Please wait a minute...
IMAGE/TABLE DETAILS
Research progress and development trends in the biosynthesis of neutral core human milk oligosaccharides
LIU Dan, WANG Jianyu, JIANG Zhengqiang
Synthetic Biology Journal    2025, 6 (5): 1126-1144.   DOI: 10.12211/2096-8280.2025-083
Abstract   (541 HTML22 PDF(pc) (5130KB)(529)  

Human milk oligosaccharides (HMOs) are essentially functional and nutritional components found in human milk. They can be primarily classified into fucosylated, neutral core, and sialylated HMOs. Lacto-N-triose Ⅱ (LNT Ⅱ), lacto-N-neotetraose (LNnT), and lacto-N-tetraose (LNT) are common neutral core human milk oligosaccharides (ncHMOs), which can be extended to form longer-chain HMOs and play important roles in intestinal health. In recent years, the biosynthesis of ncHMOs has developed rapidly, and industrial-scale production is from theoretical possibility to practical reality. The synthesis approaches for ncHMOs include chemical synthesis, enzymatic synthesis, and microbial cell synthesis. As the rapid development in biotechnology, enzymatic and microbial cell synthesis have emerged as prominent methods in ncHMOs biosynthesis. Enzymatic synthesis is highly efficient, regioselective, and stereoselective. Currently, glycosyltransferases and glycoside hydrolases represent the two major types of enzymes used for biosynthesizing ncHMOs. Glycosidase-based enzymatic synthesis has demonstrated high conversion rates for LNT Ⅱ and LNnT production. However, the enzymatic synthesis of LNT is less efficient and requires further improvement. Notably, the production of LNnT and LNT typically relies on LNT Ⅱ as a key precursor, requiring a multi-step synthetic strategy. Microbial cell synthesis employs metabolic engineering to construct continuously synthetic pathways in microbial cells such as Escherichia coli and Bacillus subtilis. Knocking out genes in competitive pathway, optimizing genes expression, regenerating cofactors have significantly enhanced the yields of ncHMOs. The biosynthesis of ncHMOs faces several critical challenges, including the low activity and poor substrate specificity of key glycosyltransferases, such as β-1,3-N-acetylglucosaminyltransferase and β-1,3-galactosyltransferase. Additionally, the transporters of LNT Ⅱ and LNnT are not clear in microbial cell. Furthermore, the yields of LNT Ⅱ should be substantially improved for industrial-scale production. Thus, it is important to overcome the interconnected limitations in enzyme engineering (particularly glycosyltransferase specificity and activity), microbial cell modification (focusing on metabolic compatibility and pathway design), and bioprocess optimization (through rational pathway redesign) via an integrated synthetic biology and fermentation engineering approach in the future. These strategies are essential for achieving efficient, cost-effective biosynthesis of ncHMO at industrial scale.


菌株改造情况底物发酵条件发酵罐产量/(g/L)参考文献
大肠杆菌(E. coli)JM109lacY+lacZ- pCW-NmlgtA乳糖、甘油pH 6.8、34 ℃、0.2 mmol/L IPTG、矿物培养基6(2 L)[77]
大肠杆菌(E. coli) BL21(DE3)

ΔwecBΔnagBΔlacZ

pRSF-glmM-glmU-glmS* pET-NmlgtA

乳糖、甘油pH 6.8、25 ℃、0.1 mmol/L IPTG、甘油优化培养基46.2(5 L)[76]
大肠杆菌(E. coli) BL21(DE3)

ΔlacZΔnanE -

pRSF-nagA-glmM

pET-glmU pET-NmlgtA

乳糖、GlcNAcpH 6.9、25 ℃、0.2 mmol/L IPTG、GlcNAc优化培养基15.8(3 L)[78]
大肠杆菌(E. coli)W3110S

ΔlacZY ΔyhbJ

pUAKQE-NplgtA-lacY

pSTV29-setA

乳糖、葡萄糖pH 6.9、30 ℃、1 mmol/L IPTG、葡萄糖优化培养基34.2(3 L)[79]
大肠杆菌(E. coli)Nissle 1917

ΔendAΔwecB

pET-P tac -NmlgtA

乳糖、 甘油、25 ℃、—、—2.04(3 L)[80]
大肠杆菌(E. coli)K12 MG1655

ΔnagBΔwecBΔlacIZ::P J23116 -lacY-GlmS*

pTrc99A-Nm58lgtA(R13H/L24M/R205C)- InfB-RBST7-GlmS*

乳糖、 甘油—、25 ℃、—、M9培养基57.44(3 L)[81]
大肠杆菌(E. coli)JM109 + 酿酒酵母 (Saccharomyces cerevisiaeE. coli JM109(DE3) pET-NahK-linker-EcglmU-lgtA乳糖、GlcNAcpH 6.98、18 ℃、0.2 mmol/L IPTG、葡萄糖优化培养基52.34(5L)[82]
Table 5 Microbial cell factory for LNT Ⅱ synthesis
Extracts from the Article
在微生物细胞法合成LNT Ⅱ的研究中,大肠杆菌是目前应用最广泛和研究最深入的工程菌株(表5)。
由于大肠杆菌缺乏β-1,3-N-乙酰氨基葡萄糖基转移酶,需将其引入才能利用外源添加的乳糖或N-乙酰氨基葡萄糖和内源合成的UDP-N-乙酰氨基葡萄糖(UDP-GlcNAc)合成LNT Ⅱ(图2)。内源UDP-GlcNAc合成通路包含glmMglmU以及glmS等关键基因,Zhu等[76]利用不同拷贝数质粒微调UDP-GlcNAc合成通路表达强度,并定点突变了glmS以解除前体物GlcN-6-P的反馈抑制,敲除竞争路径中wecBnagB后,5 L发酵罐中LNT Ⅱ产量高达46.2 g/L。乳糖作为合成LNT Ⅱ的直接底物,不同大肠杆菌菌株利用其效果不同。与大肠杆菌BL21(DE3)相比,大肠杆菌JM109需过表达lacY以提高乳糖渗透率[77]。此外,还需敲除lacZ防止乳糖降解[77]。Hu等[78]利用几丁质降解产物GlcNAc为底物,敲除lacZnanE阻断副反应途径减少底物浪费,过表达nagAglmMglmU以增强前体UDP-GlcNAc的供应,通过基因表达优化,3 L发酵罐中LNT Ⅱ产量为15.8 g/L,为利用生物质原料合成HMO提供了新思路。Sugita等[79]过表达大肠杆菌内源转运体基因setA显著提高了LNT Ⅱ产量,但SetA转运LNT Ⅱ具体转运机制尚不清晰。除了改造传统大肠杆菌,还可以改造益生菌大肠杆菌Nissle 1917合成LNT Ⅱ[80]。最近,Li等[81]首先确定了脑膜炎奈瑟氏菌MC58来源的LgtA具有合成LNT Ⅱ优势,基于高通量筛选平台确定高效突变体R13H/L24M/R205C,并在其C端融合InfB促融标签减少了包涵体形成,最后通过RBS工程和优化关键限速酶表达提高了LNT Ⅱ合成水平,在5 L发酵罐中产量达57.44 g/L,为目前报道最高水平。Wang等[82]采用两步法全细胞催化策略,开发了大肠杆菌-酵母耦合系统,以GlcNAc和乳糖为底物在5 L发酵罐中合成了52.34 g/L LNT Ⅱ,乳糖转化率达95.95%。
大肠杆菌具有遗传背景清晰、操作简便等优点,已成为合成LNnT的主要底盘,在产量和应用方面占据重要地位。目前,已报道嗜血杆菌(Histophilus somni)[56]伴放线聚集杆菌 NUM4039[83]幽门螺杆菌(Helicobacter pylori)[84]脑膜炎奈瑟氏菌[85]、无乳链球菌(Streptococcus agalactiae)[86]来源的β-1,4-GalT用于合成LNnT。研究表明,幽门螺杆菌来源的β-1,4-GalT在大肠杆菌中合成LNnT产量更高,且LNT Ⅱ残留更少[87]。基因敲除是强化LNnT合成通路普遍使用的策略,通常需要敲除lacZnagBwecBugdwcaCwcaJ[88-89]。模块化工程、辅因子工程、RBS工程、转运体工程也能显著提高大肠杆菌合成LNnT产量[87,89,95-96]。Tao等[86]首次利用群体响应系统动态调控LgtA和β-1,4-GalT的表达,在5 L发酵罐中LNnT产量达20.33 g/L。在合成LNnT的过程中,糖基转移酶的底物混杂性导致长链寡糖衍生物pLNnH的生成,影响产物纯度和质量。通过计算机辅助进行同源建模和分子对接,鉴定了LgtA的底物结合口袋,采用丙氨酸扫描和位点饱和突变技术对关键氨基酸位点(N223和K228)进行突变,引入空间位阻阻止LNnT作为底物进入催化口袋,从而减少了副产物的产生,但LNnT合成产量也随之降低[97]。最近,Liu等[96]以葡萄糖为唯一碳源、构建内源乳糖合成途径,敲除葡萄糖磷酸转移酶系统基因ptsGptsI优化了葡萄糖利用,为降低生产成本提供了新策略。Liao等[89]筛选了高效的LNnT转运蛋白CmSET,优化了碳源(甘油/葡萄糖)比例,实现了LNnT在吨级发酵罐的放大生产,产量达107.4 g/L。与大肠杆菌相比,枯草芽孢杆菌(Bacillus subtilis)无内毒素更具安全性,同时具有较好的分泌能力[98],LNnT合成潜力较大。迄今,枯草芽孢杆菌合成LNnT的研究较少,5 L发酵罐产量在5 g/L左右[92-93]。
迄今,少有报道利用微生物细胞法合成其他长链ncHMO的研究。乳糖-N-新己糖(lacto-N-neohexaose,LNnH)是在乳糖的半乳糖上通过β-1,3-和β-1,6-糖苷键分别连接两个N-乙酰乳糖胺(Galβ1,4GlcNAc)单元而形成。Li等[109]以大肠杆菌SHuffle T7 底盘细胞成功实现人源β-1,6-N-乙酰葡萄糖氨基转移酶2(GCNT2)的可溶性表达,通过优化表达质粒、敲除竞争路径基因、提高关键酶可溶性表达以及优化发酵条件,LNnH在5 L发酵罐中产量达173.21 mg/mL,但检测到较多中间物质LNnT(168.35 mg/L)。
Other Images/Table from this Article