合成生物学

• 特约评述 •    

基于基因线路的合成生物传感器设计与应用

邓稼轩1, 陈升言1,2, 王宝俊1,2   

  1. 1.浙江大学化学工程与生物工程学院,浙江 杭州 310058
    2.浙江大学杭州国际科创中心,浙江 杭州 311215
  • 收稿日期:2025-04-02 修回日期:2025-05-28 出版日期:2025-05-29
  • 通讯作者: 王宝俊
  • 作者简介:邓稼轩(2002—),男,博士研究生。研究方向为基于基因线路的合成生物传感器设计与肿瘤诊疗应用。 E-mail:jiaxuan.deng@zju.edu.cn
    王宝俊(1982—),男,浙江大学求是讲席教授,教育部“长江学者奖励计划”讲席学者。研究方向为合成生物学和生物工程,长期从事合成生物使能技术、基因线路设计研究及其在生物传感、智能诊疗和生物制造等领域的创新应用。 E-mail:baojun.wang@zju.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFF1204500);国家自然科学基金委(32320103001);浙江省“尖兵”“领雁”研发攻关计划(2024C03011)

Genetic circuit-enabled synthetic biosensors: design and applications

DENG Jiaxuan1, CHEN Shengyan1,2, WANG Baojun1,2   

  1. 1.College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310058,Zhejiang,China
    2.ZJU-Hangzhou Global Scientific and Technological Innovation Center,Zhejiang University,Hangzhou 311215,Zhejiang,China
  • Received:2025-04-02 Revised:2025-05-28 Online:2025-05-29
  • Contact: WANG Baojun

摘要:

合成生物传感器利用基因编码的生物识别元件特异性识别靶标并将其转换成可量化的生物信号,然后通过基因线路介导的功能器件实现生物信号的定制化处理与多模态信号输出,具有生物相容性高、成本低、环境友好等优势,已在环境监测、生物制造过程监控、精准医学诊疗等领域展现出重要应用潜力。合成生物学方法和前沿技术的突破性进展,特别是模块化的工程设计原理、基因线路的可编程动态调控策略和人工智能辅助的生物元件挖掘与从头设计,为合成生物传感器的开发提供了前所未有的助力。然而,当前合成生物传感器的产业化应用仍在多个性能指标方面面临制约:即敏感性(Sensitivity)、特异性(Specificity)、响应速度(Speed)、稳定性(Stability)和安全性(Biosafety)——简称5S挑战。本文系统梳理了基于基因线路的合成生物传感器信号识别机制与设计范式,深入剖析了各类型合成生物传感器的技术优势与应用瓶颈,并归纳了代表性的基因线路传感功能扩展模块与应用案例。最后,本文还介绍了合成生物传感器的关键特征以及典型优化方法,探讨了未来加速推进合成生物传感器实现广泛实际应用的挑战与机遇。

关键词: 合成生物传感器, 基因线路, 变构转录因子, 双组分系统, 核糖开关, 核糖核酸调节子, CRISPR

Abstract:

Synthetic biosensors leverage genetically encoded biorecognition components to specifically identify targets and convert them into quantifiable biological signals. These signals can then be processed through genetic circuits to achieve customized signal processing and produce multimodal signal outputs. Synthetic biosensors offer several compelling advantages including high biocompatibility, low cost and sustainability, and have shown significant application potential in environmental monitoring, biomanufacturing, and precision diagnostics. Advances in synthetic biology methods and technological developments, particularly the adoption of various engineering design principles, genetic circuit-enabled programmable signal processing, and AI-assisted mining and de novo design of biological components, have provided unprecedented momentum for developing new generation synthetic biosensors. However, the practical applications of synthetic biosensors have been restricted by certain technical limitations in sensing performance including sensitivity, specificity, speed, stability and biosafety, termed as the '5S' challenges. Here we summarize the signal recognition mechanisms and design principles of representative genetic circuit-enabled synthetic biosensors, and provide an in-depth analysis of their technical advantages and remaining challenges for use in the field. Furthermore, we highlight typical genetic circuit-enabled functional expansion modules for myriad application scenarios. Finally, we introduce the key features of synthetic biosensors and the latest optimization methods for improving sensing performance. We conclude by discussing the challenges and opportunities for accelerating the development of new generation synthetic biosensors for achieving sustainable, affordable and reliable real-world detection in diverse settings.

Key words: synthetic biosensor, genetic circuit, allosteric transcription factor, two-component system, riboswitch, riboregulator, CRISPR

中图分类号: