Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (1): 22-34.DOI: 10.12211/2096-8280.2021-075
• Invited Review • Previous Articles Next Articles
Jiacheng BI1, Zhigang TIAN1,2
Received:
2021-07-19
Revised:
2021-10-20
Online:
2022-03-14
Published:
2022-02-28
Contact:
Zhigang TIAN
毕嘉成1, 田志刚1,2
通讯作者:
田志刚
作者简介:
CLC Number:
Jiacheng BI, Zhigang TIAN. Synthetic immunology and future NK cell immunotherapy[J]. Synthetic Biology Journal, 2022, 3(1): 22-34.
毕嘉成, 田志刚. 合成免疫学与未来NK细胞免疫治疗[J]. 合成生物学, 2022, 3(1): 22-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-075
1 | ZHANG Y Y, ZHANG Z M. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications[J]. Cellular & Molecular Immunology, 2020, 17(8): 807-821. |
2 | KRUGER S, ILMER M, KOBOLD S, et al. Advances in cancer immunotherapy 2019-latest trends[J]. Journal of Experimental & Clinical Cancer Research, 2019, 38(1): 268. |
3 | VOENA C, CHIARLE R. Advances in cancer immunology and cancer immunotherapy[J]. Discovery Medicine, 2016, 21(114): 125-133. |
4 | SHARMA P, ALLISON J P. Dissecting the mechanisms of immune checkpoint therapy[J]. Nature Reviews Immunology, 2020, 20(2): 75-76. |
5 | SHARMA P, ALLISON J P. The future of immune checkpoint therapy[J]. Science, 2015, 348(6230): 56-61. |
6 | WEBER E W, MAUS M V, MACKALL C L. The emerging landscape of immune cell therapies[J]. Cell, 2020, 181(1): 46-62. |
7 | PETTITT D, ARSHAD Z, SMITH J, et al. CAR-T cells: A systematic review and mixed methods analysis of the clinical trial landscape[J]. Molecular Therapy, 2018, 26(2): 342-353. |
8 | JUNE C H, O'CONNOR R S, KAWALEKAR O U, et al. CAR T cell immunotherapy for human cancer[J]. Science, 2018, 359(6382): 1361-1365. |
9 | ZHANG C, HU Y, XIAO W H, et al. Chimeric antigen receptor-and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy[J]. Cellular & Molecular Immunology, 2021, 18(9): 2083-2100. |
10 | KLICHINSKY M, RUELLA M, SHESTOVA O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nature Biotechnology, 2020, 38(8): 947-953. |
11 | ROSENBERG S A, RESTIFO N P. Adoptive cell transfer as personalized immunotherapy for human cancer[J]. Science, 2015, 348(6230): 62-68. |
12 | HEGDE P S, CHEN D S. Top 10 challenges in cancer immunotherapy[J]. Immunity, 2020, 52(1): 17-35. |
13 | PEI L, SCHMIDT M, WEI W. Synthetic biology: an emerging research field in China[J]. Biotechnology Advances, 2011, 29(6): 804-814. |
14 | KATZ L, CHEN Y Y, GONZALEZ R, et al. Synthetic biology advances and applications in the biotechnology industry: a perspective[J]. Journal of Industrial Microbiology and Biotechnology, 2018, 45(7): 449-461. |
15 | BREITLING R, TAKANO E. Synthetic biology advances for pharmaceutical production[J]. Current Opinion in Biotechnology, 2015, 35: 46-51. |
16 | MCDANIEL R, WEISS R. Advances in synthetic biology: on the path from prototypes to applications[J]. Current Opinion in Biotechnology, 2005, 16(4): 476-483. |
17 | ROYBAL K T, LIM W A. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities[J]. Annual Review of Immunology, 2017, 35: 229-253. |
18 | GEERING B, FUSSENEGGER M. Synthetic immunology: modulating the human immune system[J]. Trends in Biotechnology, 2015, 33(2): 65-79. |
19 | VIVIER E, TOMASELLO E, BARATIN M, et al. Functions of natural killer cells[J]. Nature Immunology, 2008, 9(5): 503-510. |
20 | ABEL A M, YANG C, THAKAR M S, et al. Natural killer cells: Development, maturation, and clinical utilization[J]. Frontiers in Immunology, 2018, 9: 1869. |
21 | GEIGER T L, SUN J C. Development and maturation of natural killer cells[J]. Current Opinion in Immunology, 2016, 39: 82-89. |
22 | BI J C, TIAN Z G. NK cell exhaustion[J]. Frontiers in Immunology, 2017, 8: 760. |
23 | RAULET D H. Missing self recognition and self tolerance of natural killer (NK) cells[J]. Seminars in Immunology, 2006, 18(3): 145-150. |
24 | CHENG M, CHEN Y Y, XIAO W H, et al. NK cell-based immunotherapy for malignant diseases[J]. Cellular & Molecular Immunology, 2013, 10(3): 230-252. |
25 | LIU S Z, GALAT V, GALAT Y, et al. NK cell-based cancer immunotherapy: from basic biology to clinical development[J]. Journal of Hematology & Oncology, 2021, 14(1): 7. |
26 | FANG F, XIAO W H, TIAN Z G. Challenges of NK cell-based immunotherapy in the new era[J]. Frontiers of Medicine, 2018, 12(4): 440-450. |
27 | BI J C, TIAN Z G. NK cell dysfunction and checkpoint immunotherapy[J]. Frontiers in Immunology, 2019, 10: 1999. |
28 | KHAN M, AROOJ S, WANG H. NK cell-based immune checkpoint inhibition[J]. Frontiers in Immunology, 2020, 11: 167. |
29 | SUN H Y, SUN C. The rise of NK cell checkpoints as promising therapeutic targets in cancer immunotherapy[J]. Frontiers in Immunology, 2019, 10: 2354. |
30 | STERNER R C, STERNER R M. CAR-T cell therapy: Current limitations and potential strategies[J]. Blood Cancer Journal, 2021, 11: 69. |
31 | HARGADON K M, JOHNSON C E, WILLIAMS C J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors[J]. International Immunopharmacology, 2018, 62: 29-39. |
32 | HODGINS J J, KHAN S T, PARK M M, et al. Killers 2.0: NK cell therapies at the forefront of cancer control[J]. The Journal of Clinical Investigation, 2019, 129(9): 3499-3510. |
33 | BALD T, KRUMMEL M F, SMYTH M J, et al. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies[J]. Nature Immunology, 2020, 21(8): 835-847. |
34 | HU W L, WANG G S, HUANG D S, et al. Cancer immunotherapy based on natural killer cells: current progress and new opportunities[J]. Frontiers in Immunology, 2019, 10: 1205. |
35 | RUGGERI L, CAPANNI M, URBANI E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants[J]. Science, 2002, 295(5562): 2097-2100. |
36 | SAETERSMOEN M L, HAMMER Q, VALAMEHR B, et al. Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells[J]. Seminars in Immunopathology, 2019, 41(1): 59-68. |
37 | WANG W X, JIANG J T, WU C P. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects[J]. Cancer Letters, 2020, 472: 175-180. |
38 | LIU E L, MARIN D, BANERJEE P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors[J]. The New England Journal of Medicine, 2020, 382(6): 545-553. |
39 | TOMASELLO E, BLERY M, VELY E, et al. Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells[J]. Seminars in Immunology, 2000, 12(2): 139-147. |
40 | VIVIER E, NUNÈS J A, VÉLY F. Natural killer cell signaling pathways[J]. Science, 2004, 306(5701): 1517-1519. |
41 | AFOLABI L O, ADESHAKIN A O, SANI M M, et al. Genetic reprogramming for NK cell cancer immunotherapy with CRISPR/Cas9[J]. Immunology, 2019, 158(2): 63-69. |
42 | PFEFFERLE A, HUNTINGTON N D. You have got a fast CAR: chimeric antigen receptor NK cells in cancer therapy[J]. Cancers, 2020, 12(3): 706. |
43 | HU Y, TIAN Z G, ZHANG C. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy[J]. Acta Pharmacologica Sinica, 2018, 39(2): 167-176. |
44 | TÖPFER K, CARTELLIERI M, MICHEN S, et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy[J]. Journal of Immunology (Baltimore, Md: 1950), 2015, 194(7): 3201-3212. |
45 | LI Y, HERMANSON D L, MORIARITY B S, et al. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity[J]. Cell Stem Cell, 2018, 23(2): 181-192.e5. |
46 | MEHTA R S, REZVANI K. Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer[J]. Frontiers in Immunology, 2018, 9: 283. |
47 | SHANKAR K, CAPITINI C M, SAHA K. Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies[J]. Stem Cell Research & Therapy, 2020, 11(1): 234. |
48 | KNORR D A, NI Z Y, HERMANSON D, et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy[J]. Stem Cells Translational Medicine, 2013, 2(4): 274-283. |
49 | SPANHOLTZ J, PREIJERS F, TORDOIR M, et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process[J]. PLoS One, 2011, 6(6): e20740. |
50 | WOLL P S, MARTIN C H, MILLER J S, et al. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity[J]. Journal of Immunology, 2005, 175(8): 5095-5103. |
51 | IMAI C, IWAMOTO S, CAMPANA D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells[J]. Blood, 2005, 106(1): 376-383. |
52 | OYER J L, PANDEY V, IGARASHI R Y, et al. Natural killer cells stimulated with PM21 particles expand and biodistribute in vivo: clinical implications for cancer treatment[J]. Cytotherapy, 2016, 18(5): 653-663. |
53 | FUJISAKI H, KAKUDA H, IMAI C, et al. Replicative potential of human natural killer cells[J]. British Journal of Haematology, 2009, 145(5): 606-613. |
54 | LI L Y, LI W, WANG C, et al. Adoptive transfer of natural killer cells in combination with chemotherapy improves outcomes of patients with locally advanced colon carcinoma[J]. Cytotherapy, 2018, 20(1): 134-148. |
55 | REIM F, DOMBROWSKI Y, RITTER C, et al. Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells[J]. Cancer Research, 2009, 69(20): 8058-8066. |
56 | CHILDS R W, CARLSTEN M. Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens[J]. Nature Reviews Drug Discovery, 2015, 14(7): 487-498. |
57 | MU Y X, ZHAO Y X, LI B Y, et al. A simple method for in vitro preparation of natural killer cells from cord blood[J]. BMC Biotechnology, 2019, 19(1): 80. |
58 | HENKE E, NANDIGAMA R, ERGÜN S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy[J]. Frontiers in Molecular Biosciences, 2020, 6: 160. |
59 | COOMBE D R, GANDHI N S. Heparanase: a challenging cancer drug target[J]. Frontiers in Oncology, 2019, 9: 1316. |
60 | PUTZ E M, MAYFOSH A J, KOS K, et al. NK cell heparanase controls tumor invasion and immune surveillance[J]. The Journal of Clinical Investigation, 2017, 127(7): 2777-2788. |
61 | GAJEWSKI T F, MENG Y, HARLIN H. Immune suppression in the tumor microenvironment[J]. Journal of Immunotherapy, 2006, 29(3): 233-240. |
62 | VIEL S, MARÇAIS A, GUIMARAES F S, et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway[J]. Science Signaling, 2016, 9(415): ra19. |
63 | ZAIATZ-BITTENCOURT V, FINLAY D K, GARDINER C M. Canonical TGF-β signaling pathway represses human NK cell metabolism[J]. The Journal of Immunology, 2018, 200(12): 3934-3941. |
64 | BURGA R A, YVON E, CHORVINSKY E, et al. Engineering the TGFβ receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma[J]. Clinical Cancer Research, 2019, 25(14): 4400-4412. |
65 | ZHANG Q, BI J C, ZHENG X D, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity[J]. Nature Immunology, 2018, 19(7): 723-732. |
66 | DELCONTE R B, KOLESNIK T B, DAGLEY L F, et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity[J]. Nature Immunology, 2016, 17(7): 816-824. |
67 | DAHER M, BASAR R, GOKDEMIR E, et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells[J]. Blood, 2021, 137(5): 624-636. |
68 | ZHU H, BLUM R H, BERNAREGGI D, et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity[J]. Cell Stem Cell, 2020, 27(2): 224-237. |
69 | CANTON B, LABNO A, ENDY D. Refinement and standardization of synthetic biological parts and devices[J]. Nature Biotechnology, 2008, 26(7): 787-793. |
70 | ENDY D. Foundations for engineering biology[J]. Nature, 2005, 438(7067): 449-453. |
71 | PORTELA R M C, VOGL T, KNIELY C, et al. Synthetic core promoters as universal parts for fine-tuning expression in different yeast species[J]. ACS Synthetic Biology, 2017, 6(3): 471-484. |
72 | ADAMS B L. The next generation of synthetic biology chassis: moving synthetic biology from the laboratory to the field[J]. ACS Synthetic Biology, 2016, 5(12): 1328-1330. |
73 | SIEGLER E L, ZHU Y N, WANG P, et al. Off-the-shelf CAR-NK cells for cancer immunotherapy[J]. Cell Stem Cell, 2018, 23(2): 160-161. |
74 | DEPIL S, DUCHATEAU P, GRUPP S A, et al. 'Off-the-shelf' allogeneic CAR T cells: development and challenges[J]. Nature Reviews Drug Discovery, 2020, 19(3): 185-199. |
75 | ZHAO L J, CAO Y J. Engineered T cell therapy for cancer in the clinic[J]. Frontiers in Immunology, 2019, 10: 2250. |
76 | LEVINE B L, MISKIN J, WONNACOTT K, et al. Global manufacturing of CAR T cell therapy[J]. Molecular Therapy- Methods & Clinical Development, 2017, 4: 92-101. |
77 | CHABANNON C, MFARREJ B, GUIA S, et al. Manufacturing natural killer cells as medicinal products[J]. Frontiers in Immunology, 2016, 7: 504. |
78 | WANG X Y, RIVIÈRE I. Clinical manufacturing of CAR T cells: foundation of a promising therapy[J]. Molecular Therapy-Oncolytics, 2016, 3: 16015. |
79 | ZHANG W, JORDAN K R, SCHULTE B, et al. Characterization of clinical grade CD19 chimeric antigen receptor T cells produced using automated CliniMACS Prodigy system[J]. Drug Design, Development and Therapy, 2018, 12: 3343-3356. |
80 | JACKSON Z, ROE A, SHARMA A A, et al. Automated manufacture of autologous CD19 CAR-T cells for treatment of non-Hodgkin lymphoma[J]. Frontiers in Immunology, 2020, 11: 1941. |
81 | COESHOTT C, VANG B, JONES M, et al. Large-scale expansion and characterization of CD3+ T-cells in the quantum® cell expansion system[J]. Journal of Translational Medicine, 2019, 17(1): 258. |
82 | DANESHPOUR H, YOUK H. Modeling cell-cell communication for immune systems across space and time[J]. Current Opinion in Systems Biology, 2019, 18: 44-52. |
83 | REN X W, ZHANG L, ZHANG Y Y, et al. Insights gained from single-cell analysis of immune cells in the tumor microenvironment[J]. Annual Review of Immunology, 2021, 39: 583-609. |
84 | HANASH S, SCHLIEKELMAN M. Proteomic profiling of the tumor microenvironment: recent insights and the search for biomarkers[J]. Genome Medicine, 2014, 6(2): 12. |
85 | LEE J S, RUPPIN E. Multiomics prediction of response rates to therapies to inhibit programmed cell death 1 and programmed cell death 1 ligand 1[J]. JAMA Oncology, 2019, 5(11): 1614-1618. |
86 | PATEL S P, KURZROCK R. PD-L1 expression as a predictive biomarker in cancer immunotherapy[J]. Molecular Cancer Therapeutics, 2015, 14(4): 847-856. |
87 | MORAGA I, SPANGLER J B, MENDOZA J L, et al. Synthekines are surrogate cytokine and growth factor agonists that compel signaling through non-natural receptor dimers[J]. eLife, 2017, 6: e22882. |
88 | WU T Y H. Strategies for designing synthetic immune agonists[J]. Immunology, 2016, 148(4): 315-325. |
89 | SCHUKUR L, GEERING B, CHARPIN-EL HAMRI G, et al. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis[J]. Science Translational Medicine, 2015, 7(318): 318ra201. |
90 | SIEGEL J P, PURI R K. Interleukin-2 toxicity[J]. ACS Chemical Biology, 1991, 9(4): 694-704. |
91 | KRIEG C, LÉTOURNEAU S, PANTALEO G, et al. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11906-11911. |
92 | LEVIN A M, BATES D L, RING A M, et al. Exploiting a natural conformational switch to engineer an interleukin-2 'superkine' [J]. Nature, 2012, 484(7395): 529-533. |
93 | BEYER M, SCHULTZE J L. Regulatory T cells in cancer[J]. Blood, 2006, 108(3): 804-811. |
94 | SILVA D A, YU S, ULGE U Y, et al. De novo design of potent and selective mimics of IL-2 and IL-15[J]. Nature, 2019, 565(7738): 186-191. |
95 | SINGH S, KUMAR N K, DWIWEDI P, et al. Monoclonal antibodies: a review[J]. Current Clinical Pharmacology, 2018, 13(2): 85-99. |
96 | LABRIJN A F, JANMAAT M L, REICHERT J M, et al. Bispecific antibodies: a mechanistic review of the pipeline[J]. Nature Reviews Drug Discovery, 2019, 18(8): 585-608. |
97 | LINKE R, KLEIN A, SEIMETZ D. Catumaxomab: clinical development and future directions[J]. mAbs, 2010, 2(2): 129-136. |
98 | ZHAO J J, SONG Y P, LIU D L. Recent advances on blinatumomab for acute lymphoblastic leukemia[J]. Experimental Hematology & Oncology, 2019, 8: 28. |
99 | YU S N, LIU Q, HAN X W, et al. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment[J]. Experimental Hematology & Oncology, 2017, 6: 31. |
100 | TORRES T, ROMANELLI M, CHIRICOZZI A. A revolutionary therapeutic approach for psoriasis: bispecific biological agents[J]. Expert Opinion on Investigational Drugs, 2016, 25(7): 751-754. |
101 | DEMAREST S J, GLASER S M. Antibody therapeutics, antibody engineering, and the merits of protein stability[J]. Current Opinion in Drug Discovery & Development, 2008, 11(5): 675-687. |
102 | PLÜCKTHUN A, PACK P. New protein engineering approaches to multivalent and bispecific antibody fragments[J]. Immunotechnology, 1997, 3(2): 83-105. |
103 | JUNE C H, SADELAIN M. Chimeric antigen receptor therapy[J]. The New England Journal of Medicine, 2018, 379(1): 64-73. |
104 | FIGUEROA J A, REIDY A, MIRANDOLA L, et al. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy[J]. International Reviews of Immunology, 2015, 34(2): 154-187. |
105 | SADELAIN M, BRENTJENS R, RIVIÈRE I. The basic principles of chimeric antigen receptor design[J]. Cancer Discovery, 2013, 3(4): 388-398. |
106 | VITALE I, SISTIGU A, MANIC G, et al. Mutational and antigenic landscape in tumor progression and cancer immunotherapy[J]. Trends in Cell Biology, 2019, 29(5): 396-416. |
107 | LOEB K R, LOEB L A. Significance of multiple mutations in cancer[J]. Carcinogenesis, 2000, 21(3): 379-385. |
108 | JIANG T, SHI T, ZHANG H, et al. Tumor neoantigens: From basic research to clinical applications[J]. Journal of Hematology & Oncology, 2019, 12(1): 93. |
109 | ROUDKO V, GREENBAUM B, BHARDWAJ N. Computational prediction and validation of tumor-associated neoantigens[J]. Frontiers in Immunology, 2020, 11: 27. |
110 | WANG Z D, CAO Y J. Adoptive cell therapy targeting neoantigens: a frontier for cancer research[J]. Frontiers in Immunology, 2020, 11: 176. |
111 | ITO M, HIRAMATSU H, KOBAYASHI K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells[J]. Blood, 2002, 100(9): 3175-3182. |
112 | STROM S C, DAVILA J, GROMPE M. Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity[J]. Methods in Molecular Biology, 2010, 640: 491-509. |
113 | WHITESIDE T L. The tumor microenvironment and its role in promoting tumor growth[J]. Oncogene, 2008, 27(45): 5904-5912. |
114 | HIDALGO M, AMANT F, BIANKIN A V, et al. Patient-derived xenograft models: an emerging platform for translational cancer research[J]. Cancer Discovery, 2014, 4(9): 998-1013. |
115 | MORSUT L, ROYBAL K T, XIONG X, et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors[J]. Cell, 2016, 164(4): 780-791. |
[1] | Zhimeng XU, Zhen XIE. Research progress and biotechnological applications of the prime editing [J]. Synthetic Biology Journal, 2024, 5(1): 1-15. |
[2] | Yaru CHEN, Yingxiu CAO, Hao SONG. Advances and applications of gene editing and transcriptional regulation in electroactive microorganisms [J]. Synthetic Biology Journal, 2023, 4(6): 1281-1299. |
[3] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[4] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[5] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[6] | Jicong LIN, Gen ZOU, Hongmin LIU, Yongjun WEI. Application of CRISPR/Cas genome editing technology in the synthesis of secondary metabolites of filamentous fungi [J]. Synthetic Biology Journal, 2023, 4(4): 738-755. |
[7] | Xianyun GAO, Lingxue NIU, Ni JIAN, Ningzi GUAN. Applications of microbial synthetic biology in the diagnosis and treatment of diseases [J]. Synthetic Biology Journal, 2023, 4(2): 263-282. |
[8] | Ke LIU, Guihong LIN, Kun LIU, Wei ZHOU, Fengqing WANG, Dongzhi WEI. Mining, engineering and functional expansion of CRISPR/Cas systems [J]. Synthetic Biology Journal, 2023, 4(1): 47-66. |
[9] | Ran TU, Shixin LI, Haoni LI, Meng WANG. Advances and applications of droplet-based microfluidics in evolution and screening of engineered microbial strains [J]. Synthetic Biology Journal, 2023, 4(1): 165-184. |
[10] | Xixian WANG, Qing SUN, Zhidian DIAO, Jian XU, Bo MA. Advances with applications of Raman spectroscopy in single-cell phenotype sorting and analysis [J]. Synthetic Biology Journal, 2023, 4(1): 204-224. |
[11] | Liya LIANG, Rongming LIU. Protein engineering of DNA targeting type Ⅱ CRISPR/Cas systems [J]. Synthetic Biology Journal, 2023, 4(1): 86-101. |
[12] | Qi LIU, Zhilan QIAN, Lili SONG, Chaoying YAO, Mingqiang XU, Yanna REN, Menghao CAI. Rewiring and application of Pichia pastoris chassis cell [J]. Synthetic Biology Journal, 2022, 3(6): 1150-1173. |
[13] | Jiaxin LIU, Chi CHENG, Xinqi LI, Chaojun WANG, Ying ZHANG, Chuang XUE. Recent progress in the molecular genetic modification tools of Clostridium [J]. Synthetic Biology Journal, 2022, 3(6): 1201-1217. |
[14] | Fei TAO, Tao SUN, Yu WANG, Ting WEI, Jun NI, Ping XU. Challenges and opportunities in the research of Synechococcus chassis under the context of carbon peak and neutrality [J]. Synthetic Biology Journal, 2022, 3(5): 932-952. |
[15] | Zhengxin DONG, Tao SUN, Lei CHEN, Weiwen ZHANG. Applications of regulatory engineering in photosynthetic cyanobacteria [J]. Synthetic Biology Journal, 2022, 3(5): 966-984. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||