Synthetic Biology Journal ›› 2020, Vol. 1 ›› Issue (3): 319-336.DOI: 10.12211/2096-8280.2020-028
• Invited Review • Previous Articles Next Articles
Jianzhi ZHANG, Lihao FU, Ting TANG, Songya ZHANG, Jing ZHU, Tuo LI, Zining WANG, Tong SI
Received:
2020-03-17
Revised:
2020-04-29
Online:
2020-09-29
Published:
2020-06-30
Contact:
Tong SI
张建志, 付立豪, 唐婷, 张嵩亚, 朱静, 李拓, 王子宁, 司同
通讯作者:
司同
作者简介:
张建志(1988—),男,博士,助理研究员,研究方向为合成生物学、代谢工程。E-mail:基金资助:
CLC Number:
Jianzhi ZHANG, Lihao FU, Ting TANG, Songya ZHANG, Jing ZHU, Tuo LI, Zining WANG, Tong SI. Scalable mining of proteins for biocatalysis via synthetic biology[J]. Synthetic Biology Journal, 2020, 1(3): 319-336.
张建志, 付立豪, 唐婷, 张嵩亚, 朱静, 李拓, 王子宁, 司同. 基于合成生物学策略的酶蛋白元件规模化挖掘[J]. 合成生物学, 2020, 1(3): 319-336.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-028
1 | Zaparucha A, de Berardinis V, Vaxelaire-Vergne C. Genome mining for enzyme discovery [M]//Modern biocatalysis: advances towards synthetic biological systems. The Royal Society of Chemistry, 2018: 1-27. |
2 | Wang L, Dash S, Ng C Y, et al. A review of computational tools for design and reconstruction of metabolic pathways[J]. Synthetic and Systems Biotechnology, 2017, 2(4): 243-252. |
3 | Hatzimanikatis V, Li CH, Ionita J A, et al. Exploring the diversity of complex metabolic networks [J]. Bioinformatics, 2005, 21(8): 1603-1609. |
4 | Kumar A, Wang L, Ng C Y, et al. Pathway design using de novo steps through uncharted biochemical spaces [J]. Nature Communications, 2018, 9: 184-201. |
5 | Mak W S, Tran S, Marcheschi R, et al. Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway[J]. Nature Communications, 2015, 6(1). |
6 | Carter M S, Zhang X, Huang H, et al. Functional assignment of multiple catabolic pathways for D-apiose [J]. Nature Chemical Biology, 2018, 14(7): 696-705. |
7 | Mori Y, Shirai T. Designing artificial metabolic pathways, construction of target enzymes, and analysis of their function [J]. Current Opinion in Biotechnology, 2018, 54: 41-44. |
8 | Li Y R, Li S J, Thodey K, et al. Complete biosynthesis of noscapine and halogenated alkaloids in yeast [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): E3922-E3931. |
9 | Thodey K, Galanie S, Smolke C D. A microbial biomanufacturing platform for natural and semisynthetic opioids [J]. Nature Chemical Biology, 2014, 10(10): 837-844. |
10 | Sayers E W, Agarwala R, Bolton E E, et al. Database resources of the National Center for Biotechnology Information [J]. Nucleic Acids Research, 2019, 47(D1): D23-D28. |
11 | Tian W D, Arakaki A K, Skolnick J. EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference [J]. Nucleic Acids Research, 2004, 32(21): 6226-6239. |
12 | Clark K, Karsch-Mizrachi I, Lipman D J, et al. GenBank [J]. Nucleic Acids Research, 2016, 44(D1): D67-D72. |
13 | Seffernick J L, de Souza M L, Sadowsky M J, et al. Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different [J]. Journal of Bacteriol, 2001, 183(8): 2405-2410. |
14 | Burroughs A M, Allen K N, Dunaway-Mariano D, et al. Evolutionary genomics of the HAD superfamily: Understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes [J]. Journal of Molecular Biology, 2006, 361(5): 1003-1034. |
15 | Glasner M E, Fayazmanesh N, Chiang R, et al. Evolution of structure and function in the o-succinylbenzoate synthase family [J]. Faseb Journal, 2006, 20(5): A905-A905. |
16 | Peterhoff D, Beer B, Rajendran C, et al. A comprehensive analysis of the geranylgeranylglyceryl phosphate synthase enzyme family identifies novel members and reveals mechanisms of substrate specificity and quaternary structure organization [J]. Molecular Microbiology, 2014, 92(4): 885-899. |
17 | Heins R A, Cheng X, Nath S, et al. Phylogenomically guided identification of industrially relevant GH1 beta-glucosidases through DNA synthesis and nanostructure-initiator mass spectrometry [J]. ACS Chemical Biology, 2014, 9(9): 2082-2091. |
18 | Vanacek P, Sebestova E, Babkova P, et al. Exploration of enzyme diversity by integrating bioinformatics with expression analysis and biochemical characterization [J]. ACS Catalysis, 2018, 8(3): 2402-2412. |
19 | Bairoch A, Apweiler R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999 [J]. Nucleic Acids Research, 1999. 27(1): 49-54. |
20 | Marchler-Bauer A, Derbyshire M K, Gonzales N R, et al. CDD: NCBI's conserved domain database [J]. Nucleic Acids Research, 2015, 43(D1): D222-D226. |
21 | Finn R D, Bateman A, Clements J, et al. Pfam: the protein families database [J]. Nucleic Acids Research, 2014, 42(D1): D222-D230. |
22 | Sillitoe I, Lewis T E, Cuff A, et al. CATH: comprehensive structural and functional annotations for genome sequences [J]. Nucleic Acids Research, 2015, 43(D1): D376-D381. |
23 | Meyer F, Overbeek R, Rodriguez A. FIGfams: yet another set of protein families [J]. Nucleic Acids Research, 2009, 37(20): 6643-6654. |
24 | Schnoes A M, Brown S D, Dodevski I, et al. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies [J]. PLoS Computational Biology, 2009, 5(12): e1000605. |
25 | Copp J N, Anderson D W, Akiva E, et al. Exploring the sequence, function, and evolutionary space of protein superfamilies using sequence similarity networks and phylogenetic reconstructions [J]. Methods in Enzymology, 2019, 620: 315-347. |
26 | Rodríguez Benítez A, Narayan A R H. Frontiers in biocatalysis: profiling function across sequence space [J]. ACS Central Science. 2019, 5(11): 1747-1749. |
27 | Atkinson H J, Morris J H, Ferrin T E, et al. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies [J]. PLoS One, 2009, 4(2): e4345-e4358. |
28 | Berman H, Henrick K, Nakamura H, et al. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data [J]. Nucleic Acids Research, 2007, 35: D301-D303. |
29 | Ashburner M, Ball C A, Blake J A, et al. Gene Ontology: tool for the unification of biology [J]. Nature Genetics, 2000, 25(1): 25-29. |
30 | Copp J N, Akiva E, Babbit P C, et al. Revealing unexplored sequence-function space using sequence similarity networks [J]. Biochemistry, 2018, 57(31): 4651-4662. |
31 | Barber A E, Babbitt P C. Pythoscape: a framework for generation of large protein similarity networks [J]. Bioinformatics, 2012, 28(21): 2845-2846. |
32 | Zallot R, Oberg N, Gerlt J A, The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways [J]. Biochemistry, 2019, 58(41): 4169-4182. |
33 | Getz G, Starovolsky A, Domany E. F2CS: FSSP to CATH and SCOP prediction server [J]. Bioinformatics, 2004, 20(13): 2150-2152. |
34 | Sillitoe I, Furnham N. FunTree: advances in a resource for exploring and contextualising protein function evolution [J]. Nucleic Acids Research, 2016, 44(D1): D317-323. |
35 | Lin G M, Warden-Rothman R, Voigt C A. Retrosynthetic design of metabolic pathways to chemicals not found in nature [J]. Current Opinion in Systems Biology, 2019, 14: 82-107. |
36 | Klucznik T, Mikulak-Klucznik B, McCormack M P, et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory [J]. Chemistry, 2018, 4(3): 522-532. |
37 | Musil M, Konegger H, Hon J, et al. Computational design of stable and soluble biocatalysts [J]. ACS Catalysis, 2019. 9(2): 1033-1054. |
38 | Wilkinson D L, Harrison R G. Predicting the solubility of recombinant proteins in Escherichia coli [J]. Nature Biotechnology, 1991, 9(5): 443-448. |
39 | Kim J H, Kershner J P, Novikov Y, et al. Three serendipitous pathways in E. coli can bypass a block in pyridoxal-5'-phosphate synthesis [J]. Molecular Systems Biology, 2010, 6: 436-448. |
40 | Jeffryes J G, Colastani R L, ELBADAWI-SIDHU M, et al. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics [J]. Journal of Cheminformatics, 2015, 7: 44-51. |
41 | Pertusi D A, Moura M E, Jeffryes J G, et al. Predicting novel substrates for enzymes with minimal experimental effort with active learning [J]. Metabolic Engineering, 2017, 44: 171-181. |
42 | Ekins S. Predicting undesirable drug interactions with promiscuous proteins in silico [J]. Drug Discov Today, 2004, 9(6): 276-285. |
43 | Ferrario V, Siragusa L, Ebert C, et al. BioGPS descriptors for rational engineering of enzyme promiscuity and structure based bioinformatic analysis [J]. PLoS One, 2014, 9(10): e109354. |
44 | Campodonico M A, Andrews B A, Asenjo J A, et al. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path [J]. Metabolic Engineering, 2014, 25: 140-158. |
45 | Feher T, Planson A G, Carbonell P, et al. Validation of retroPath, a computer-aided design tool for metabolic pathway engineering [J]. Biotechnology Journal, 2014, 9(11): 1446-1457. |
46 | Chao R, Yuan Y B, Zhao H M. Recent advances in DNA assembly technologies [J]. Fems Yeast Research, 2015, 15(1): 1-9. |
47 | Gould N, Hendy O, Papamichail D. Computational tools and algorithms for designing customized synthetic genes [J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 41. |
48 | Jia B, Jeon C O. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives [J]. Open Biology, 2016, 6(8): 160196. |
49 | Nagase T, Yamakawa H, Tadokoro S, et al. Exploration of human ORFeome: high-throughput preparation of ORF clones and efficient characterization of their protein products [J]. DNA Research, 2008, 15(3): 137-149. |
50 | HamediRad M, Weisberg S, Chao R, et al. Highly efficient single-pot scarless golden gate assembly [J]. ACS Synthetic Biology, 2019, 8(5): 1047-1054. |
51 | Chao R, Liang J, Tasan I, et al. Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry [J]. ACS Synthetic Biology, 2017, 6(4): 678-685. |
52 | Hillson N J, Rosengarten R D, Keasling J D. j5 DNA assembly design automation software [J]. ACS Synthetic Biology, 2012, 1(1): 14-21. |
53 | Kanigowska P, Shen Y, Zheng Y J, et al. Smart DNA fabrication using sound waves: applying acoustic dispensing technologies to synthetic biology [J]. Jala-J. Lab. Autom, 2016, 21(1): 49-56. |
54 | Linshiz G, Stawski N, Goyal G, et al. PR-PR: cross-platform laboratory automation system [J]. ACS Synthetic Biology, 2014, 3(8): 515-524. |
55 | Chen W H, Qin Z J, Wang J, et al. The MASTER (methylation-assisted tailorable ends rational) ligation method for seamless DNA assembly [J]. Nucleic Acids Research, 2013, 41(8): e93. |
56 | Shao Z Y, Zhao H, Zhao H M. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways [J]. Nucleic Acids Research, 2009, 37(2): e16. |
57 | Landenmark H K, Forgan D H, Cockell C S. An estimate of the total DNA in the biosphere [J]. PLoS Biology, 2015, 13(6): e1002168. |
58 | Shapland E B, Holmes V, Reeves C D, et al. Low-cost, high-throughput sequencing of DNA assemblies using a highly multiplexed nextera process [J]. ACS Synthetic Biology, 2015, 4(7): 860-866. |
59 | Dharmadi Y, Patel K, Shapland E, et al. High-throughput, cost-effective verification of structural DNA assembly [J]. Nucleic Acids Research, 2014, 42(4). e22. |
60 | De Kok S, Stanton L H, Slaby T, et al. Rapid and reliable DNA assembly via ligase cycling reaction [J]. ACS Synthetic Biology, 2014, 3(2): 97-106. |
61 | Lei C, Li S Y, Liu J K, et al. The CCTL (Cpf1-assisted cutting and taq DNA ligase-assisted ligation) method for efficient editing of large DNA constructs in vitro [J]. Nucleic Acids Research, 2017, 45(9): e74. |
62 | Wang L, Wang H, Liu H, et al. Improved CRISPR-Cas12a-assisted one-pot DNA editing method enables seamless DNA editing [J]. Biotechnology and Bioengeering, 2019, 116(6): 1463-1474. |
63 | Demain A L, Vaishnav P. Production of recombinant proteins by microbes and higher organisms [J]. Biotechnology Advances, 2009, 27(3): 297-306. |
64 | Schmidt S, Dörr M, Bornscheuer U T. Library growth and protein expression: optimal and reproducible microtiter plate expression of recombinant enzymes in E. coli using MTP shakers [M]//BORNSCHEUER U T, HÖHNE M. Protein engineering: methods and protocols. New York: Springer New York, 2018: 145-156. |
65 | Nakano H, Yamane T. Cell-free protein synthesis systems [J]. Biotechnology Advances, 1998, 16(2): 367-384. |
66 | Markel U, Essani K D, Besirlioglu V, et al. Advances in ultrahigh-throughput screening for directed enzyme evolution [J]. Chemical Society Reviews, 2020, 49(1): 233-262. |
67 | Swartz J. Developing cell-free biology for industrial applications [J]. Journal of Microbiology and Biotechnology, 2006, 33(7): 476-485. |
68 | Rungpragayphan S, Nakano H, Yamane T. PCR-linked in vitro expression: a novel system for high-throughput construction and screening of protein libraries [J]. FEBS Letters, 2003, 540(1-3): 147-150. |
69 | Angenendt P, Nyarsik L, Szaflarski W, et al. Cell-free protein expression and functional assay in nanowell chip format [J]. Analytical Chemistry, 2004, 76(7): 1844-1849. |
70 | Santos-Aberturas J, Dörr M, Bornscheuer U T. Normalized screening of protein engineering libraries by split-GFP crude cell extract quantification [M]// BORNSCHEUER U T, HÖHNE M. Protein engineering: methods and protocols. New York: Springer New York;2018: 157-170. |
71 | Cabantous S, Waldo G S. In vivo and in vitro protein solubility assays using split GFP [J]. Nature Methods, 2006, 3(10): 845-854. |
72 | Guo C X, Hu Y L, Yang C Y, et al. Developing a colorimetric assay for Fe(Ⅱ)/2-oxoglutarate-dependent dioxygenase [J]. Analytical Biochemistry, 2018, 548: 109-114. |
73 | Dekker L, Polizzi K M. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors [J]. Current Opinion in Chemical Biology, 2017, 40: 31-36. |
74 | Chen X, Zhang D, Su N, et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAS [J]. Nature Biotechnology, 2019, 37(11): 1287-1293. |
75 | Lim H G, Jang S, Jang S, et al. Design and optimization of genetically encoded biosensors for high-throughput screening of chemicals [J]. Current Opinion in Chemical Biology, 2018, 54: 18-25. |
76 |
Zeng W, Guo L, Xu S, et al. High-throughput screening technology in industrial biotechnology [J]. Trends in Biotechnology, 2020. doi:10.1016/j.tibtech.2020.01.001.
DOI |
77 | Aymard C, Bonaventura C, Henkens R, et al. High-throughput electrochemical screening assay for free and immobilized oxidases: electrochemiluminescence and intermittent pulse amperometry [J]. Chemelectrochem, 2017, 4(4): 957-966. |
78 | Majdinasab M, Mitsubayashi K, Marty J L. Optical and electrochemical sensors and biosensors for the detection of quinolones [J]. Trends in Biotechnology. 2019, 37(8): 898-915. |
79 | Si T, Li B, Comi T J, et al. Profiling of microbial colonies for high-throughput engineering of multistep enzymatic reactions via optically guided matrix-assisted laser desorption/ionization mass spectrometry [J]. Journal of the American Chemical Society, 2017, 139(36): 12466-12473. |
80 | De Rond T, Jian G, Amin Z, et al. A high-throughput mass spectrometric enzyme activity assay enabling the discovery of Cytochrome P450 biocatalysts [J]. Angewandte Chemie, 2019, 131(30): 10220-10225. |
81 | Holland-Moritz D A, Wismer M K, Mann B F, et al. Mass activated droplet sorting (MADS) enables high-throughput screening of enzymatic reactions at nanoliter scale [J]. Angewandte Chemie International Edition, 2020, 59: 4470-4477. |
82 | Prosser G A, Larrouy-Maumus G, De Carvalho L P. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways [J]. EMBO Reports, 2014, 15(6): 657-669. |
83 | Sévin D C, Fuhrer T, Zamboni N, Sauer U. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli [J]. Nature Methods, 2017, 14(2): 187-194. |
84 | Dörr M, Fibinger M P C, Last D, et al. Fully automatized high-throughput enzyme library screening using a robotic platform [J]. Biotechnology and Bioengineering, 2016, 113(7): 1421-1432. |
85 | Longwell C K, Labanieh L, Cochran J R. High-throughput screening technologies for enzyme engineering [J]. Current Opinion in Biotechnology, 2017, 48: 196-202. |
86 | Chen I, Dorr B M, Liu D R. A general strategy for the evolution of bond-forming enzymes using yeast display [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28): 11399-11404. |
87 | Qin Y L, Wu L, Wang J G, et al. A fluorescence-activated single-droplet dispenser for high accuracy single-droplet and single-cell sorting and dispensing [J]. Analytical Chemistry, 2019, 91(10): 6815-6819. |
88 | Zhu P A, Wang L Q. Passive and active droplet generation with microfluidics: a review [J]. Lab On A Chip, 2017, 17(1): 34-75. |
89 | Colin P Y, Kintses B, Gielen F, et al. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics [J]. Nature Communication, 2015, 6: 10008. |
90 | Lobb B, Doxey A C. Novel function discovery through sequence and structural data mining [J]. Current Opinion in Structural Biology, 2016, 38: 53-61. |
91 | Davidson R, Baas B J, Akiva E, et al. A global view of structure-function relationships in the tautomerase superfamily[J]. Journal of Biological Chemistry, 2018, 293(7): 2342-2357. |
92 | Mashiyama S T, Malabanan M M, Akiva E, et al. Large-scale determination of sequence, structure, and function relationships in cytosolic glutathione transferases across the biosphere [J]. PLoS Biology, 2014, 12(4): e1001843. |
93 | Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences [J]. Bioinformatics, 2006, 22(13): 1658-1659. |
94 | Kobe B, Guss M, Huber T, Structural proteomics: high-throughput methods [M].//Totowa N J. Methods in molecular biology. London: Humana; Springer distributor. xxvi, 2008: 601 p. |
95 | Voss H, Heck C A, Schallmey M, et al. Database mining for novel bacterial beta-etherases, glutathione-dependent lignin-degrading enzymes [J]. Applied and Environmental Microbiology, 2020, 86(2): e02026-19. |
96 | Hillson N, Caddick M, Cai Y Z, et al. Building a global alliance of biofoundries [J]. Nature Communications, 2019, 10: 2040-2043. |
97 | Chao R, Mishra S, Si T, et al. Engineering biological systems using automated biofoundries [J]. Metabolic Engineering, 2017, 42: 98-108. |
98 | Si T, Chao R, Min Y H, et al. Automated multiplex genome-scale engineering in yeast [J]. Nature Communications, 2017. 8: 15187. |
99 | Xue P, Si T, Mishra S, et al. A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids [J]. Biotechnology and Bioengineering, 2020, 117(7): 2131-2138. |
100 | Wang Y, Liu Y, Liu J, et al. MACBETH: Multiplex automated Corynebacterium glutamicum base editing method [J]. Metabolic Engineering, 2018, 47:200-210. |
101 | Zlokarnik G, Grootenhuis P D, Watson J B. High throughput P450 inhibition screens in early drug discovery [J]. Drug Discov Today, 2005, 10(21): 1443-1450. |
[1] | Mengchu SUN, Liangyu LU, Xiaolin SHEN, Xinxiao SUN, Jia WANG, Qipeng YUAN. Fluorescence detection-based high-throughput screening systems and devices facilitate cell factories construction [J]. Synthetic Biology Journal, 2023, 4(5): 947-965. |
[2] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[3] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
[4] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[5] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[6] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
[7] | Huan LIU, Qiu CUI. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains [J]. Synthetic Biology Journal, 2023, 4(5): 980-999. |
[8] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[9] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[10] | Yang MING, Bin CHEN, Xiaoqiang HUANG. Recent advances in photoenzymatic synthesis [J]. Synthetic Biology Journal, 2023, 4(4): 651-675. |
[11] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[12] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[13] | Zhi SUN, Ning YANG, Chunbo LOU, Chao TANG, Xiaojing YANG. Rational design for functional topology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2023, 4(3): 444-463. |
[14] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
[15] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||