• 研究论文 •
胡蝶, 徐道铸, 鲁志毅, 唐卫, 樊博, 何玉财
收稿日期:
2025-04-29
修回日期:
2025-07-03
出版日期:
2025-07-04
通讯作者:
何玉财
作者简介:
基金资助:
HU Die, XU Daozhu, LU Zhiyi, TANG Wei, FAN Bo, HE Yucai
Received:
2025-04-29
Revised:
2025-07-03
Online:
2025-07-04
Contact:
HE Yucai
摘要:
低聚木糖(XOSs)是一类由2-7个木糖分子通过β-1,4糖苷键连接而成的功能性寡糖,被公认为是具有益生元活性的可溶性膳食纤维。在温和条件下的酶催化从廉价生物质提取木聚糖制备高附加值低聚木糖引起了广泛关注。本研究从宇佐美曲霉中克隆了一种阿拉伯呋喃糖苷酶Abf62A基因,并实现其在毕赤酵母X33中的异源表达。利用木聚糖酶Xyn11A(200 U/g 底物)和阿拉伯呋喃糖苷酶Abf62A(20 U/g 底物)对高浓度麦秆木聚糖(100 g/L)进行协同酶水解,生成50.32 g/L低聚木糖,相较于木聚糖酶Xyn11A单酶水解(34.44 g/L 低聚木糖)展现了显著的协同效应。协同水解低聚木糖产物分析结果显示50.32 g/L低聚木糖中包含木二糖(31.71 g/L)、木三糖(15.92 g/L)、木四糖(1.65 g/L)和木五糖(1.04 g/L),其中木二糖和木三糖的含量高达94.7%。此外,从纯化后酶解低聚木糖产物显示可有效清除自由基,抗氧化活性>90%。综上所述,本研究通过木聚糖酶和阿拉伯呋喃糖苷酶Abf62A的协同生物催化作用,以绿色可持续的方式从麦秆木聚糖中制备低聚木糖,为人类和动物健康提供了一种益生元寡糖。
中图分类号:
胡蝶, 徐道铸, 鲁志毅, 唐卫, 樊博, 何玉财. 木聚糖酶Xyn11A与阿拉伯呋喃糖苷酶Abf62A协同水解麦秆木聚糖生物合成低聚木糖[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-037.
HU Die, XU Daozhu, LU Zhiyi, TANG Wei, FAN Bo, HE Yucai. Biosynthesis of xylo-oligosaccharides from wheat straw xylan via the synergistic hydrolysis by xylanase Xyn11A and arabinofuranosidase Abf62A[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-037.
Fig. 4 SDS-PAGE results Abf62A protein(Lane A: Abf62A fermentation liquor; Lane B: Abf62A flow-through solution; Lane C: Abf62A eluate solution; Lane D: Abf62A pure enzyme solution)
Product | UTX | PTX | ||
---|---|---|---|---|
Concentration (g/L) | Proportion (%) | Concentration (g/L) | Proportion (%) | |
Xylose | 0.63 | 3.08 | 1.37 | 3.97 |
Xylobiose | 11.69 | 57.16 | 20.85 | 60.45 |
Xylotriose | 7.61 | 37.21 | 11.44 | 33.17 |
Xylotetraose | 0.41 | 2.01 | 1.13 | 3.28 |
Xylopentaose | 0.26 | 1.27 | 1.0 | 2.90 |
Arabinose | 0.17 | 0.83 | 0.43 | 1.25 |
Glucose | 0.35 | 1.71 | 0.4 | 1.16 |
Table 1 Analysis of Xyn11A enzymatic hydrolysis products of different WS xylan
Product | UTX | PTX | ||
---|---|---|---|---|
Concentration (g/L) | Proportion (%) | Concentration (g/L) | Proportion (%) | |
Xylose | 0.63 | 3.08 | 1.37 | 3.97 |
Xylobiose | 11.69 | 57.16 | 20.85 | 60.45 |
Xylotriose | 7.61 | 37.21 | 11.44 | 33.17 |
Xylotetraose | 0.41 | 2.01 | 1.13 | 3.28 |
Xylopentaose | 0.26 | 1.27 | 1.0 | 2.90 |
Arabinose | 0.17 | 0.83 | 0.43 | 1.25 |
Glucose | 0.35 | 1.71 | 0.4 | 1.16 |
Product | UTX | PTX | ||
---|---|---|---|---|
Concentration (g/L) | Proportion (%) | Concentration (g/L) | Proportion (%) | |
Xylose | 0.55 | 2.35 | 1.43 | 2.63 |
Xylobiose | 12.38 | 52.79 | 31.71 | 58.22 |
Xylotriose | 8.35 | 35.61 | 15.92 | 29.23 |
Xylotetraose | 0.62 | 2.64 | 1.65 | 3.03 |
Xylopentaose | 0.47 | 2.01 | 1.04 | 1.91 |
Arabinose | 0.62 | 2.64 | 2.34 | 4.30 |
Glucose | 0.46 | 1.96 | 0.38 | 0.70 |
Table 2 Sugar content and proportion in xylan hydrolysates of different WS.
Product | UTX | PTX | ||
---|---|---|---|---|
Concentration (g/L) | Proportion (%) | Concentration (g/L) | Proportion (%) | |
Xylose | 0.55 | 2.35 | 1.43 | 2.63 |
Xylobiose | 12.38 | 52.79 | 31.71 | 58.22 |
Xylotriose | 8.35 | 35.61 | 15.92 | 29.23 |
Xylotetraose | 0.62 | 2.64 | 1.65 | 3.03 |
Xylopentaose | 0.47 | 2.01 | 1.04 | 1.91 |
Arabinose | 0.62 | 2.64 | 2.34 | 4.30 |
Glucose | 0.46 | 1.96 | 0.38 | 0.70 |
[1] | SANTIBÁÑEZ L, HENRÍQUEZ C, CORRO-TEJEDA R, et al. Xylooligosaccharides from lignocellulosic biomass: a comprehensive review[J]. Carbohydrate Polymers, 2021, 251: 117118. |
[2] | GIBSON G R, HUTKINS R, SANDERS M E, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(8): 491-502. |
[3] | YAN F, TIAN S Q, DU K, et al. Preparation and nutritional properties of xylooligosaccharide from agricultural and forestry byproducts: a comprehensive review[J]. Frontiers in Nutrition, 2022, 9: 977548. |
[4] | LIU Z X, LIU M H, MENG J, et al. A review of the interaction between diet composition and gut microbiota and its impact on associated disease[J]. Journal of Future Foods, 2024, 4(3): 221-232. |
[5] | ZHOU J M, WU S G, QI G H, et al. Dietary supplemental xylooligosaccharide modulates nutrient digestibility, intestinal morphology, and gut microbiota in laying hens[J]. Animal Nutrition, 2021, 7(1): 152-162. |
[6] | CHEN W W, GUO C, HUSSAIN S, et al. Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage[J]. Environmental Science and Pollution Research, 2016, 23(2): 1254-1264. |
[7] | CARRILLO I, MENDONÇA R T, AGO M, et al. Comparative study of cellulosic components isolated from different Eucalyptus species[J]. Cellulose, 2018, 25(2): 1011-1029. |
[8] | POLETTO P, PEREIRA G N, MONTEIRO C R M, et al. Xylooligosaccharides: transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics[J]. Process Biochemistry, 2020, 91: 352-363. |
[9] | KUMAR P, BARRETT D M, DELWICHE M J, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3713-3729. |
[10] | KUMAR R, PRAKASH O. Experimental investigation on effect of season on the production of bioethanol from wheat-stalk (WS) using simultaneous saccharification and fermentation (SSF) method[J]. Fuel, 2023, 351: 128958. |
[11] | ZHANG L M, LARSSON A, MOLDIN A, et al. Comparison of lignin distribution, structure, and morphology in wheat straw and wood[J]. Industrial Crops and Products, 2022, 187: 115432. |
[12] | SUN M X, XU X B, WANG C D, et al. Environmental burdens of the comprehensive utilization of straw: Wheat straw utilization from a life-cycle perspective[J]. Journal of Cleaner Production, 2020, 259: 120702. |
[13] | BRENELLI L B, FIGUEIREDO F L, DAMASIO A, et al. An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: from lab to pilot scale[J]. Bioresource Technology, 2020, 313: 123637. |
[14] | HIDAYATULLAH I M, HUSNA M D AL, RADIYAN H, et al. Combining biodelignification and hydrothermal pretreatment of oil palm empty fruit bunches (OPEFB) for monomeric sugar production[J]. Bioresource Technology Reports, 2021, 15: 100808. |
[15] | ZHAO J Y, BIAN B, WANG X K, et al. Integrating ball milling assisted enzymatic hydrolysis of bamboo cellulose for controllable production of xylo-oligosaccharides, monosaccharides and cellulose nanofibrils[J]. Industrial Crops and Products, 2024, 209: 118024. |
[16] | MANISHA, YADAV S K. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass[J]. Bioresource Technology, 2017, 245(Pt B): 1727-1739. |
[17] | CARVALHO A F A, DE OLIVA NETO P, SILVA D F DA, et al. Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis[J]. Food Research International, 2013, 51(1): 75-85. |
[18] | ZHANG H M, LI J F, WANG J Q, et al. Determinants for the improved thermostability of a mesophilic family 11 xylanase predicted by computational methods[J]. Biotechnology for Biofuels, 2014, 7(1): 3. |
[19] | KULATHUNGA J, ISLAM S. Wheat Arabinoxylans: insight into structure-function relationships[J]. Carbohydrate Polymers, 2025, 348: 122933. |
[20] | WILKENS C, ANDERSEN S, DUMON C, et al. GH62 Arabinofuranosidases: Structure, function and applications[J]. Biotechnology Advances, 2017, 35(6): 792-804. |
[21] | PETUSHKOVA A I, ZAMYATNIN A A. Redox-mediated post-translational modifications of proteolytic enzymes and their role in protease functioning[J]. Biomolecules, 2020, 10(4): 650. |
[22] | PORIA V, SAINI J K, SINGH S, et al. Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications[J]. Bioresource Technology, 2020, 304: 123019. |
[23] | LIU X Q, GAO F, WANG Y R, et al. Characterization of a novel thermostable α-l-arabinofuranosidase for improved synergistic effect with xylanase on lignocellulosic biomass hydrolysis without prior pretreatment[J]. Bioresource Technology, 2024, 394: 130177. |
[24] | YAN R Y, WANG W J, VUONG T V, et al. Structural characterization of the family GH115 α-glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with α-arabinofuranosidases[J]. New Biotechnology, 2021, 62: 49-56. |
[25] | AYTAŞ Z G, TUNÇER M, KUL Ç S, et al. Partial characterization of β-glucosidase, β-xylosidase, and α-l-arabinofuranosidase from Jiangella alba DSM 45237 and their potential in lignocellulose-based biorefining[J]. Sustainable Chemistry and Pharmacy, 2023, 31: 100900. |
[26] | LI P H, YANG C, JIANG Z W, et al. Lignocellulose pretreatment by deep eutectic solvents and related technologies: a review[J]. Journal of Bioresources and Bioproducts, 2023, 8(1): 33-44. |
[27] | 康里奇, 谈攀, 洪亮. 人工智能时代下的酶工程[J]. 合成生物学, 2023, 4(3): 524-534. |
KANG L Q, TAN P, HONG L. Enzyme engineering in the age of artificial intelligence[J]. Synthetic Biology Journal, 2023, 4(3): 524-534. | |
[28] | 丁明珠, 李炳志, 王颖, 等. 合成生物学重要研究方向进展[J]. 合成生物学, 2020, 1(1): 7-28. |
DING M Z, LI B Z, WANG Y, et al. Significant research progress in synthetic biology[J]. Synthetic Biology Journal, 2020, 1(1): 7-28. | |
[29] | 阮青云, 黄莘, 孟子钧, 等. 蛋白质稳定性计算设计与定向进化前沿工具[J]. 合成生物学, 2023, 4(1): 5-29. |
RUAN Q Y, HUANG X, MENG Z J, et al. Computational design and directed evolution strategies for optimizing protein stability[J]. Synthetic Biology Journal, 2023, 4(1): 5-29. | |
[30] | SELLÉS VIDAL L, ISALAN M, HEAP J T, et al. A primer to directed evolution: current methodologies and future directions[J]. RSC Chemical Biology, 2023, 4(4): 271-291. |
[31] | 祁延萍, 朱晋, 张凯, 等. 定向进化在蛋白质工程中的应用研究进展[J]. 合成生物学, 2022, 3(6): 1081-1108. |
QI Y P, ZHU J, ZHANG K, et al. Recent development of directed evolution in protein engineering[J]. Synthetic Biology Journal, 2022, 3(6): 1081-1108. | |
[32] | MCLURE R J, RADFORD S E, BROCKWELL D J. High-throughput directed evolution: a golden era for protein science[J]. Trends in Chemistry, 2022, 4(5): 378-391. |
[33] | YANG Q Z, FAN B, HE Y C. Combination of solid acid and solvent pretreatment for co-production of furfural, xylooligosaccharide and reducing sugars from Phyllostachys edulis [J]. Bioresource Technology, 2024, 395: 130398. |
[34] | TANG Z Y, FAN B, TANG W, et al. Comprehensive understanding of co-producing fermentable sugar, furfural, and xylo-oligosaccharides through the pretreatment with CTAB-based deep eutectic solvent containing Brønsted and Lewis acid[J]. Chemical Engineering Journal, 2024, 488: 150637. |
[35] | ALVAREZ V M Z, FERNÁNDEZ P V, CIANCIA M. Structure-antioxidant activity relationship of xylooligosaccharides obtained from carboxyl-reduced glucuronoarabinoxylans from bamboo shoots[J]. Food Chemistry, 2024, 455: 139761. |
[36] | KRISTENSEN J B, THYGESEN L G, FELBY C, et al. Cell-wall structural changes in wheat straw pretreated for bioethanol production[J]. Biotechnology for Biofuels, 2008, 1(1): 5. |
[37] | CHEN Y, TANG Z Y, TANG W, et al. Exploration of biomass fractionation and lignin removal for enhancing enzymatic digestion of wheat-stalk through deep eutectic solvent Cetyl trimethyl ammonium chloride: Lactic acid treatment[J]. International Journal of Biological Macromolecules, 2025, 306: 141460. |
[38] | CHANDIMALI N, BAK S G, PARK E H, et al. Free radicals and their impact on health and antioxidant defenses: a review[J]. Cell Death Discovery, 2025, 11: 19. |
[1] | 盛周煌, 陈智仙, 张彦. 酵母甘露糖蛋白的研究进展[J]. 合成生物学, 2025, 6(2): 408-421. |
[2] | 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造[J]. 合成生物学, 2025, 6(2): 422-444. |
[3] | 韦灵珍, 王佳, 孙新晓, 袁其朋, 申晓林. 黄酮类化合物生物合成及其在化妆品中应用的研究[J]. 合成生物学, 2025, 6(2): 373-390. |
[4] | 肖森, 胡立涛, 石智诚, 王发银, 余思婷, 堵国成, 陈坚, 康振. 可控分子量透明质酸的生物合成研究进展[J]. 合成生物学, 2025, 6(2): 445-460. |
[5] | 汤传根, 王璟, 张烁, 张昊宁, 康振. 功能肽合成和挖掘策略研究进展[J]. 合成生物学, 2025, 6(2): 461-478. |
[6] | 黄姝涵, 马赫, 罗云孜. 生物合成红景天苷的研究进展[J]. 合成生物学, 2025, 6(2): 391-407. |
[7] | 仲泉周, 单依怡, 裴清云, 金艳芸, 王艺涵, 孟璐远, 王歆韵, 张雨鑫, 刘坤媛, 王慧中, 冯尚国. 生物合成法生产α-熊果苷的研究进展[J]. 合成生物学, 2025, 6(1): 118-135. |
[8] | 竺方欢, 岑雪聪, 陈振. 微生物合成二元醇研究进展[J]. 合成生物学, 2024, 5(6): 1367-1385. |
[9] | 刘益宁, 蒲伟, 杨金星, 王钰. ω-氨基酸与内酰胺的生物合成研究进展[J]. 合成生物学, 2024, 5(6): 1350-1366. |
[10] | 李庚, 申晓林, 孙新晓, 王佳, 袁其朋. 过氧化物酶的重组表达和应用研究进展[J]. 合成生物学, 2024, 5(6): 1498-1517. |
[11] | 郑皓天, 李朝风, 刘良叙, 王嘉伟, 李恒润, 倪俊. 负碳人工光合群落的设计、优化与应用[J]. 合成生物学, 2024, 5(5): 1189-1210. |
[12] | 程晓雷, 刘天罡, 陶慧. 萜类化合物的非常规生物合成研究进展[J]. 合成生物学, 2024, 5(5): 1050-1071. |
[13] | 刘子健, 穆柏杨, 段志强, 王璇, 陆晓杰. 与核酸兼容的化学反应开发进展[J]. 合成生物学, 2024, 5(5): 1102-1124. |
[14] | 张守祺, 王涛, 孔尧, 邹家胜, 刘元宁, 徐正仁. 天然产物的化学-酶法合成:方法与策略的演进[J]. 合成生物学, 2024, 5(5): 913-940. |
[15] | 谢向前, 郭雯, 王欢, 李进. 含氨基乙烯半胱氨酸核糖体肽的生物合成与化学合成[J]. 合成生物学, 2024, 5(5): 981-996. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||