoA 硫解酶(Ralstonia eutropha);②产率28.4 mg/g甲醇,5 L生物反应器 | [ | |
甲醇,琥珀酸盐,基础盐 培养基 | 丁二烯前体(0.6 mg/L) | ①表达羟乙烷基噻唑激酶(Escherichia coli)、磷酸异戊烯基激酶(Methanothermobacter thermautotrophicus)、乙醇脱氢酶(Clostridium acetobutylicum);②摇瓶培养 | [ | |
扭脱甲基杆菌 ATCC 55366 | 甲醇,基础盐培养基 | 绿色荧光蛋白(4 g/L) | ①表达不同的启动子;产率80 mg/g甲醇;② 20 L生物反应器 | [ |
甲醇(1%),异丙基苯甲酸(20 mg/L),基础盐培养基 | 功能性聚羟基烷酸酯(PHA,35.1%±4.36%) | ①表达聚羟基脂肪酸酯合成酶2(Pseudomonas fluorescens GK13);②含有碳碳双键的功能性PHA;3.摇瓶培养 | [ | |
甲基杆菌 MB200 | 甲醇(1.2%),基础盐培养基 | 乙醛酸(14.38 mg/mL) | ①表达羟基丙酮酸还原酶(M. extorquens);②摇瓶培养 | [ |
甲醇(1.2%),基础盐培养基 | L-丝氨酸(11.4 g/L) | ①表达丝氨酸羟甲基转移酶(SHMT,M. extorquens);②静息发酵 | [ | |
甲醇(1.2%),基础盐培养基 | L-丝氨酸(6.6 g/L) | ①表达甲醇脱氢酶(Methylobacterium sp. MB200);②静息发酵 | [ | |
甲醇(1.2%),基础盐培养基 | L-丝氨酸(9.1 g/L) | Δgnd(6-磷酸葡萄糖脱氢酶) | [ | |
甲基杆菌MB 126 | 甲醇(125 mmol/L),基础盐培养基 | (R)-3-羟基丁酸(2.8 g/L) | ① Δhbd(3-羟基丁酸降解酶)、Δlip(硫辛酸合成酶)② 2 L生物反应器 | [ |
Protomonas extorquens NR-1 | 甲醇(1%),基础盐培养基 | L-丝氨酸(54.5 g/L) | ①静息发酵;② 2 L生物反应器,产率0.183 mol丝氨酸/mol甲醇 | [ |
甲基菌属糖原ATCC突变体 | 甲醇(0.5%),蛋白胨(3 g/L),基础盐培养基 | L-谷氨酸(38.3 g/L),L-苏氨酸(11 g/L),L-赖氨酸(5.6 g/L) | ①NTG突变获取不同突变体,RV3、AL119、DHL122;② 5 L生物反应器 | [ |
嗜甲基菌属 Methylotrophus | 甲醇(500 mmol/L),硫酸铵 | L-赖氨酸(112 mmol) | ①表达ED 途径;② 1 L生物反应器 | [ |
甲烷球菌属 Maripaludis | 甲酸,乙酸(10 mmol/L),丙酮酸(20 mmol/L),丙氨酸(1 mmol/L),CO2/H2 | 香叶醇 | ①表达香叶醇合成酶(Ocimum basilicum);② 产率4.6 mg/g甲酸 | [ |
宿主 | 主要 途径 | C1底物 | 共培养 底物 | 产品 (产量) | 特点 | 主要 策略 | 参考文献 |
---|---|---|---|---|---|---|---|
谷氨酸棒状 杆菌 | RuMP | 甲醇 | 核糖(20/100 mmol/L);葡萄糖(50 mmol/L) | 尸胺(1.5 g/L) | 首次将甲醇转化为非天然产物-尸胺 | ①表达RuMP相关酶;②Δald(乙醛脱氢酶),Δfadh(甲醛脱氢酶);③表达赖氨酸脱羧酶(E. coli) | [ |
RuMP | 甲醇 (15 g/L) | 木糖(4 g/L) | L-谷氨酸 (230 mg/L) | ①甲醇是主要的碳源,甲醇和木糖的利用率达到7.04∶1;②进化菌株甲醇耐受浓度为15 g/L | ①表达RuMP相关酶;②ΔAdhE(甲醛脱氢酶)、Δald(乙醛脱氢酶)、ΔrpiB(核糖磷酸异构酶);③表达木酮糖激酶、木酮糖异构酶;④过表达PPP途径、ED途径相关酶 | [ | |
RuMP | 甲醇 | 木糖(4 g/L) | L-谷氨酸 (90 mg/L) | ①甲醇和木糖共利用可以明显提高细胞增长;②甲醇木糖利用率为3.83∶1;③胞内细胞13C甲醇标记度达到63% | ①表达RuMP相关酶;②ΔAdhE(甲醛脱氢酶)、Δald(乙醛脱氢酶);③表达木酮糖激酶、木酮糖异构酶;④ΔrpiB(核糖磷酸异构酶) | [ | |
大肠 杆菌 | RuMP | 甲醇 (60 mmol/L) | 葡萄糖、木糖、蛋白胨的混合物(1 g/L);酵母提取物(1 g/L) | 橘皮素(3.5 mg/L) | 首次报道E. coli利用甲醇合成黄酮类物质 | ①表达RuMP相关酶;②ΔfrmA(甲醛脱氢酶);③表达香豆酰CoA连接酶、查尔酮合成酶 | [ |
RuMP | 甲醇 (6.4 g/L) | 葡萄糖(30~100 g/L)、酵母提取物(1 g/L); | 琥珀酸(68.75 g/L) | ①厌氧发酵加入甲醇提高琥珀酸产率0.98 g/g± 0.11 g/g甲醇;②甲醇氧化形成的NADH有助于琥珀酸形成 | ①表达RuMP相关酶;②5 L生物反应器 | [ | |
MSC | 甲醇 (200 mmol/L); 甲酸 (20 mmol/L);CO2 | 木糖(30 mmol/L) | 乙醇(36 mmol/L) | ①首次报道基于丝氨酸循环构建合成甲基营养菌;②甲醇加入可以增加乙醇产量达到62%,甲醇利用率为0.7 mmol/(L·h)(以OD600计),木糖与甲醇消耗率为1∶0.7 | ①表达丝氨酸途径相关酶;②表达丙氨酸-乙醛酸转氨酶(Agt)、丝氨酸脱氢酶(Sdh)、苹果酸硫激酶(Mtk)、苹果酰CoA裂解酶(Mcl)等;③表达乙醛脱氢酶(Pdup)、乙醇脱氢酶(AdhB);④ΔaceB ΔglcB ΔgcvP Δgcl ΔfrdB ΔldhA | [ | |
RuMP | 甲醇 | 葡萄糖(30 g/L),酵母提取物(10 g/L) | 丙酮(45.0 mmol/L ± 8.7 mmol/L) | ①两种策略共同提高甲醇利用率;②E. coli利用甲醇合成丙酮 | ①Δpgi(6-磷酸葡萄糖异构酶)、ΔfrmA(甲醛脱氢酶);②表达RuMP途径相关酶;③表达磷酸核糖异构酶(rpe)、转酮酶(tkt);④表达二磷酸果糖醛缩酶(fba)、景天庚糖双磷酸酶(glpX)、磷酸果糖激酶(pfk) | [ | |
RuMP | 甲醇 (3.2 g/L), 甲醛 (0.15 g/L) | 葡萄糖(8~9 g/L),硫酸素焦磷酸盐(0.46 g/L) | 1,3-丙二醇 (508.3 mg/L ± 9.1 mg/L) | ①首次实现利用甲醇和丙酮酸合成1,3-丙二醇;②缩短途径,并有效提高1,3-丙二醇产量 | ①表达甲醇脱氢酶;② ΔfrmA(甲醛脱氢酶);③表达羟丁酸醛缩酶、酮酸脱羧酶、1,3-丁二酸氧化还原酶 | [ | |
HACL | 甲醛 | 乙醇酸(1.2 g/L) | ①首次报道HACL途径,可以转化甲酸和甲醛;②首次利用甲醛合成乙醇酸和羟基异丁酸 | 表达羟酰CoA裂解酶(RuHACLG390N,Rhodospirillales bacterium)、酰基CoA还原酶(LmACR,Listeria monocytogenes) | [ | ||
RuMP | 甲醇 (250 mmol/L) | 葡萄糖(10 g/L),酵母提取物(2 g/L) | 丙酮(58 mmol/L) | ①显著提升甲醇向丙酮的转化;②构建了甲醇依赖的菌株底盘 | ①Δpgi(6-磷酸葡萄糖异构酶)、Δedd(磷酸葡萄糖酸脱氢酶)、ΔrpiAB(核糖磷酸异构酶)、ΔfrmA(甲醛脱氢酶);②表达RuMP相关酶 | [ | |
RuMP | 甲醇(50~ 100 mmol/L) | 葡萄糖(50 mmol/L),酵母提取物(1 g/L) | L-赖氨酸 (0.1 g/L) | 甲醇氧化所得的NADH转变为NADPH用于赖氨酸生产 | ①表达RuMP相关酶、ΔfrmA(甲醛脱氢酶);②表达Nudix水解酶、NADH激酶(POS5,Saccharomyces cerevisiae);③表达赖氨酸合成途径相关酶(lysC, dapA, dapB) | [ | |
RuMP | 甲醇 | 木糖,核糖 | 乙醇(4.6 g/L); 1-丁醇(2 g/L) | ①构建甲醇依赖型木糖菌株;②甲醇与木糖利用率为1∶1 | ①表达RuMP相关酶;②ΔAdhE(甲醛脱氢酶)、Δald(乙醛脱氢酶)、ΔrpiAB(核糖磷酸异构酶);③表达腺苷酸环化酶 | [ |
Tab.2 Chemicals produced by synthetic methylotrophs
宿主 | 主要 途径 | C1底物 | 共培养 底物 | 产品 (产量) | 特点 | 主要 策略 | 参考文献 |
---|---|---|---|---|---|---|---|
谷氨酸棒状 杆菌 | RuMP | 甲醇 | 核糖(20/100 mmol/L);葡萄糖(50 mmol/L) | 尸胺(1.5 g/L) | 首次将甲醇转化为非天然产物-尸胺 | ①表达RuMP相关酶;②Δald(乙醛脱氢酶),Δfadh(甲醛脱氢酶);③表达赖氨酸脱羧酶(E. coli) | [ |
RuMP | 甲醇 (15 g/L) | 木糖(4 g/L) | L-谷氨酸 (230 mg/L) | ①甲醇是主要的碳源,甲醇和木糖的利用率达到7.04∶1;②进化菌株甲醇耐受浓度为15 g/L | ①表达RuMP相关酶;②ΔAdhE(甲醛脱氢酶)、Δald(乙醛脱氢酶)、ΔrpiB(核糖磷酸异构酶);③表达木酮糖激酶、木酮糖异构酶;④过表达PPP途径、ED途径相关酶 | [ | |
RuMP | 甲醇 | 木糖(4 g/L) | L-谷氨酸 (90 mg/L) | ①甲醇和木糖共利用可以明显提高细胞增长;②甲醇木糖利用率为3.83∶1;③胞内细胞13C甲醇标记度达到63% | ①表达RuMP相关酶;②ΔAdhE(甲醛脱氢酶)、Δald(乙醛脱氢酶);③表达木酮糖激酶、木酮糖异构酶;④ΔrpiB(核糖磷酸异构酶) | [ | |
大肠 杆菌 | RuMP | 甲醇 (60 mmol/L) | 葡萄糖、木糖、蛋白胨的混合物(1 g/L);酵母提取物(1 g/L) | 橘皮素(3.5 mg/L) | 首次报道E. coli利用甲醇合成黄酮类物质 | ①表达RuMP相关酶;②ΔfrmA(甲醛脱氢酶);③表达香豆酰CoA连接酶、查尔酮合成酶 | [ |
RuMP | 甲醇 (6.4 g/L) | 葡萄糖(30~100 g/L)、酵母提取物(1 g/L); | 琥珀酸(68.75 g/L) | ①厌氧发酵加入甲醇提高琥珀酸产率0.98 g/g± 0.11 g/g甲醇;②甲醇氧化形成的NADH有助于琥珀酸形成 | ①表达RuMP相关酶;②5 L生物反应器 | [ | |
MSC | 甲醇 (200 mmol/L); 甲酸 (20 mmol/L);CO2 | 木糖(30 mmol/L) | 乙醇(36 mmol/L) | ①首次报道基于丝氨酸循环构建合成甲基营养菌;②甲醇加入可以增加乙醇产量达到62%,甲醇利用率为0.7 mmol/(L·h)(以OD600计),木糖与甲醇消耗率为1∶0.7 | ①表达丝氨酸途径相关酶;②表达丙氨酸-乙醛酸转氨酶(Agt)、丝氨酸脱氢酶(Sdh)、苹果酸硫激酶(Mtk)、苹果酰CoA裂解酶(Mcl)等;③表达乙醛脱氢酶(Pdup)、乙醇脱氢酶(AdhB);④ΔaceB ΔglcB ΔgcvP Δgcl ΔfrdB ΔldhA | [ | |
RuMP | 甲醇 | 葡萄糖(30 g/L),酵母提取物(10 g/L) | 丙酮(45.0 mmol/L ± 8.7 mmol/L) | ①两种策略共同提高甲醇利用率;②E. coli利用甲醇合成丙酮 | ①Δpgi(6-磷酸葡萄糖异构酶)、ΔfrmA(甲醛脱氢酶);②表达RuMP途径相关酶;③表达磷酸核糖异构酶(rpe)、转酮酶(tkt);④表达二磷酸果糖醛缩酶(fba)、景天庚糖双磷酸酶(glpX)、磷酸果糖激酶(pfk) | [ | |
RuMP | 甲醇 (3.2 g/L), 甲醛 (0.15 g/L) | 葡萄糖(8~9 g/L),硫酸素焦磷酸盐(0.46 g/L) | 1,3-丙二醇 (508.3 mg/L ± 9.1 mg/L) | ①首次实现利用甲醇和丙酮酸合成1,3-丙二醇;②缩短途径,并有效提高1,3-丙二醇产量 | ①表达甲醇脱氢酶;② ΔfrmA(甲醛脱氢酶);③表达羟丁酸醛缩酶、酮酸脱羧酶、1,3-丁二酸氧化还原酶 | [ | |
HACL | 甲醛 | 乙醇酸(1.2 g/L) | ①首次报道HACL途径,可以转化甲酸和甲醛;②首次利用甲醛合成乙醇酸和羟基异丁酸 | 表达羟酰CoA裂解酶(RuHACLG390N,Rhodospirillales bacterium)、酰基CoA还原酶(LmACR,Listeria monocytogenes) | [ | ||
RuMP | 甲醇 (250 mmol/L) | 葡萄糖(10 g/L),酵母提取物(2 g/L) | 丙酮(58 mmol/L) | ①显著提升甲醇向丙酮的转化;②构建了甲醇依赖的菌株底盘 | ①Δpgi(6-磷酸葡萄糖异构酶)、Δedd(磷酸葡萄糖酸脱氢酶)、ΔrpiAB(核糖磷酸异构酶)、ΔfrmA(甲醛脱氢酶);②表达RuMP相关酶 | [ | |
RuMP | 甲醇(50~ 100 mmol/L) | 葡萄糖(50 mmol/L),酵母提取物(1 g/L) | L-赖氨酸 (0.1 g/L) | 甲醇氧化所得的NADH转变为NADPH用于赖氨酸生产 | ①表达RuMP相关酶、ΔfrmA(甲醛脱氢酶);②表达Nudix水解酶、NADH激酶(POS5,Saccharomyces cerevisiae);③表达赖氨酸合成途径相关酶(lysC, dapA, dapB) | [ | |
RuMP | 甲醇 | 木糖,核糖 | 乙醇(4.6 g/L); 1-丁醇(2 g/L) | ①构建甲醇依赖型木糖菌株;②甲醇与木糖利用率为1∶1 | ①表达RuMP相关酶;②ΔAdhE(甲醛脱氢酶)、Δald(乙醛脱氢酶)、ΔrpiAB(核糖磷酸异构酶);③表达腺苷酸环化酶 | [ |
1 | CLOMBURG J M, CRUMBLEY A M, GONZALEZ R. Industrial biomanufacturing: The future of chemical production[J]. Science, 2017, 355(6320): aag0804. |
2 | 谭天伟, 陈必强, 张会丽, 等. 加快推进绿色生物制造 助力实现“碳中和”[J]. 化工进展, 2021, 40(3): 1137-1141. |
TAN T W, CHEN B Q, ZHANG H L, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141. | |
3 | SINGH A K, KISHORE G M, PAKRASI H B. Emerging platforms for co-utilization of one-carbon substrates by photosynthetic organisms[J]. Current Opinion in Biotechnology, 2018, 53: 201-208. |
4 | DÜRRE P, EIKMANNS B J. C1-carbon sources for chemical and fuel production by microbial gas fermentation[J]. Current Opinion in Biotechnology, 2015, 35: 63-72. |
5 | KOPKE M, HELD C, HUJER S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13087-13092. |
6 | SCHEFFEN M, MARCHAL D G, BENEYTON T, et al. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation[J]. Nature Catalysis, 2021, 4(2): 105-115. |
7 | COTTON C A, EDLICH-MUTH C, BAR-EVEN A. Reinforcing carbon fixation: CO2 reduction replacing and supporting carboxylation[J]. Current Opinion in Biotechnology, 2018, 49: 49-56. |
8 | YISHAI O, LINDNER S N, GONZALEZ DE LA CRUZ J, et al. The formate bio-economy[J]. Current Opinion in Chemical Biology, 2016, 35: 1-9. |
9 | WANG Y, FAN L W, TUYISHIME P, et al. Synthetic methylotrophy: A practical solution for methanol-based biomanufacturing[J]. Trends in Biotechnology, 2020, 38(6): 650-666. |
10 | WU Y S, JIANG Z, LU X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575(7784): 639-642. |
11 | CHISTOSERDOVA L, LIDSTROM M E. Aerobic methylotrophic prokaryotes[M]//ROSENBERG E.The prokaryotes[M]. German: Springer Reference, 2013: 267. |
12 | 高教琪, 周雍进. 甲醇生物转化的机遇与挑战[J]. 合成生物学, 2020, 1(2): 158-173. |
GAO J Q, ZHOU Y J. Advances in methanol bio-transformation[J]. Synthetic Biology Journal, 2020, 1(2): 158-173. | |
13 | CAMP H J M O DEN, ISLAM T, STOTT M B, et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia [J]. Environmental Microbiology Reports, 2009, 1(5): 293-306. |
14 | ETTWIG K F, BUTLER M K, LE PASLIER D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548. |
15 | GAO L M, CAI M H, SHEN W, et al. Engineered fungal polyketide biosynthesis in Pichia pastoris: a potential excellent host for polyketide production[J]. Microbial Cell Factories, 2013, 12: 77. |
16 | WRIESSNEGGER T, AUGUSTIN P, ENGLEDER M, et al. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris [J]. Metabolic Engineering, 2014, 24: 18-29. |
17 | JEONG E, SHIM W Y, KIM J H. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight[J]. Journal of Biotechnology, 2014, 185: 28-36. |
18 | ZHANG T, GE C Y, DENG L, et al. C4-dicarboxylic acid production by overexpressing the reductive TCA pathway[J]. FEMS Microbiology Letters, 2015, 362(9): fnv052. |
19 | ARAYA-GARAY J M, FEIJOO-SIOTA L, ROSA-DOS-SANTOS F, et al. Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2483-2492. |
20 | LIU Y Q, TU X H, XU Q, et al. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol[J]. Metabolic Engineering, 2018, 45: 189-199. |
21 | LIU Y Q, BAI C X, XU Q, et al. Improved methanol-derived lovastatin production through enhancement of the biosynthetic pathway and intracellular lovastatin efflux in methylotrophic yeast[J]. Bioresources and Bioprocessing, 2018, 5: 22. |
22 | GIDIJALA L, KIEL J A K W, DOUMA R D, et al. An engineered yeast efficiently secreting penicillin[J]. PLoS One, 2009, 4(12): e8317. |
23 | BRAUTASET T, JAKOBSEN Ø M, JOSEFSEN K D, et al. Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 ℃[J]. Applied Microbiology and Biotechnology, 2007, 74(1): 22-34. |
24 | JAKOBSEN O M, BRAUTASET T, DEGNES K F, et al. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus [J]. Applied and Environmental Microbiology, 2009, 75(3): 652-661. |
25 | BRAUTASET T, JAKOBSEN Ø M, DEGNES K F, et al. Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 ℃[J]. Applied Microbiology and Biotechnology, 2010, 87(3): 951-964. |
26 | NÆRDAL I, NETZER R, IRLA M, et al. L-lysine production by Bacillus methanolicus: genome-based mutational analysis and L-lysine secretion engineering[J]. Journal of Biotechnology, 2017, 244: 25-33. |
27 | NAERDAL I, PFEIFENSCHNEIDER J, BRAUTASET T, et al. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains[J]. Microbial Biotechnology, 2015, 8(2): 342-350. |
28 | IRLA M, HEGGESET T M B, NÆRDAL I, et al. Genome-based genetic tool development for Bacillus methanolicus: θ-and rolling circle-replicating plasmids for inducible gene expression and application to methanol-based cadaverine production[J]. Frontiers in Microbiology, 2016, 7: 1481. |
29 | IRLA M, NÆRDAL I, BRAUTASET T, et al. Methanol-based γ-aminobutyric acid (GABA) production by genetically engineered Bacillus methanolicus strains[J]. Industrial Crops and Products, 2017, 106: 12-20. |
30 | ORITA I, NISHIKAWA K, NAKAMURA S, et al. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions[J]. Applied Microbiology and Biotechnology, 2014, 98(8): 3715-3725. |
31 | HU B, LIDSTROM M E. Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production[J]. Biotechnology for Biofuels, 2014, 7(1): 156. |
32 | LIM C K, VILLADA J C, CHALIFOUR A, et al. Designing and engineering Methylorubrum extorquens AM1 for itaconic acid production[J]. Frontiers in Microbiology, 2019, 10: 1027. |
33 | HU B, YANG Y M, BECK D A C, et al. Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance[J]. Biotechnology for Biofuels, 2016, 9: 84. |
34 | LIANG W F, CUI L Y, CUI J Y, et al. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply[J]. Metabolic Engineering, 2017, 39: 159-168. |
35 | ROHDE M T, TISCHER S, HARMS H, et al. Production of 2-hydroxyisobutyric acid from methanol by Methylobacterium extorquens AM1 expressing (R)-3-hydroxybutyryl coenzyme A-isomerizing enzymes[J]. Applied and Environmental Microbiology, 2017, 83(3). DOI: 10.1128/aem.02622-16 . |
36 | YANG Y M, CHEN W J, YANG J, et al. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route[J]. Microbial Cell Factories, 2017, 16(1): 179. |
37 | YUAN X J, CHEN W J, MA Z X, et al. Rewiring the native methanol assimilation metabolism by incorporating the heterologous ribulose monophosphate cycle into Methylorubrum extorquens [J]. Metabolic Engineering, 2021, 64: 95-110. |
38 | MA Z X, ZHANG M, ZHANG C T, et al. Metabolomic analysis improves bioconversion of methanol to isobutanol in Methylorubrum extorquens AM1[J]. Biotechnology Journal, 2021, 16(6): e2000413. |
39 | SONNTAG F, MÜLLER J E N, KIEFER P, et al. High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by Methylobacterium extorquens under cobalt-deficient conditions and by polyhydroxybutyrate negative strains[J]. Applied Microbiology and Biotechnology, 2015, 99(8): 3407-3419. |
40 | SONNTAG F, KRONER C, LUBUTA P, et al. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol[J]. Metabolic Engineering, 2015, 32: 82-94. |
41 | ZHU W L, CUI J Y, CUI L Y, et al. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway[J]. Applied Microbiology and Biotechnology, 2016, 100(5): 2171-2182. |
42 | YANG J, ZHANG C T, YUAN X J, et al. Metabolic engineering of Methylobacterium extorquens AM1 for the production of butadiene precursor[J]. Microbial Cell Factories, 2018, 17(1): 194. |
43 | BÉLANGER L, FIGUEIRA M M, BOURQUE D, et al. Production of heterologous protein by Methylobacterium extorquens in high cell density fermentation[J]. FEMS Microbiology Letters, 2004, 231(2): 197-204. |
44 | HÖFER P, CHOI Y J, OSBORNE M J, et al. Production of functionalized polyhydroxyalkanoates by genetically modified Methylobacterium extorquens strains[J]. Microbial Cell Factories, 2010, 9: 70. |
45 | SHEN P H, WU B. Over-expression of a hydroxypyruvate reductase in Methylobacterium sp. MB200 enhances glyoxylate accumulation[J]. Journal of Industrial Microbiology and Biotechnology, 2007, 34(10): 657. |
46 | SHEN P H, CHAO H J, JIANG C J, et al. Enhancing production of L-serine by increasing the glyA gene expression in Methylobacterium sp. MB200[J]. Applied Biochemistry and Biotechnology, 2010, 160(3): 740-750. |
47 | CHAO H, WU B, SHEN P. Overexpression of the methanol dehydrogenase gene mxaF in Methylobacterium sp. MB200 enhances L-serine production[J]. Letters in Applied Microbiology, 2015, 61(4): 390-396. |
48 | LI X, WU B, ZHOU K, et al. Deletion of gene gnd encoding 6-phosphogluconate dehydrogenase promotes L-serine biosynthesis in a genetically engineered strain of Methylobacterium sp. MB200[J]. Biotechnology Letters, 2019, 41(1): 69-77. |
49 | HÖLSCHER T, BREUER U, ADRIAN L, et al. Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium[J]. Applied and Environmental Microbiology, 2010, 76(16): 5585-5591. |
50 | HAGISHITA T, YOSHIDA T, IZUMI Y, et al. Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43 [J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(10): 1604-1607. |
51 | MOTOYAMA H, ANAZAWA H, KATSUMATA R, et al. Amino acid production from methanol by Methylobacillus glycogenes mutants: isolation of L-glutamic acid hyper-producing mutants from M. glycogenes strains, and derivation of L-threonine and L-lysine-producing mutants from them[J]. Bioscience, Biotechnology, and Biochemistry, 1993, 57(1): 82-87. |
52 | ISHIKAWA K, GUNJI Y, YASUEDA H, et al. Improvement of L-lysine production by Methylophilus methylotrophus from methanol via the entner-doudoroff pathway, originating in Escherichia coli [J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(10): 2535-2542. |
53 | LYU Z, JAIN R, SMITH P, et al. Engineering the autotroph Methanococcus maripaludis for geraniol production[J]. ACS Synthetic Biology, 2016, 5(7): 577-581. |
54 | KALYUZHNAYA M G, PURI A W, LIDSTROM M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29: 142-152. |
55 | NIELSEN A K, GERDES K, MURRELL J C. Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium [J]. Molecular Microbiology, 1997, 25(2): 399-409. |
56 | WHITAKER W B, SANDOVAL N R, BENNETT R K, et al. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization[J]. Current Opinion in Biotechnology, 2015, 33: 165-175. |
57 | HARTNER F S, GLIEDER A. Regulation of methanol utilisation pathway genes in yeasts[J]. Microbial Cell Factories, 2006, 5: 39. |
58 | PARK H, LEE H, RO Y T, et al. Identification and functional characterization of a gene for the methanol: N,N'-dimethyl-4-nitrosoaniline oxidoreductase from Mycobacterium sp. strain JC1 (DSM 3803)[J]. Microbiology, 2010, 156(Pt 2): 463-471. |
59 | BYSTRYKH L V, GOVORUKHINA N I, DIJKHUIZEN L, et al. Tetrazolium-dye-linked alcohol dehydrogenase of the methylotrophic actinomycete Amycolatopsis methanolica is a three-component complex[J]. European Journal of Biochemistry, 1997, 247(1): 280-287. |
60 | NAGY I, VERHEIJEN S, DE SCHRIJVER A, et al. Characterization of the Rhodococcus sp. NI86/21 gene encoding alcohol: N,N'-dimethyl-4-nitrosoaniline oxidoreductase inducible by atrazine and thiocarbamate herbicides[J]. Archives of Microbiology, 1995, 163(6): 439-446. |
61 | ZHU T C, ZHAO T X, BANKEFA O E, et al. Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: challenges and opportunities[J]. Biotechnology Advances, 2020, 39: 107467. |
62 | KROG A, HEGGESET T M B, MÜLLER J E N, et al. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties[J]. PLoS One, 2013, 8(3): e59188. |
63 | MÜLLER J E N, MEYER F, LITSANOV B, et al. Engineering Escherichia coli for methanol conversion[J]. Metabolic Engineering, 2015, 28: 190-201. |
64 | WANG X, WANG X L, LU X L, et al. Methanol fermentation increases the production of NAD(P)H-dependent chemicals in synthetic methylotrophic Escherichia coli [J]. Biotechnology for Biofuels, 2019, 12: 17. |
65 | WU T Y, CHEN C T, LIU J T J, et al. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4969-4983. |
66 | WHITAKER W B, JONES J A, BENNETT R K, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli [J]. Metabolic Engineering, 2017, 39: 49-59. |
67 | ROTH T B, WOOLSTON B M, STEPHANOPOULOS G, et al. Phage-assisted evolution of Bacillus methanolicus methanol dehydrogenase 2[J]. ACS Synthetic Biology, 2019, 8(4): 796-806. |
68 | TSURU D, ODA N, MATSUO Y, et al. Glutathione-independent formaldehyde dehydrogenase from Pseudomons putida: survey of functional groups with special regard for cysteine residues[J]. Bioscience, Biotechnology, and Biochemistry, 1997, 61(8): 1354-1357. |
69 | GUTHEIL W G, HOLMQUIST B, VALLEE B L. Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase[J]. Biochemistry, 1992, 31(2): 475-481. |
70 | VORHOLT J A. Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria[J]. Archives of Microbiology, 2002, 178(4): 239-249. |
71 | HATRONGJIT R, PACKDIBAMRUNG K. A novel NADP+-dependent formate dehydrogenase from Burkholderia stabilis 15516: Screening, purification and characterization[J]. Enzyme and Microbial Technology, 2010, 46(7): 557-561. |
72 | MÜLLER J E N, HEGGESET T M B, WENDISCH V F, et al. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol[J]. Applied Microbiology and Biotechnology, 2015, 99(2): 535-551. |
73 | RUßMAYER H, BUCHETICS M, GRUBER C, et al. Systems-level organization of yeast methylotrophic lifestyle[J]. BMC Biology, 2015, 13: 80. |
74 | BENNETT R K, GONZALEZ J E, WHITAKER W B, et al. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph[J]. Metabolic Engineering, 2018, 45: 75-85. |
75 | LEßMEIER L, PFEIFENSCHNEIDER J, CARNICER M, et al. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10163-10176. |
76 | WANG Y, FAN L W, TUYISHIME P, et al. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum [J]. Communications Biology, 2020, 3(1): 217. |
77 | TUYISHIME P, WANG Y, FAN L W, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metabolic Engineering, 2018, 49: 220-231. |
78 | ZHANG W M, ZHANG T, SONG M, et al. Metabolic engineering of Escherichia coli for high yield production of succinic acid driven by methanol[J]. ACS Synthetic Biology, 2018, 7(12): 2803-2811. |
79 | YU H, LIAO J C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds[J]. Nature Communications, 2018, 9: 3992. |
80 | WANG C, REN J, ZHOU L B, et al. An aldolase-catalyzed new metabolic pathway for the assimilation of formaldehyde and methanol to synthesize 2-keto-4-hydroxybutyrate and 1, 3-propanediol in Escherichia coli [J]. ACS Synthetic Biology, 2019, 8(11): 2483-2493. |
81 | CHOU A, CLOMBURG J M, QIAN S, et al. 2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion[J]. Nature Chemical Biology, 2019, 15(9): 900-906. |
82 | BENNETT R K, DILLON M, GERALD HAR J R, et al. Engineering Escherichia coli for methanol-dependent growth on glucose for metabolite production[J]. Metabolic Engineering, 2020, 60: 45-55. |
83 | CHEN C T, CHEN F Y H, BOGORAD I W, et al. Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production[J]. Metabolic Engineering, 2018, 49: 257-266. |
84 | LEE P C, YOON Y G, SCHMIDT-DANNERT C. Investigation of cellular targeting of carotenoid pathway enzymes in Pichia pastoris [J]. Journal of Biotechnology, 2009, 140(3/4): 227-233. |
85 | GAO J Q, GAO N, ZHAI X X, et al. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha [J]. iScience, 2021, 24(3): 102168. |
86 | ANTHONY C. How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway[J]. Science Progress, 2011, 94(Pt 2): 109-137. |
87 | ALBER B E. Biotechnological potential of the ethylmalonyl-CoA pathway[J]. Applied Microbiology and Biotechnology, 2011, 89(1): 17-25. |
88 | BAR-EVEN A. Formate assimilation: the metabolic architecture of natural and synthetic pathways[J]. Biochemistry, 2016, 55(28): 3851-3863. |
89 | KHADEM A F, POL A, WIECZOREK A, et al. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation[J]. Journal of Bacteriology, 2011, 193(17): 4438-4446. |
90 | GASSLER T, SAUER M, GASSER B, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2 [J]. Nature Biotechnology, 2020, 38(2): 210-216. |
91 | CHEN F Y H, JUNG H W, TSUEI C Y, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946.e14. |
92 | BANG J, AHN J H, LEE J A, et al. Synthetic formatotrophs for one-carbon biorefinery[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(12): 2100199. |
93 | KIM S, LINDNER S N, ASLAN S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway[J]. Nature Chemical Biology, 2020, 16(5): 538-545. |
94 | ANTONOVSKY N, GLEIZER S, NOOR E, et al. Sugar synthesis from CO2 in Escherichia coli [J]. Cell, 2016, 166(1): 115-125. |
95 | GLEIZER S, BEN-NISSAN R, BAR-ON Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019, 179(6): 1255-1263. |
96 | WOOLSTON B M, KING J R, REITER M, et al. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli [J]. Nature Communications, 2018, 9: 2387. |
97 | ROHLHILL J, GERALD HAR J R, ANTONIEWICZ M R, et al. Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation[J]. Metabolic Engineering, 2020, 57: 247-255. |
98 | SIEGEL J B, SMITH A L, POUST S, et al. Computational protein design enables a novel one-carbon assimilation pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3704-3709. |
99 | LU X Y, LIU Y W, YANG Y Q, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design[J]. Nature Communications, 2019, 10: 1378. |
100 | YISHAI O, BOUZON M, DÖRING V, et al. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli [J]. ACS Synthetic Biology, 2018, 7(9): 2023-2028. |
101 | DÖRING V, DARII E, YISHAI O, et al. Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution[J]. ACS Synthetic Biology, 2018, 7(9): 2029-2036. |
102 | BANG J, LEE S Y. Assimilation of formic acid and CO2 by engineered Escherichia coliequipped with reconstructed one-carbon assimilation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(40): E9271-E9279. |
103 | BANG J, HWANG C H, AHN J H, et al. Escherichia coli is engineered to grow on CO2 and formic acid[J]. Nature Microbiology, 2020, 5(12): 1459-1463. |
104 | SCHWANDER T, BORZYSKOWSKI L S VON, BURGENER S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro [J]. Science, 2016, 354(6314): 900-904. |
105 | WITTHOFF S, MÜHLROTH A, MARIENHAGEN J, et al. C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide[J]. Applied and Environmental Microbiology, 2013, 79(22): 6974-6983. |
106 | YASOKAWA D, MURATA S, IWAHASHI Y, et al. Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis[J]. Applied Biochemistry and Biotechnology, 2010, 160(6): 1685-1698. |
107 | DAI Z X, GU H L, ZHANG S J, et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae [J]. Bioresource Technology, 2017, 245: 1407-1412. |
108 | ESPINOSA M I, WILLIAMS T C, PRETORIUS I S, et al. Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol[J]. Synthetic and Systems Biotechnology, 2019, 4(4): 180-188. |
109 | ESPINOSA M I, GONZALEZ-GARCIA R A, VALGEPEA K, et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae [J]. Nature Communications, 2020, 11: 5564. |
110 | GONZALEZ DE LA CRUZ J, MACHENS F, MESSERSCHMIDT K, et al. Core catalysis of the reductive glycine pathway demonstrated in yeast[J]. ACS Synthetic Biology, 2019, 8(5): 911-917. |
111 | 袁姚梦, 邢新会, 张翀. 微生物细胞工厂的设计构建:从诱变育种到全基因组定制化创制[J]. 合成生物学, 2020, 1(6): 656-673. |
YUAN Y M, XING X H, ZHANG C. Progress and prospective of engineering microbial cell factories: from random mutagenesis to customized design in genome scale[J]. Synthetic Biology Journal, 2020, 1(6): 656-673. | |
112 | YANG Y K, LIU G Q, CHEN X, et al. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris [J]. Enzyme and Microbial Technology, 2020, 138: 109556. |
113 | WENINGER A, HATZL A M, SCHMID C, et al. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris [J]. Journal of Biotechnology, 2016, 235: 139-149. |
114 | LIU Q, SHI X N, SONG L L, et al. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris [J]. Microbial Cell Factories, 2019, 18(1): 144. |
115 | CAI P, DUAN X P, WU X Y, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris [J]. Nucleic Acids Research, 2021, 49(13): 7791-7805. |
116 | MO X H, ZHANG H, WANG T M, et al. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis[J]. Applied Microbiology and Biotechnology, 2020, 104(10): 4515-4532. |
117 | ZHU L P, SONG S Z, YANG S. Gene repression using synthetic small regulatory RNA in Methylorubrum extorquens [J]. Journal of Applied Microbiology, 2021, 131(6): 2861-2875. |
118 | NOH M, YOO S M, YANG D, et al. Broad-spectrum gene repression using scaffold engineering of synthetic sRNAs[J]. ACS Synthetic Biology, 2019, 8(6): 1452-1461. |
119 | HU G P, LI Z H, MA D L, et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals[J]. Nature Catalysis, 2021, 4(5): 395-406. |
120 | STINGELE J, SCHWARZ M S, BLOEMEKE N, et al. A DNA-dependent protease involved in DNA-protein crosslink repair[J]. Cell, 2014, 158(2): 327-338. |
121 | 张卉, 袁姚梦, 张翀, 等. 合成甲基营养细胞工厂同化甲醇的研究进展及未来展望[J]. 合成生物学, 2021, 2(2): 222-233. |
ZHANG H, YUAN Y M, ZHANG C, et al. Research progresses and future prospects of synthetic methylotrophic cell factory for methanol assimilation[J]. Synthetic Biology Journal, 2021, 2(2): 222-233. | |
122 | HAMMER S K, AVALOS J L. Harnessing yeast organelles for metabolic engineering[J]. Nature Chemical Biology, 2017, 13(8): 823-832. |
[1] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[2] | Weisong LIU, Kuncheng ZHANG, Huijuan CUI, Zhiguang ZHU, Yiheng ZHANG, Lingling ZHANG. Electro-assisted carbon dioxide biotransformation [J]. Synthetic Biology Journal, 2023, 4(6): 1191-1222. |
[3] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[4] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[5] | Yang MING, Bin CHEN, Xiaoqiang HUANG. Recent advances in photoenzymatic synthesis [J]. Synthetic Biology Journal, 2023, 4(4): 651-675. |
[6] | Zhenzhen CHENG, Jian ZHANG, Cong GAO, Liming LIU, Xiulai CHEN. Progress in metabolic engineering of microorganisms for the utilization of formate [J]. Synthetic Biology Journal, 2023, 4(4): 756-778. |
[7] | Jiayu LIU, Zhihan YANG, Lei YANG, Liying ZHU, Zhengming ZHU, Ling JIANG. Advances in the development of Clostridium tyrobutyricum cell factories driven by synthetic biotechnology [J]. Synthetic Biology Journal, 2022, 3(6): 1174-1200. |
[8] | Jiuzhou CHEN, Yu WANG, Wei PU, Ping ZHENG, Jibin SUN. Advances and perspective on bioproduction of 5-aminolevulinic acid [J]. Synthetic Biology Journal, 2021, 2(6): 1000-1016. |
[9] | Qingzhuo WANG, Ping SONG, He HUANG. Synthetic biotechnology drives the development of natural eukaryotic lipid cell factories [J]. Synthetic Biology Journal, 2021, 2(6): 920-941. |
[10] | Wei YAN, Hao GAO, Yujia JIANG, Xiujuan QIAN, Jie ZHOU, Weiliang DONG, Wenming ZHANG, Fengxue XIN, Min JIANG. Research progress in 2-phenylethanol production through biological processes [J]. Synthetic Biology Journal, 2021, 2(6): 1030-1045. |
[11] | Liangbin XIONG, Lu SONG, Yunqiu ZHAO, Kun LIU, Yongjun LIU, Fengqing WANG, Dongzhi WEI. Green biomanufacturing of steroids: from biotransformation to de novo synthesis by microorganisms [J]. Synthetic Biology Journal, 2021, 2(6): 942-963. |
[12] | Liang GUO, Cong GAO, Yadi LIU, Xiulai CHEN, Liming LIU. Advances in bioproduction of feed amino acid by Escherichia coli [J]. Synthetic Biology Journal, 2021, 2(6): 964-981. |
[13] | Xiaolong ZHANG, Chenyun WANG, Yanfeng LIU, Jianghua LI, Long LIU, Guocheng DU. Research progress of constructing efficient biomanufacturing system based on synthetic biotechnology [J]. Synthetic Biology Journal, 2021, 2(6): 863-875. |
[14] | Chenkai CAO, Jialong LI, Kechun ZHANG. Progress in artificial metabolic pathways for biosynthesis of organic alcohols & acids [J]. Synthetic Biology Journal, 2021, 2(6): 902-919. |
[15] | Hutao GAO, Jia WANG, Xinxiao SUN, Xiaolin SHEN, Qipeng YUAN. De novo biosynthesis of 3-phenylpropanol in E. coli [J]. Synthetic Biology Journal, 2021, 2(6): 1046-1060. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||