Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (1): 191-201.DOI: 10.12211/2096-8280.2023-021
• Invited Review • Previous Articles Next Articles
Qian MENG1, Cong YIN1, Weiren HUANG1,2
Received:
2023-03-07
Revised:
2023-07-11
Online:
2024-03-20
Published:
2024-02-29
Contact:
Weiren HUANG
孟倩1, 尹聪1, 黄卫人1,2
通讯作者:
黄卫人
作者简介:
基金资助:
CLC Number:
Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology[J]. Synthetic Biology Journal, 2024, 5(1): 191-201.
孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-021
1 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. |
2 | WU C C, LI M N, MENG H B, et al. Analysis of status and countermeasures of cancer incidence and mortality in China[J]. Science China Life Sciences, 2019, 62(5): 640-647. |
3 | SU M, XIAO Y H, MA J L, et al. Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers[J]. Molecular Cancer, 2019, 18(1): 90. |
4 | BALANI S, NGUYEN L V, EAVES C J. Modeling the process of human tumorigenesis[J]. Nature Communications, 2017, 8: 15422. |
5 | GILLET J P, VARMA S, GOTTESMAN M M. The clinical relevance of cancer cell lines[J]. Journal of the National Cancer Institute, 2013, 105(7): 452-458. |
6 | ZHOU J J, SU J, FU X T, et al. Microfluidic device for primary tumor spheroid isolation[J].Experimental Hematology & Oncology, 2017, 6(1): 22. |
7 | BEN-DAVID U, HA G, TSENG Y Y, et al. Patient-derived xenografts undergo mouse-specific tumor evolution[J]. Nature Genetics, 2017, 49(11): 1567-1575. |
8 | BYRNE A T, ALFÉREZ D G, AMANT F, et al. Interrogating open issues in cancer medicine with patient-derived xenografts[J]. Nature Reviews Cancer, 2017, 17:632. |
9 | GAO H, KORN J M, FERRETTI S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[J]. Nature Medicine, 2015, 21(11): 1318-1325. |
10 | ROSENBLUTH J M, SCHACKMANN R C J, GRAY G K, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages[J]. Nature Communications, 2020, 11: 1711. |
11 | DUTTA D, HEO I, CLEVERS H. Disease modeling in stem cell-derived 3D organoid systems[J]. Trends in Molecular Medicine, 2017, 23(5): 393-410. |
12 | QIAN X Y, SONG H J, MING G L. Brain organoids: advances, applications and challenges[J]. Development, 2019, 146(8): dev166074. |
13 | TANG X Y, WU S S, WANG D, et al. Human organoids in basic research and clinical applications[J]. Signal Transduction and Targeted Therapy, 2022, 7: 168. |
14 | SHINOZAWA T, KIMURA M, CAI Y Q, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids[J]. Gastroenterology, 2021, 160(3): 831-846.e10. |
15 | COWAN C S, RENNER M, DE GENNARO M, et al. Cell types of the human retina and its organoids at single-cell resolution[J]. Cell, 2020, 182(6): 1623-1640.e34. |
16 | ZHAO J, FU Y, YAMAZAKI Y, et al. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids[J]. Nature Communications, 2020, 11: 5540. |
17 | SABATE-SOLER S, NICKELS S L, SARAIVA C, et al. Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality[J]. Glia, 2022, 70(7): 1267-1288. |
18 | HUANG W K, WONG S Z H, PATHER S R, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells[J]. Cell Stem Cell, 2021, 28(9): 1657-1670.e10. |
19 | UNGRICHT R, GUIBBAL L, LASBENNES M C, et al. Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis[J]. Cell Stem Cell, 2022, 29(1): 160-175.e7. |
20 | MAIER C F, ZHU L, NANDURI L K, et al. Patient-derived organoids of cholangiocarcinoma[J]. International Journal of Molecular Sciences, 2021, 22(16): 8675. |
21 | HENDRIKS D, ARTEGIANI B, HU H L, et al. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver[J]. Nature Protocols, 2021, 16(1): 182-217. |
22 | BETGE J, RINDTORFF N, SAUER J, et al. The drug-induced phenotypic landscape of colorectal cancer organoids[J]. Nature Communications, 2022, 13: 3135. |
23 | QIANG Y L, YAO N, ZUO F, et al. Tumor organoid model and its pharmacological applications in tumorigenesis prevention[J]. Current Molecular Pharmacology, 2023, 14(4): 435-447. |
24 | LI M H, GONG J, GAO L X, et al. Advanced human developmental toxicity and teratogenicity assessment using human organoid models[J]. Ecotoxicology and Environmental Safety, 2022, 235: 113429. |
25 | MAHAPATRA C, LEE R D, PAUL M K. Emerging role and promise of nanomaterials in organoid research[J]. Drug Discovery Today, 2022, 27(3): 890-899. |
26 | PRIOR N, INACIO P, HUCH M. Liver organoids: from basic research to therapeutic applications[J]. Gut, 2019, 68(12): 2228-2237. |
27 | STEIN M C, BRAUN F, KREBS C F, et al. Kidney organoid systems for studies of immune-mediated kidney diseases: challenges and opportunities[J]. Cell and Tissue Research, 2021, 385(2): 457-473. |
28 | LU Z L, NIE B N, ZHAI W W, et al. Delineating the longitudinal tumor evolution using organoid models[J]. Journal of Genetics and Genomics, 2021, 48(7): 560-570. |
29 | XU H X, LYU X D, YI M, et al. Organoid technology and applications in cancer research[J]. Journal of Hematology & Oncology, 2018, 11(1): 116. |
30 | ELBADAWY M, ABUGOMAA A, YAMAWAKI H, et al. Development of prostate cancer organoid culture models in basic medicine and translational research[J]. Cancers, 2020, 12(4): 777. |
31 | BAO Y L, WANG L, PAN H T, et al. Animal and organoid models of liver fibrosis[J]. Frontiers in Physiology, 2021, 12: 666138. |
32 | CHEN H D, ZHUO Q F, YE Z, et al. Organoid model: a new hope for pancreatic cancer treatment?[J]. Biochimica et Biophysica Acta Reviews on Cancer, 2021, 1875(1): 188466. |
33 | REN X X, CHEN W K, YANG Q X, et al. Patient-derived cancer organoids for drug screening: basic technology and clinical application[J]. Journal of Gastroenterology and Hepatology, 2022, 37(8): 1446-1454. |
34 | CHOI H, KIM H J, YANG J, et al. Acetylation changes tau interactome to degrade tau in Alzheimer's disease animal and organoid models[J]. Aging Cell, 2020, 19(1): e13081. |
35 | WILSON H V. On some phenomena of coalescence and regeneration in sponges[J]. Journal of Experimental Zoology, 1907, 5(2): 245-258. |
36 | BRÜMMER F, NICKEL M. Sustainable use of marine resources: cultivation of sponges[M/OL]//Progress in molecular and subcellular biology: sponges (porifera). Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, 37: 143-162 [2023-02-01]. . |
37 | EVANS G S, FLINT N, SOMERS A S, et al. The development of a method for the preparation of rat intestinal epithelial cell primary cultures[J]. Journal of Cell Science, 1992, 101(1): 219-231. |
38 | WHITEHEAD R H, DEMMLER K, ROCKMAN S P, et al. Clonogenic growth of epithelial cells from normal colonic mucosa from both mice and humans[J]. Gastroenterology, 1999, 117(4): 858-865. |
39 | FUKAMACHI H. Proliferation and differentiation of fetal rat intestinal epithelial cells in primary serum-free culture[J]. Journal of Cell Science, 1992, 103(2): 511-519. |
40 | PERREAULT N, BEAULIEU J F. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures[J]. Experimental Cell Research, 1996, 224(2): 354-364. |
41 | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244): 262-265. |
42 | GAO D, VELA I, SBONER A, et al. Organoid cultures derived from patients with advanced prostate cancer[J]. Cell, 2014, 159(1): 176-187. |
43 | VAN DE WETERING M, FRANCIES H E, FRANCIS J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4): 933-945. |
44 | BOJ S F, HWANG C I, BAKER L A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2): 324-338. |
45 | SACHS N, DE LIGT J, KOPPER O, et al. A living biobank of breast cancer organoids captures disease heterogeneity[J]. Cell, 2018, 172(1/2): 373-386.e10. |
46 | YAN H H N, SIU H C, LAW S, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening[J]. Cell Stem Cell, 2018, 23(6): 882-897.e11. |
47 | LIU H, ZHANG Y, ZHANG Y Y, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(52): 33628-33638. |
48 | NORRIE J L, NITYANANDAM A, LAI K R, et al. Retinoblastoma from human stem cell-derived retinal organoids[J]. Nature Communications, 2021, 12: 4535. |
49 | MO S B, TANG P Y, LUO W Q, et al. Patient-derived organoids from colorectal cancer with paired liver metastasis reveal tumor heterogeneity and predict response to chemotherapy[J]. Advanced Science, 2022, 9(31): 2204097. |
50 | DING S L, HSU C, WANG Z H, et al. Patient-derived micro-organospheres enable clinical precision oncology[J]. Cell Stem Cell, 2022, 29(6): 905-917.e6. |
51 | BHATIA S, KRAMER M, RUSSO S, et al. Patient-derived triple-negative breast cancer organoids provide robust model systems that recapitulate tumor intrinsic characteristics[J]. Cancer Research, 2022, 82(7): 1174-1192. |
52 | DRIEHUIS E, KRETZSCHMAR K, CLEVERS H. Establishment of patient-derived cancer organoids for drug-screening applications[J]. Nature Protocols, 2020, 15(10): 3380-3409. |
53 | DIJKSTRA K K, CATTANEO C M, WEEBER F, et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids[J]. Cell, 2018, 174(6): 1586-1598.e12. |
54 | ZHAO H, CHENG Y L, KALRA A, et al. Generation and multiomic profiling of a TP53/CDKN2A double-knockout gastroesophageal junction organoid model[J]. Science Translational Medicine, 2022, 14(673): eabq6146. |
55 | NUCIFORO S, FOFANA I, MATTER M S, et al. Organoid models of human liver cancers derived from tumor needle biopsies[J]. Cell Reports, 2018, 24(5): 1363-1376. |
56 | TIRIAC H, BELLEAU P, ENGLE D D, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer[J]. Cancer Discovery, 2018, 8(9): 1112-1129. |
57 | CHEN P, ZHANG X, DING R B, et al. Patient-derived organoids can guide personalized-therapies for patients with advanced breast cancer[J]. Advanced Science, 2021, 8(22): 2101176. |
58 | LEE S H, HU W H, MATULAY J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer[J]. Cell, 2018, 173(2): 515-528.e17. |
59 | 类器官药物敏感性检测指导肿瘤精准治疗临床应用专家共识(2022年版)编写专家组. 类器官药物敏感性检测指导肿瘤精准治疗临床应用专家共识(2022年版)[J]. 中国癌症防治杂志, 2022, 14(3): 234-239. |
Group of expert consensus of clinical application about tumor precision therapy guided by organoid-based drug sensitivity testing (2022 edition). Expert consensus of clinical application about tumor precision therapy guided by organoid-based drug sensitivity testing (2022 edition) [J]. Chinese Journal of Oncology Prevention and Treatment, 2022, 14(3): 234-239. | |
60 | GAO M, HARPER M M, LIN M, et al. Development of a single-cell technique to increase yield and use of gastrointestinal cancer organoids for personalized medicine application[J]. Journal of the American College of Surgeons, 2021, 232(4): 504-514. |
61 | CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12(5): 381-390. |
62 | JIANG K Y, KOOB J, DAWN CHEN X, et al. Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR[J]. Nature Biotechnology, 2023, 41(5): 698-707. |
63 | KHALIL A S, COLLINS J J. Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 2010, 11(5): 367-379. |
64 | SCHMIDT F, ZIMMERMANN J, TANNA T, et al. Noninvasive assessment of gut function using transcriptional recording sentinel cells[J]. Science, 2022, 376(6594): eabm6038. |
65 | 吴晓昊, 廖荣东, 李飞云, 等. 合成生物学在疾病诊疗中的应用[J]. 合成生物学, 2023, 4(2): 244-262. |
WU X H, LIAO R D, LI F Y, et al. Applications of synthetic biology in disease diagnosis and treatment[J]. Synthetic Biology Journal, 2023, 4(2): 244-262. | |
66 | GUO W X, LI L, HE J, et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips[J]. Nature Genetics, 2020, 52(9): 908-918. |
67 | OGAWA J, PAO G M, SHOKHIREV M N, et al. Glioblastoma model using human cerebral organoids[J]. Cell Reports, 2018, 23(4): 1220-1229. |
68 | BIAN S, REPIC M, GUO Z M, et al. Genetically engineered cerebral organoids model brain tumor formation[J]. Nature Methods, 2018, 15(8): 631-639. |
69 | DEKKERS J F, WHITTLE J R, VAILLANT F, et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids[J]. Journal of the National Cancer Institute, 2020, 112(5): 540-544. |
70 | JACOB F, SALINAS R D, ZHANG D Y, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity[J]. Cell, 2020, 180(1): 188-204.e22. |
71 | SCHNALZGER T E, DE GROOT M H, ZHANG C C, et al. 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids[J]. The EMBO Journal, 2019, 38(12): e100928. |
72 | YU L, LI Z C, MEI H B, et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro [J]. Clinical & Translational Immunology, 2021, 10(2): e1248. |
73 | SAKO K, PRADHAN S J, BARONE V, et al. Optogenetic control of nodal signaling reveals a temporal pattern of nodal signaling regulating cell fate specification during gastrulation[J]. Cell Reports, 2016, 16(3): 866-877. |
74 | ČAPEK D, SMUTNY M, TICHY A M, et al. Light-activated Frizzled7 reveals a permissive role of non-canonical Wnt signaling in mesendoderm cell migration[J]. eLife, 2019, 8: 42093. |
75 | REPINA N A, BAO X P, ZIMMERMANN J A, et al. Optogenetic control of Wnt signaling for modeling early embryogenic patterning with human pluripotent stem cells[EB/OL]. bioRxiv, 2019[2023-02-01]. . |
76 | LEGNINI I, EMMENEGGER L, ZAPPULO A, et al. Spatio-temporal, optogenetic control of gene expression in organoids[EB/OL]. bioRxiv, 461850[2023-02-10]. . |
77 | KARTHAUS W R, IAQUINTA P J, DROST J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures[J]. Cell, 2014, 159(1): 163-175. |
78 | NEAL J T, LI X N, ZHU J J, et al. Organoid modeling of the tumor immune microenvironment[J]. Cell, 2018, 175(7): 1972-1988.e16. |
79 | HU Y W, SUI X Z, SONG F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week[J]. Nature Communications, 2021, 12: 2581. |
80 | LEE K K, MCCAULEY H A, BRODA T R, et al. Human stomach-on-a-chip with luminal flow and peristaltic-like motility[J]. Lab on a Chip, 2018, 18(20): 3079-3085. |
81 | PARK S E, GEORGESCU A, HUH D. Organoids-on-a-chip[J]. Science, 2019, 364(6444): 960-965. |
82 | SACKMANN E K, FULTON A L, BEEBE D J. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491): 181-189. |
83 | SCHUSTER B, JUNKIN M, KASHAF S S, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids[J]. Nature Communications, 2020, 11: 5271. |
84 | BIAN X S, LI G, WANG C, et al. A deep learning model for detection and tracking in high-throughput images of organoid[J]. Computers in Biology and Medicine, 2021, 134: 104490. |
85 | SKARDAL A, ALEMAN J, FORSYTHE S, et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems[J]. Biofabrication, 2020, 12(2): 025017. |
86 | KELLER P J, LIN A F, ARENDT L M, et al. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines[J].Breast Cancer Research, 2010, 12(5): R87. |
87 | PRIYA R, ALLANKI S, GENTILE A, et al. Tension heterogeneity directs form and fate to pattern the myocardial wall[J]. Nature, 2020, 588(7836): 130-134. |
88 | BRASSARD J A, LUTOLF M P. Engineering stem cell self-organization to build better organoids[J]. Cell Stem Cell, 2019, 24(6): 860-876. |
89 | STEVENS A J, HARRIS A R, GERDTS J, et al. Programming multicellular assembly with synthetic cell adhesion molecules[J]. Nature, 2023, 614(7946): 144-152. |
90 | TRENTESAUX C, YAMADA T, KLEIN O D, et al. Harnessing synthetic biology to engineer organoids and tissues[J]. Cell Stem Cell, 2023, 30(1): 10-19. |
[1] | Huang XIE, Yilei ZHENG, Yiting SU, Jingyi RUAN, Yongquan LI. An overview on reconstructing the biosynthetic system of actinomycetes for polyketides production [J]. Synthetic Biology Journal, 2024, 5(3): 612-630. |
[2] | Wenlong ZHA, Lan BU, Jiachen ZI. Advances in synthetic biology for producing potent pharmaceutical ingredients of traditional Chinese medicine [J]. Synthetic Biology Journal, 2024, 5(3): 631-657. |
[3] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[4] | Xiaonan LIU, Jing LI, Xiaoxi ZHU, Zishuo XU, Jian QI, Huifeng JIANG. Research advances on paclitaxel biosynthesis [J]. Synthetic Biology Journal, 2024, 5(3): 527-547. |
[5] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[6] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[7] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[8] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[9] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[10] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[11] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[12] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[13] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[14] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[15] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||