Synthetic Biology Journal

   

Application progress of plasma microbial breeding technology in biofabrication

Naicai ZHONG1,2, Yuan CHEN1, Wenfeng PAN1, Xiaofeng SU1, Jingwen LIAO1, Jinyi ZHONG1,3   

  1. 1.Guangzhou Institute of Advanced Technology,Guangzhou 511458,Guangdong,China
    2.Shenyang Pharmaceutical University,Shenyang 110016,Liaoning,China
    3.National Innovation Center for Bio-Manufacturing Industry,Shenzhen 518107,Guangodng,China
  • Received:2025-01-20 Revised:2025-03-05 Published:2025-03-11

等离子体微生物育种技术在生物制造中的应用进展

钟奶才1,2, 陈缘1, 潘文锋1, 苏小凤1, 廖景文1, 钟近艺1,3   

  1. 1.广州先进技术研究所,广东 广州 511458
    2.沈阳药科大学,辽宁 沈阳 117004
    3.国家生物制造产业创新中心,广东 深圳 518107
  • 作者简介:钟奶才(1999—),男,硕士研究生。研究方向为等离子体微生物育种。
    钟近艺(1975—),女,研究员、博士生导师。研究方向为核生化防护技术。
  • 基金资助:
    国家重点研发计划(2023YFC2604700)

Abstract:

Sustainable and green biomanufacturing has become a strategic focus for countries around the world, but microbial performance is still one of the bottlenecks restricting the industrialization of biomanufacturing. Traditional breeding methods often face challenges such as long breeding cycles, low efficiency, and high costs, making it difficult to meet the demands for highly efficient and stable microbial strains in industrial-scale production. Low-temperature plasma technology, as an efficient and environmentally friendly method for microbial breeding, can stimulate mutation hotspots, enhance mutation efficiency, and expand mutation ranges, effectively improving the performance of target strains and product yields. By combining plasma mutagenesis's advanced capabilities with other techniques, significant improvements in the performance and productivity of microbial strains can be achieved, thus driving the commercialization of sustainable bioprocesses. This review outlines the theoretical basis of plasma mutagenesis technology, the technical characteristics of three plasma sources (ARTP, DBD, and CD), the mechanisms of plasma mutagenesis, and the progress of combining this technology with high-throughput screening, traditional mutagenesis, and rational breeding methods. Furthermore, it summarizes typical plasma breeding cases in biomanufacturing fields such as bio-enzyme, organic acids, bioenergy, and biomaterials. These insights offer important references for research and industrialization in related fields. By combining plasma mutagenesis's advanced capabilities with other techniques, significant improvements in the performance and productivity of microbial strains can be achieved, thus driving the commercialization of sustainable bioprocesses. The cases discussed in this review provide a practical understanding of how plasma mutagenesis can be applied to optimize microbial strains for industrial-scale production of valuable bioproducts, providing a reference for research and industrialization in related fields. In the future, it is essential to develop novel plasma generators based on air source, which, while being miniaturized, achieve low cost, low energy consumption, and minimal temperature rise. Integrating them with high-throughput screening and AI technologies will enable precise microbial mutagenesis and efficient strain breeding, thereby overcoming technical bottlenecks and ultimately advancing the biomanufacturing industry.

Key words: biological manufacturing, industrial microbiology, plasma technology, screening, mechanism, biological materials, progress

摘要:

可持续绿色生物制造是各国关注的战略重点,但微生物性能仍是制约生物制造产业化的瓶颈之一。传统育种方法常面临育种周期长、效率低、成本高等问题,难以满足工业化生产对高效、稳定生产菌株的需求。低温等离子体技术作为一种高效、绿色环保的微生物育种方法,可通过刺激突变位点、提升突变效率、扩展突变范围、有效提高目标菌株性能和产品产量,为工业微生物改良提供重要助力。本文综述了等离子体诱变技术的理论基础、三种等离子体源(RF-APGD/ARTP、DBD、CD)的技术特点、等离子体诱变作用机制及其与高通量筛选、传统诱变、理性育种等技术的联用进展,归纳出生物酶、有机酸、生物能源、生物材料等生物制造领域的典型等离子体育种案例,为相关领域的研究和产业化提供参考。未来需要开发基于空气源的新型等离子体发生器,在小型化的基础上实现低成本、低能耗、低温升;与高通量筛选和AI等技术相融合进行菌株精准诱变和高效育种,实现技术瓶颈突破,最终推动生物制造产业升级。

关键词: 生物制造, 工业微生物, 等离子体育种技术, 筛选, 机制, 生物材料, 进展

CLC Number: