合成生物学

• 特约评述 •    

耐氧、高效的有机三重态-三重态湮灭上转换发光研究进展

齐放, 裴晨旭, 李嘉尧, 彭怡, 林雯月, 冯红娟, 黄灵   

  1. 天津市生物传感与分子识别重点实验室,分析科学研究中心,有机新物质前沿科学中心,海河可持续化学转化实验室,南开大学化学学院,中国 天津 300071
  • 收稿日期:2025-04-16 修回日期:2025-05-24 出版日期:2025-05-26
  • 通讯作者: 冯红娟,黄灵
  • 作者简介:齐放(2000—),女,南开大学化学学院硕士研究生。研究方向为三重态-三重态湮灭上转换,光氧化还原催化。 E-mail:qf13642193805@163.com
    冯红娟(1996—),女,南开大学化学学院博士研究生。研究方向为三重态-三重态湮灭上转换、蛋白自组装体、上转换生物传感方法开发。 E-mail:fhj2856307797@163.com
    黄灵(1989—),男,南开大学化学学院研究员,博士生导师。研究方向为光敏剂,三重态-三重态湮灭上转换,光遗传学。长期致力于有机分子的三重态光物理性质研究,发展了一系列近红外吸收强、三重态寿命长的有机光敏剂,探讨了光敏剂分子结构与激发态性质的构效关系,构建了激发光功率低、吸收和发射波长可调、生物兼容性好、可代谢的近红外三重态湮灭上转换发光体系,大幅提升了生物成像与传感的信背比、分辨率、灵敏度,促进了基于上转换发光的生物成像与传感技术在生物医学中的广泛应用。 E-mail:huangl1@nankai.edu.cn
  • 基金资助:
    国家自然科学基金(22377063);南开大学科研启动基金,海河可持续化学转化实验室资金支持(24HHWCSS00020);国家自然科学基金(224B2405)

Progress in oxygen-resistant and efficient organic triplet-triplet annihilation upconversion luminescence

QI Fang, PEI Chenxu, LI Jiayao, PENG Yi, LIN Wenyue, FENG Hongjuan, HUANG Ling   

  1. Tianjin Key Laboratory of Biosensing and Molecular Recognition,Research Center for Analytical Sciences,Frontiers Science Center for New Organic Matter,Haihe Laboratory of Sustainable Chemical Transformations,College of Chemistry,Nankai University,Tianjin 300071,China
  • Received:2025-04-16 Revised:2025-05-24 Online:2025-05-26
  • Contact: FENG Hongjuan, HUANG Ling

摘要:

基于三重态-三重态湮灭机制的上转换发光(TTA-UC)材料因其独特的光物理特性,在生物医学领域展现出广阔的应用前景。这类材料通过双光子吸收过程实现低能量激发光向高能量发射光的转换,使其在深层组织成像、精准光动力治疗及神经调控等前沿领域具有重要应用价值。然而,氧分子对三重激发态的非辐射猝灭效应严重制约了TTA-UC材料在生物医学中的实际应用。针对这一技术瓶颈,近十年来国内外多个研究团队相继提出了多种抑制氧分子猝灭效应的创新策略。本文系统梳理了当前构建耐氧高效TTA-UC材料的主要技术路径,主要包括提高TTA-UC分子体系的光稳定性的方法、利用还原性油滴清除氧气的策略以及通过微观结构调控分子间三重态能量转移速率的路径,重点阐释了这些方法的工作机理,并系统评估各类方法的优势与局限性。另外,介绍发展TTA-UC纳米颗粒面临的主要挑战,并展望在不久的将来TTA-UC将会与合成生物学交叉融合,发展出生物合成的上转换蛋白,推动上转换发光成为基础的生命科学研究工具,并在多个领域得到实际应用。

关键词: 三重态-三重态湮灭上转换, 光氧化还原, 纳米颗粒, 生物合成, 纳米生物技术

Abstract:

The low excitation intensity, high upconversion quantum efficiency, and tunable absorption/emission wavelengths of triplet-triplet annihilation upconversion (TTA-UC)-based materials, which are novel photon upconversion materials, make them a promising candidate for biomedical applications. These materials facilitate the conversion of low-energy photons to high-energy emission through a bimolecular absorption process. This process is regulated by the triplet-triplet energy transfer (TTET) of photosensitizers and the triplet-triplet annihilation (TTA) of annihilators. TTA-UC's cutting-edge applications, including deep-tissue imaging, targeted photodynamic therapy (PDT), and precise optogenetic, are made extremely suitable by their nonlinear optical properties, which enable them to surpass the penetration depth constraints of conventional fluorescent materials. In contrast, molecular oxygen (³O₂) induces non-radiative decay pathways, resulting in severe quenching effects that significantly reduce upconversion quantum efficiency, particularly in physiological environments. In the past decade, researchers worldwide have effectively proposed a variety of innovative strategies to mitigate the oxygen-quenching effect to address this technical bottleneck. This review provides a comprehensive overview of the current scientific approaches for the development of high-performance and oxygen-resistant TTA-UC materials, with an emphasis on the elucidation of their underlying working mechanisms. (1) The stabilization of TTA-UC pairs through synergistic electron-deficient group modifications and molecular conformation engineering to improve photostability; (2) Oxygen-resistant TTA-UC nanoparticles can be achieved through reductive oil-droplet as soft core; (3) The kinetics of intermolecular triplet energy transfer can be optimized for oxygen tolerance through microstructural regulation. These approaches are critically assessed with respect to their advantages and disadvantages. Additionally, this review evaluates the primary obstacles that TTA-UC nanoparticles face, such as the improvement of TTA-UC efficacy in the near-infrared region and the development of novel TTA-UC nanoparticle preparation strategies and surface bioconjugate chemistry. It is suggested that TTA-UC be integrated with synthetic biology to facilitate the development of biosynthesized upconversion proteins, favor the establishment of upconversion luminescence as a fundamental tool in life sciences, and facilitate its practical implementation across multiple biomedical fields in the near future.

Key words: triplet-triplet annihilation upconversion, photoredox, nanoparticles, biosynthesis, nanobiotechnology

中图分类号: