合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 1006-1030.DOI: 10.12211/2096-8280.2022-018

• 特约评述 • 上一篇    下一篇

酶促生物电催化系统的设计构建与强化

崔馨予1,2, 吴冉冉1, 王园明1, 朱之光1,2,3   

  1. 1.中国科学院天津工业生物技术研究所,天津  300308
    2.中国科学院大学,北京  100049
    3.国家合成生物技术创新中心,天津  300308
  • 收稿日期:2022-04-01 修回日期:2022-06-22 出版日期:2022-10-31 发布日期:2022-11-16
  • 通讯作者: 朱之光
  • 作者简介:崔馨予(1996—),女,博士研究生。研究方向为氧化还原酶改造、生物电子传递。E-mail:cuixy@tib.cas.cn
    吴冉冉(1988—),女,副研究员。研究方向为生物燃料电池、生物电化学合成、微生物电化学。E-mail:wu_rr@tib.cas.cn
    朱之光(1985—),男,研究员,博士生导师。研究方向为体外合成生物学、生物电催化、生物燃料电池、生物电化学合成、生物传感、酶工程。E-mail:zhu_zg@tib.cas.cn
  • 基金资助:
    国家重点研发计划(2021YFA0910400);国家自然科学基金(21878324)

Construction and enhancement of enzymatic bioelectrocatalytic systems

Xinyu CUI1,2, Ranran WU1, Yuanming WANG1, Zhiguang ZHU1,2,3   

  1. 1.Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences,Tianjin 300308,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.National Synthesis of Biotechnology Innovation Center,Tianjin 300308,China
  • Received:2022-04-01 Revised:2022-06-22 Online:2022-10-31 Published:2022-11-16
  • Contact: Zhiguang ZHU

摘要:

酶促生物电催化是一种绿色高效的催化技术,充分结合了生物酶催化和电催化的优点,可实现化学能和电能的相互转换,目前已在生物发电、电能存储、CO2固定、传感与监测等方面受到广泛关注。本综述分析了酶促生物电催化的发展现状与当前面临的挑战,从合成生物学的角度详细介绍了氧化还原酶的结构功能和酶促生物电催化系统的基本要素,探讨了酶的改造,包括定向进化、理性设计和引入非天然组件等,以及通过构建多酶复合体模块和强化生物-非生物界面电子传递等方法以提高系统性能。围绕电子传递和能量转化效率等问题,阐述了酶的定向固定方法、电子传递机制以及电极材料设计原则。此外,总结了酶促生物电催化技术在酶燃料电池、生物传感器、化学品酶电合成等合成生物学相关领域的前沿应用。最后,本文展望了未来前景,并提出了从设计改造电活性生物元件、拓宽反应电势、放大反应系统等方面进一步提升酶促生物电催化系统的性能和可应用性。

关键词: 酶促生物电催化, 氧化还原酶, 酶工程, 电子传递, 酶电极

Abstract:

Enzymatic bioelectrocatalysis, as a green and efficient catalytic technology, combines the advantages of enzymatic catalysis and electrocatalysis to enable the interconversion between chemical energy and electrical energy. It has received extensive attention in the fields of bioelectricity generation, electric energy storage, CO2 fixation, biosensing and monitoring, and so on. This review analyzes the recent developments and challenges of enzymatic bioelectrocatalysis. From the perspective of synthetic biology, the structure and function of oxidoreductases which catalyze many biological electron transfer reactions with high speed, selectivity and specificity, and the basic elements of enzymatic bioelectrocatalytic systems are introduced in detail. Strategies of enzyme engineering are discussed, including directed evolution, rational design, and the introduction of non-natural structural components. In addition, the construction of multienzyme complex modules and the enhancement of electron transfer at the biology-abiotic interface, both of which can improve the system performance, are presented. The issues of electron transfer and energy conversion efficiency are further highlighted, and the oriented immobilization of enzymes, electron transfer mechanism, and electrode material modification are discussed. Furthermore, some recent applications of enzymatic bioelectrocatalysis in the frontier fields of synthetic biology are summarized, including enzymatic fuel cells, biosensors, and enzymatic electrosynthesis. Taken together, this review proposes the future directions of engineering bioelectroactive parts, broadening reaction redox potentials, and scaling up reaction systems, in order to further boost the performance of enzymatic bioelectrocatalysis as well as increase its applicability.

Key words: enzymatic bioelectrocatalysis, oxidoreductase, enzyme engineering, electron transfer, enzymatic electrode

中图分类号: