• 特约评述 •
赖霞1, 张燕梅2, 张洪涛1,5, 杜昱光3, 詹晓北1, 柴文刚4
收稿日期:
2025-06-16
修回日期:
2025-09-01
出版日期:
2025-09-02
通讯作者:
张洪涛
作者简介:
LAI Xia1, ZHANG Yanmei2, ZHANG Hongtao1,5, DU Yuguang3, ZHAN Xiaobei1, CHAI Wengang4
Received:
2025-06-16
Revised:
2025-09-01
Online:
2025-09-02
Contact:
ZHANG Hongtao
摘要:
母乳低聚糖(Human Milk Oligosaccharides,HMOs)是母乳中仅次于乳糖和脂肪的第三大固体成分,其含量可达到5-15g/L,对婴儿的生长发育有着至关重要的作用。HMOs不仅能促进婴儿肠道中有益菌群(如双歧杆菌)的定植,抑制病原体附着,还能直接调节免疫系统发育,增强抗感染能力。根据其化学结构,HMOs可分为中性低聚糖(如2'-岩藻糖基乳糖)和酸性低聚糖两大类,唾液酸化的HMOs是其主要成分之一,并且唾液酸化人乳低聚糖(SHMOs)是一类含有唾液酸残基的复杂碳水化合物,在母乳中含量丰富,尤其在初乳中占比更高。常见的SHMOs 包括结构相对简单的3'-唾液酸乳糖(3'-sialyllactose,3'-SL)和6'-唾液酸乳糖(6'-sialyllactose,6'-SL),以及更复杂的人乳寡糖LSTc、唾液酸乳糖-N-四糖a(LSTa)、双唾液酸乳糖-N-四糖(DLSNT)等。其中3'-SL和6'-SL是唾液酸乳糖(sialyllactose,SL)中研究最多且功能较为明确的两种形式,目前已经获得了美国食品和药物管理局(FDA)的公认安全(GRAS)批准,可以添加到婴儿配方奶粉或者其它膳食中。本文重点介绍了HMOs的分类、SL的合成方法、功能与应用,并鉴于目前SL合成以及应用情况,提出了当前所面临的挑战和未来方向。SL不仅能够调节肠道菌群平衡,还具有抗炎、抗病毒及促进神经发育等作用,因此在医药、食品和营养补充剂等领域展现出巨大潜力。然而,SL的大规模生产仍面临诸多挑战,如合成效率低、纯化工艺复杂等。未来,随着合成生物学和代谢工程技术的发展,优化SHMOs的生物合成途径、提高产量并降低成本将成为重要研究方向,以推动其在婴幼儿营养、功能性食品及药物开发中的广泛应用。
中图分类号:
赖霞, 张燕梅, 张洪涛, 杜昱光, 詹晓北, 柴文刚. 基于合成生物学的唾液酸乳糖合成方法及其应用研究进展[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-061.
LAI Xia, ZHANG Yanmei, ZHANG Hongtao, DU Yuguang, ZHAN Xiaobei, CHAI Wengang. Progress on synthetic methods and applications of sialyllactose based on synthetic biology[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-061.
中文名称 | 简称 | 英文名称 | 结构 | 分子量 |
---|---|---|---|---|
2'-岩藻糖基乳糖 | 2'-FL | 2'-fucosyllactose | Fucα1-2Galβ1-4Glc | 488.44 |
3-岩藻糖基乳糖 | 3-FL | 3-fucosyllactose | Galβ1-4(Fucα1-3)Glc | 488.44 |
二岩藻糖基乳糖 | LDFT | lactodifucotetraose | Fucα1-2Galβ1-4(Fucα1-3)Glc | 634.58 |
乳-N-岩藻五糖-Ⅰ | LNFP-Ⅰ | lacto-N fucopentaose I | Fuc-α-1,2-Gal-β-1,3-GlcNAc-β1,3-Gal-β1,4-Glc | 853.77 |
乳-N-岩藻五糖-Ⅱ | LNFP-Ⅱ | lacto-N difucotetraose II | Gal-β-1,3-(Fuc-α1,4-)GlcNAcβ1,3Gal-β-1,4-Glc | 853.77 |
乳-N-岩藻五糖-Ⅲ | LNFP-Ⅲ | lacto-N fucopentaose III | Gal-β-1,4-(Fuc-α1,3-)GlcNAc-β1,3-Gal-β-1,4-Glc | 853.77 |
3'-唾液酸乳糖 | 3'-SL | 3'-sialyllactose | Neu5Acα2-3Galβ1-4Glc | 633.53 |
6'-唾液酸乳糖 | 6'-SL | 6'-sialyllactose | Neu5Acα2-6Galβ1-4Glc | 633.53 |
乳-N-四糖 | LNT | Lacto-N-tetraose | Galβ1-3GlcNAcβ1-3Galβ1-4Glc | 707.63 |
乳-N-新四糖 | LNnT | lacto-N-neotetraose | Galβ1-4GlcNAcβ1-3Galβ1-4Glc | 707.63 |
乳-N-六糖 | LNH | lacto-N-hexaose | Gal-β-1,3- GlcNAc-β-1,3-(Gal-β-1,4-GlcNAc-β1,6-)Gal-β-1,4- Glc | 1072.96 |
表1 常见的母乳寡糖主要信息
Table 1 Main information of common human milk oligosaccharides
中文名称 | 简称 | 英文名称 | 结构 | 分子量 |
---|---|---|---|---|
2'-岩藻糖基乳糖 | 2'-FL | 2'-fucosyllactose | Fucα1-2Galβ1-4Glc | 488.44 |
3-岩藻糖基乳糖 | 3-FL | 3-fucosyllactose | Galβ1-4(Fucα1-3)Glc | 488.44 |
二岩藻糖基乳糖 | LDFT | lactodifucotetraose | Fucα1-2Galβ1-4(Fucα1-3)Glc | 634.58 |
乳-N-岩藻五糖-Ⅰ | LNFP-Ⅰ | lacto-N fucopentaose I | Fuc-α-1,2-Gal-β-1,3-GlcNAc-β1,3-Gal-β1,4-Glc | 853.77 |
乳-N-岩藻五糖-Ⅱ | LNFP-Ⅱ | lacto-N difucotetraose II | Gal-β-1,3-(Fuc-α1,4-)GlcNAcβ1,3Gal-β-1,4-Glc | 853.77 |
乳-N-岩藻五糖-Ⅲ | LNFP-Ⅲ | lacto-N fucopentaose III | Gal-β-1,4-(Fuc-α1,3-)GlcNAc-β1,3-Gal-β-1,4-Glc | 853.77 |
3'-唾液酸乳糖 | 3'-SL | 3'-sialyllactose | Neu5Acα2-3Galβ1-4Glc | 633.53 |
6'-唾液酸乳糖 | 6'-SL | 6'-sialyllactose | Neu5Acα2-6Galβ1-4Glc | 633.53 |
乳-N-四糖 | LNT | Lacto-N-tetraose | Galβ1-3GlcNAcβ1-3Galβ1-4Glc | 707.63 |
乳-N-新四糖 | LNnT | lacto-N-neotetraose | Galβ1-4GlcNAcβ1-3Galβ1-4Glc | 707.63 |
乳-N-六糖 | LNH | lacto-N-hexaose | Gal-β-1,3- GlcNAc-β-1,3-(Gal-β-1,4-GlcNAc-β1,6-)Gal-β-1,4- Glc | 1072.96 |
图6 酶催化合成唾液酸乳糖示意图注:化合物缩写:CMP:胞苷单磷酸;CMK:胞苷酸激酶;ACK;乙酸激酶;CDP:胞苷二磷酸;CTP:胞苷三磷酸;GlcNAc:N-乙酰葡糖胺;ManNAc:N-乙酰甘露糖胺;NeuAC:唾液酸;CMP-NeuAc:胞苷单磷酸-N-乙酰神经氨酸;Sialylactose:唾液酸
Fig. 6 The schematic diagram of sialyllactose synthesis by enzymatic catalysis
图7 多细胞两步法耦合合成唾液酸乳糖路线注:GlcNAc:N-乙酰基葡萄糖;ATP:腺嘌呤核苷三磷酸; ManNAc:N-乙酰甘露糖胺;Neu5Ac:N-乙酰神经氨酸;CMP-Neu5Ac:胞苷-5′-单磷酸-N-乙酰神经氨酸;CTP:胞苷三磷酸; CMP:胞嘧啶核苷酸;Lactose:乳糖;nanA:N-乙酰神经氨酸裂解酶;neuA:编码 CMP-Neu5Ac合成酶的基因;3'-SL:3'-唾液酸乳糖
Fig. 7 Multicellular two-step coupled route to the synthesis of sialyllactose
图8 底物转化路径对比图注:Glycerol:甘油;DAHP:二羟丙酮磷酸;F-1,6-P:果糖1,6二磷酸;PEP:磷酸烯醇式丙酮酸;PYR:丙酮酸;Glucose:葡萄糖;G6P:葡萄糖6磷酸;F6P:果糖6磷酸;GlcN-6P:葡萄糖胺-6-磷酸;GlcN-1-P:葡萄糖胺-1-磷酸;UDP-GlcNAc:尿苷-5′-二磷酸-N-乙酰氨基葡萄糖;ManNAc:N-乙酰甘露糖胺;Neu5Ac:N-乙酰神经氨酸; CMP-Neu5Ac:胞苷-5′-单磷酸-N-乙酰神经氨酸;GlcNAc-6-P:N-乙酰氨基葡萄糖-6-磷酸;ManNAc-6-P:N-乙酰甘露糖胺-6-磷酸;FBP:果糖-1,6-二磷酸酶;glmS:编码谷氨酰胺-果糖-6-磷酸氨基转移酶的基因;glmM:编码磷酸葡萄糖胺变位酶的基因;glmU:编码尿苷转移酶/葡萄糖胺-1-磷酸乙酰转移酶的基因;neuC:编码 UDP-N-乙酰氨基葡萄糖 2-差向异构酶的基因;neuB:编码 N-乙酰神经氨酸合酶的基因;neuA:编码 CMP-Neu5Ac合成酶的基因;pts6:编码α2,6-唾液酸转移酶的基因; nanA:编码 N-乙酰神经氨酸裂解酶的基因; nagB:编码葡萄糖胺-6-磷酸脱氨酶的基因;nagA:编码 N-乙酰氨基葡萄糖-6-磷酸脱乙酰酶的基因;nanE:编码 N-酰基氨基葡萄糖-6-磷酸 2-差向异构酶的基因;nanK:编码 N-乙酰甘露糖胺激酶的基因;nanT:编码nanT通透酶的基因;PTSG:编码葡萄糖转运酶基因;PGI:编码葡萄糖异构酶基因;GNA1:编码氨基葡萄糖-6-磷酸N-乙酰转移酶1;pgm:编码磷酸葡萄糖变位酶基因;galU:葡萄糖- 1 -磷酸核苷酸基转移酶;galE:UDP-葡糖4-差向异构酶;udg:UDP-葡糖6-脱氢酶;lgtB:脑膜炎奈瑟菌β-1,4-半乳糖基转移酶;lgtA:脑膜炎奈瑟菌β1,3-N-乙酰氨基葡萄糖转移酶;Wecb:Udp-- N-乙酰葡萄糖胺2-差向异构酶;ndk:核苷二磷酸激酶;cmk:4-二磷酸胞苷-2-C-甲基-D-赤藓醇激酶
Fig. 8 The comparison of substrate transformation pathways
配方奶粉品牌 | 阶段 | 3'-SL含量 (mg/100mL) | 6'-SL含量 (mg/100mL) | 其他HMOs成分 |
---|---|---|---|---|
雀巢 BEBA®Supreme | 第1阶段 | 4 | 20 | 2'-FL、LNT、DFL |
第2阶段 | 1 | 5 | 2'-FL、LNT、DFL | |
第3阶段 | 1 | 4 | 2'-FL、LNT、DFL | |
第4阶段 | 5 | 5 | 2'-FL、LNT、DFL | |
惠氏 Illuma®LUXA 启赋未来 | 第1阶段 | 10 | 18 | 2'-FL、LNT、LNnT、DFL |
第2阶段 | 4.9 | 4.6 | 2'-FL、LNT、LNnT、DFL | |
第3阶段 | 4.9 | 4.6 | 2'-FL、LNT、LNnT、DFL | |
第4阶段 | 5 | 4.6 | 2'-FL、LNT、LNnT、DFL |
表2 3'-SL与6'-SL及其它母乳寡糖在配方奶粉中的添加情况[95]
Table 2 Addition of 3'-SL, 6'-SL, and other human milk oligosaccharides to enriched formulas
配方奶粉品牌 | 阶段 | 3'-SL含量 (mg/100mL) | 6'-SL含量 (mg/100mL) | 其他HMOs成分 |
---|---|---|---|---|
雀巢 BEBA®Supreme | 第1阶段 | 4 | 20 | 2'-FL、LNT、DFL |
第2阶段 | 1 | 5 | 2'-FL、LNT、DFL | |
第3阶段 | 1 | 4 | 2'-FL、LNT、DFL | |
第4阶段 | 5 | 5 | 2'-FL、LNT、DFL | |
惠氏 Illuma®LUXA 启赋未来 | 第1阶段 | 10 | 18 | 2'-FL、LNT、LNnT、DFL |
第2阶段 | 4.9 | 4.6 | 2'-FL、LNT、LNnT、DFL | |
第3阶段 | 4.9 | 4.6 | 2'-FL、LNT、LNnT、DFL | |
第4阶段 | 5 | 4.6 | 2'-FL、LNT、LNnT、DFL |
[1] | Aaron L, Franco OE, Hayward SW. Review of Prostate Anatomy and Embryology and the Etiology of Benign Prostatic Hyperplasia. Urol Clin North Am. 2016;43(3):279-288. |
[2] | Faijes M, Castejón-Vilatersana M, Val-Cid C, Planas A. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol Adv. 2019;37(5):667-697. |
[3] | Borewicz K, Gu F, Saccenti E, et al. Correlating Infant Fecal Microbiota Composition and Human Milk Oligosaccharide Consumption by Microbiota of 1-Month-Old Breastfed Infants. Mol Nutr Food Res. 2019;63(13):e1801214. |
[4] | Sato K, Nakamura Y, Fujiyama K, et al. Absolute quantification of eight human milk oligosaccharides in breast milk to evaluate their concentration profiles and associations with infants' neurodevelopmental outcomes. J Food Sci. 2024;89(12):10152-10170. |
[5] | Garrido D, Dallas DC, Mills DA. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology (Reading). 2013;159(Pt 4):649-664. |
[6] | Meredith-Dennis L, Xu G, Goonatilleke E, Lebrilla CB, Underwood MA, Smilowitz JT. Composition and Variation of Macronutrients, Immune Proteins, and Human Milk Oligosaccharides in Human Milk From Nonprofit and Commercial Milk Banks. J Hum Lact. 2018;34(1):120-129. |
[7] | Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr. 2014;34:143-169. |
[8] | Nguyen TLL, Nguyen DV, Heo KS. Potential biological functions and future perspectives of sialylated milk oligosaccharides. Arch Pharm Res. 2024;47(4):325-340. |
[9] | Bode L. Human milk oligosaccharides: every baby needs a sugar mama.Glycobiology. 2012;22(9):1147-1162. |
[10] | Okburan G, Kızıler S. Human milk oligosaccharides as prebiotics. Pediatr Neonatol. 2023;64(3):231-238. |
[11] | Bode L, Contractor N, Barile D, et al. Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutr Rev. 2016;74(10):635-644. . |
[12] | Ninonuevo MR, Park Y, Yin H, et al. A strategy for annotating the human milk glycome. J Agric Food Chem. 2006;54(20):7471-7480. |
[13] | Newburg DS, Ruiz-Palacios GM, Morrow AL. Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr. 2005;25:37-58. |
[14] | Morrow AL, Ruiz-Palacios GM, Altaye M, et al. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr. 2004;145(3):297-303. |
[15] | Coppa GV, Zampini L, Galeazzi T, et al. Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res. 2006;59(3):377-382. |
[16] | Tonon KM, Chutipongtanate S, Morrow AL, Newburg DS. Human Milk Oligosaccharides and Respiratory Syncytial Virus Infection in Infants. Adv Nutr. 2024;15(6):100218.. |
[17] | Ben Hamed S, Tavares Ranzani-Paiva MJ, Tachibana L, de Carla Dias D, Ishikawa CM, Esteban MA. Fish pathogen bacteria: Adhesion, parameters influencing virulence and interaction with host cells. Fish Shellfish Immunol. 2018;80:550-562. |
[18] | Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem. 2003;278(16):14112-14120. |
[19] | Nilsen M, Madelen Saunders C, Leena Angell I, et al. Butyrate Levels in the Transition from an Infant- to an Adult-Like Gut Microbiota Correlate with Bacterial Networks Associated with Eubacterium Rectale and Ruminococcus Gnavus. Genes (Basel). 2020;11(11):1245. Published 2020 Oct 22. |
[20] | Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543-547. |
[21] | Albrecht S, Lane JA, Mariño K, et al. A comparative study of free oligosaccharides in the milk of domestic animals. Br J Nutr. 2014;111(7):1313-1328. |
[22] | Craft KM, Townsend SD. The Human Milk Glycome as a Defense Against Infectious Diseases: Rationale, Challenges, and Opportunities. ACS Infect Dis. 2018;4(2):77-83. |
[23] | Antunes KH, Fachi JL, de Paula R, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat Commun. 2019;10(1):3273. Published 2019 Jul 22. |
[24] | Yu ZT, Chen C, Kling DE, et al. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota.Glycobiology. 2013;23(2):169-177. |
[25] | Plaza-Díaz J, Fontana L, Gil A. Human Milk Oligosaccharides and Immune System Development. Nutrients. 2018;10(8):1038.. |
[26] | Zhang S, Li T, Xie J, et al. Correction to: Gold standard for nutrition: a review of human milk oligosaccharide and its effects on infant gut microbiota. Microb Cell Fact. 2021;20(1):140. |
[27] | Fan Y, McMath AL, Donovan SM. Review on the Impact of Milk Oligosaccharides on the Brain and Neurocognitive Development in Early Life. Nutrients. 2023; 15(17):3743. |
[28] | Hauser J, Pisa E, Arias Vásquez A, et al. Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode. Mol Psychiatry. 2021;26(7):2854-2871. |
[29] | Wang B. Sialic acid is an essential nutrient for brain development and cognition. Annu Rev Nutr. 2009;29:177-222. |
[30] | Thum C, Wall CR, Weiss GA, Wang W, Szeto IM-Y, Day L. Changes in HMO Concentrations throughout Lactation: Influencing Factors, Health Effects and Opportunities.Nutrients. 2021;13(7):2272.. |
[31] | Craft KM, Townsend SD. Mother Knows Best: Deciphering the Antibacterial Properties of Human Milk Oligosaccharides.Acc Chem Res. 2019;52(3):760-768. |
[32] | Lis-Kuberka J, Orczyk-Pawiłowicz M. Sialylated Oligosaccharides and Glycoconjugates of Human Milk. The Impact on Infant and Newborn Protection, Development and Well-Being. Nutrients. 2019;11(2):306. |
[33] | Kobata A. Structures and application of oligosaccharides in human milk.Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(7):731-747. |
[34] | Puccio G, Alliet P, Cajozzo C, et al. Effects of Infant Formula With Human Milk Oligosaccharides on Growth and Morbidity: A Randomized Multicenter Trial. J Pediatr Gastroenterol Nutr. 2017;64(4):624-631.. |
[35] | Gabrielli O, Zampini L, Galeazzi T, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics. 2011;128(6):e1520-e1531. |
[36] | Corona L, Lussu A, Bosco A, et al. Human Milk Oligosaccharides: A Comprehensive Review towards Metabolomics. Children (Basel). 2021;8(9):804. |
[37] | Jiao R, Peng X, Wang B, Du Y, Qian EW, Li J. Highly efficient and economical one-pot two-step multienzymatic synthesis of 6'/3'-sialyllactosamine from in situ-produced N-acetyllactosamine. J Agric Food Chem. 2025;73(23):14444-14452. |
[38] | Laursen MF, Pekmez CT, Larsson MW, et al. Maternal milk microbiota and oligosaccharides contribute to the infant gut microbiota assembly. ISME Commun. 2021;1(1):21.. |
[39] | 刘雯娴,彭晶,程海娜,等.母乳低聚糖的生物合成研究进展[J].中国食品学报,2024,24(11):388-398. |
Liu WX, Peng J, Cheng HN, et al. Research progress on the biosynthesis of human milk oligosaccharides. J Chin Inst Food Sci Technol. 2024;24(11):388-398.. | |
[40] | 王司琪,张宇,彭小雨,等.母乳中的活性成分——HMOs对机体的益处及应用现状[J].食品研究与开发,2025,46(06):191-196. |
Wang SQ, Zhang Y, Peng XY, et al. Active components in human milk—benefits and applications of human milk oligosaccharides (HMOs). Food Res Dev. 2025;46(6):191-196. | |
[41] | Xiao M, Tang L, Fu X, et al. Structural characterization of bacterial fucose-containing tetrasaccharide and its potential enhancement on intestinal barrier function. Food Biosci. 2025;66:106256. |
[42] | Wang M, Monaco MH, Daniels VC, et al. Individual and Combined Effects of 2'-Fucosyllactose and Bifidobacterium longum subsp. infantis on the Gut Microbiota Composition of Piglets. J Nutr. 2025;155(2):509-522. |
[43] | An P, Lan D, Feng D, et al. Quantitative nuclear magnetic analysis of human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose in complicated food matrices. Food Chem. 2025;473:142821. |
[44] | Pitt J, Bond J, Roper J, et al. A 21-day safety evaluation of biotechnologically produced 3-fucosyllactose (3-FL) in neonatal farm piglets to support use in infant formulas. Food Chem Toxicol. 2024;187:114592. |
[45] | Cheng L, Akkerman R, Kong C, Walvoort MTC, de Vos P. More than sugar in the milk: human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects. Crit Rev Food Sci Nutr. 2021;61(7):1184-1200. |
[46] | Bode L. Human Milk Oligosaccharides: Next-Generation Functions and Questions. Nestle Nutr Inst Workshop Ser. 2019;90:191-201. |
[47] | Wu S, Tao N, German JB, Grimm R, Lebrilla CB. Development of an annotated library of neutral human milk oligosaccharides. J Proteome Res. 2010;9(8):4138-4151. |
[48] | Qian Q, Yang L, Zhao C, et al. Highly efficient production of lacto-N-tetraose in plasmid-free Escherichia coli through chromosomal integration of multicopy key glycosyltransferase genes. Int J Biol Macromol. 2025;284(Pt 1):137987. |
[49] | Slater AS, McDonald AG, Hickey RM, Davey GP. Glycosyltransferases: glycoengineers in human milk oligosaccharide synthesis and manufacturing. Front Mol Biosci. 2025;12:1587602. |
[50] | Conze DB, Kruger CL, Symonds JM, et al. Weighted analysis of 2'-fucosyllactose, 3-fucosyllactose, lacto-N-tetraose, 3'-sialyllactose, and 6'-sialyllactose concentrations in human milk. Food Chem Toxicol. 2022;163:112877. |
[51] | Orczyk-Pawiłowicz M, Lis-Kuberka J. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being. Nutrients. 2020;12(4):1105. |
[52] | Li Y, Du G, Chen J, Lv X, Liu L. Glycosyltransferases in human milk oligosaccharide synthesis: structural mechanisms and rational design. Curr Opin Biotechnol. 2025;93:103315. |
[53] | Sheng M, Liu Y, Zhu Y, Wang R, Zhang W, Mu W. Efficient biosynthesis of sialyllacto-N-tetraose a by a metabolically engineered escherichia coli BL21(DE3) strain. J Agric Food Chem. 2025;73(11):6820-6827. |
[54] | 张新景.石家庄地区乳母乳汁中低聚糖含量检测及其影响因素分析[D].河北医科大学,2020 |
Zhang X J. Detection of oligosaccharide content in breast milk of lactating women in Shijiazhuang area and analysis of influencing factors[D]. Hebei Medical University, 2020. | |
[55] | 周钰,姜珊,王淑霞,等.母乳低聚糖水平与6月龄内婴儿体格生长的关系[J].卫生研究,2025,54(03):358-365 |
Zhou Y, Jiang S, Wang SX, et al. Relationship between human milk oligosaccharide levels and physical growth of infants within 6 months of age. J Hyg Res. 2025;54(3):358-365. | |
[56] | Bode L, Jantscher-Krenn E. Structure-function relationships of human milk oligosaccharides. Adv Nutr. 2012;3(3):383S-91S. |
[57] | Wu S, Grimm R, German JB, Lebrilla CB. Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res. 2011;10(2):856-868.. |
[58] | Duman H, Bechelany M, Karav S. Human Milk Oligosaccharides: Decoding Their Structural Variability, Health Benefits, and the Evolution of Infant Nutrition. Nutrients. 2024;17(1):118. |
[59] | Zhou Q, Lu S, Feng K, et al. Comparative effect of sialic acid and 3'-sialyllactose on fecal microbiota fermentation and prebiotic activity in ETEC-challenged IPEC-J2 cells. J Sci Food Agric. 2025;105(12):6615-6629. ,. |
[60] | 游星,郭进,张洪涛,等.基于混菌耦合发酵策略合成3'-唾液酸乳糖[J].食品与发酵工业,2021,47(17):8-14 |
You X, Guo J, Zhang HT, et al. Biosynthesis of 3'-sialyllactose using a mixed-culture coupling fermentation strategy. Food Ferment Ind. 2021;47(17):8-14. | |
[61] | Weishaupt M, Eller S, Seeberger PH. Solid phase synthesis of oligosaccharides. Methods Enzymol. 2010;478:463-484. |
[62] | Seeberger PH, Werz DB. Automated synthesis of oligosaccharides as a basis for drug discovery. Nat Rev Drug Discov. 2005;4(9):751-763. |
[63] | Routenberg Love K, Seeberger PH. Automated solid-phase synthesis of protected tumor-associated antigen and blood group determinant oligosaccharides. Angew Chem Int Ed Engl. 2004;43(5):602-605. |
[64] | Gilbert M, Bayer R, Cunningham AM, et al. The synthesis of sialylated oligosaccharides using a CMP-Neu5Ac synthetase/sialyltransferase fusion. Nat Biotechnol. 1998;16(8):769-772. |
[65] | 靳文斌, 张潇潇, 李玉, 等. 合成唾液酸乳糖重组大肠杆菌的构建[J]. 生物技术通报, 2014, 10:201-206. |
Jin WB, Zhang XX, Li Y, et al. Construction of recombinant Escherichia coli for sialyllactose synthesis. Biotechnol Bull. 2014, 10:201-206. | |
[66] | Endo T, Koizumi S, Tabata K, Ozaki A. Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling. Appl Microbiol Biotechnol. 2000;53(3):257-261.. |
[67] | 杨双红. 利用微生物合成唾液酸寡糖的研究进展[J]. 齐鲁渔业, 2015, 32(5): 51-52. |
Yang SH. Research advances in microbial synthesis of sialyloligosaccharides. J Shandong Fish. 2015;32(5):51-52. | |
[68] | Lee SG, Lee JO, Yi JK, Kim BG. Production of cytidine 5'-monophosphate N-acetylneuraminic acid using recombinant Escherichia coli as a biocatalyst. Biotechnol Bioeng. 2002;80(5):516-524. |
[69] | Han NS, Kim TJ, Park YC, Kim J, Seo JH. Biotechnological production of human milk oligosaccharides. Biotechnol Adv. 2012;30(6):1268-1278. |
[70] | Vibhute AM, Komura N, Tanaka HN, Imamura A, Ando H. Advanced Chemical Methods for Stereoselective Sialylation and Their Applications in Sialoglycan Syntheses. Chem Rec. 2021;21(11):3194-3223. |
[71] | Adak AK, Yu CC, Liang CF, Lin CC. Synthesis of sialic acid-containing saccharides. Curr Opin Chem Biol. 2013;17(6):1030-1038. |
[72] | Chen J, Hansen T, Zhang QJ, et al. 1-Picolinyl-5-azido Thiosialosides: Versatile Donors for the Stereoselective Construction of Sialyl Linkages. Angew Chem Int Ed Engl. 2019;58(47):17000-17008. |
[73] | Cao H, Chen X. General consideration on sialic acid chemistry.Methods Mol Biol. 2012;808:31-56.. |
[74] | Nielsen MM, Pedersen CM. Catalytic Glycosylations in Oligosaccharide Synthesis.Chem Rev. 2018;118(17):8285-8358.. |
[75] | Li C, Liu Z, Li M, Miao M, Zhang T. Review on bioproduction of sialylated human milk oligosaccharides: synthesis methods, physiologic functions, and applications. Carbohydr Polym. 2025;352:123177. |
[76] | Juge N, Tailford L, Owen CD. Sialidases from gut bacteria: a mini-review. Biochem Soc Trans. 2016;44(1):166-175. |
[77] | 孟欣. 双唾液酸化四糖抗原表位的化学酶法合成研究[D]. 山东:山东大学,2014. |
Meng X. Chemoenzymatic synthesis of disialylated tetrasaccharide antigen epitopes [D]. Jinan: Shandong University; 2014.. | |
[78] | Tanaka H, Ito F, Iwasaki T. A system for sialic acid transfer by colominic acid and a sialidase that preferentially hydrolyzes sialyl alpha-2,8 linkages. Biosci Biotechnol Biochem. 1995;59(4):638-643. |
[79] | Guo Y, Jers C, Meyer AS, et al. A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3'-sialyl and 6'-sialyl glycans. J Biotechnol. 2014;170:60-67. |
[80] | 韩乐闪,于潇頔,栾庆民,等.唾液酸乳糖的功能及制备研究进展[J].中国食品添加剂,2024,35(12):242-250. |
Han LS, Yu XD, Luan QM, et al. Research progress on the functionality and preparation of sialyllactose. China Food Addit. 2024;35(12):242-250. | |
[81] | Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta. 2004;1694(1-3):299-310. |
[82] | 朱咏莲.代谢工程改造枯草芽孢杆菌合成3'-唾液酸乳糖[D].江南大学,2023. |
Zhu Y L. Metabolic engineering of Bacillus subtilis for 3'-sialyllactose production[D]. Jiangnan University, 2023. | |
[83] | Efficient production of 3 '-sialyllactose using escherichia coli | journal of agricultural and food chemistry. Accessed August 16, 2025. |
[84] | Liu Y, Chen X, Lv X, Yuan L, Wu J, Yao J. Engineered Escherichia coli as a Microbial Cell Factory for De Novo 6'-Sialyllactose Biosynthesis. J Agric Food Chem. 2025;73(25):15880-15888. |
[85] | Li C, Li M, Hu M, Miao M, Zhang T. Metabolic engineering of escherichia coli for high-titer biosynthesis of 3'-sialyllactose. J Agric Food Chem. 2024;72(10):5379-5390. |
[86] | Priem B, Gilbert M, Wakarchuk WW, Heyraud A, Samain E. A new fermentation process allows large-scale production of human milk oligosaccharides by metabolically engineered bacteria.Glycobiology. 2002;12(4):235-240.. |
[87] | Fierfort N, Samain E. Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides. J Biotechnol. 2008;134(3-4):261-265. |
[88] | Zhang J, Zhu Y, Zhang W, Mu W. Efficient Production of a Functional Human Milk Oligosaccharide 3'-Sialyllactose in Genetically Engineered Escherichia coli. ACS Synth Biol. 2022;11(8):2837-2845. |
[89] | Liu Y, Zhu Y, Qiao L, et al. Simonsiella muelleri α2,6-sialyltransferase enables efficient biosynthesis of 6'-sialyllactose in both plasmid-dependent and plasmid-free engineered Escherichia coli. Int J Biol Macromol. 2025;320(Pt 1):145718. |
[90] | 黄传超,邓阳.代谢工程改造大肠杆菌合成3'-唾液酸乳糖[J/OL].食品与发酵工业,1-11[2025-05-29]. |
Huang CC, Deng Y. Metabolic engineering of Escherichia coli for 3'-sialyllactose synthesis [J/OL]. Food Ferment Ind. 2025:1-11 [2025-05-29]. | |
[91] | 周文,游星,张洪涛,等.多细胞耦合转化N-乙酰氨基葡萄糖和乳糖生产唾液酸乳糖[J].生物工程学报,2023,39(11):4621-4634. |
Zhou W, You X, Zhang HT, et al. Multi-cell coupling conversion of N-acetylglucosamine and lactose for sialyllactose production [J]. Chin J Biotechnol. 2023;39(11):4621-4634. | |
[92] | Zhang Z, Zhang H, Wang Z, et al. A Cellular Coupling Strategy Leveraging Pathway Modularization and Cofactor Regeneration for the Biosynthesis of 3'-Sialyllactose. J Agric Food Chem. 2025;73(29):18380-18389. |
[93] | Zhao M, Zhu Y, Wang H, Zhang J, Xu W, Mu W. Efficient Production of N-Acetylneuraminic Acid in Escherichia coli Based on the UDP-N-Acetylglucosamine Biosynthetic Pathway. J Agric Food Chem. 2023;71(28):10701-10709. |
[94] | Liu Y, Lin Q, Sheng M, et al. Highly Efficient In Vivo Production of Sialyllacto-N-tetraose C via Screening of Beneficial β1,4-galactosyltransferase and α2,6-sialyltransferase. J Agric Food Chem. 2025;73(9):5376-5384. |
[95] | Zhu Y, Zhang J, Zhang W, Mu W. Recent progress on health effects and biosynthesis of two key sialylated human milk oligosaccharides, 3'-sialyllactose and 6'-sialyllactose. Biotechnol Adv. 2023;62:108058. |
[96] | 陈奇.代谢工程改造枯草芽孢杆菌高效合成6'-唾液酸乳糖[D].江南大学,2024. |
Chen Q. High-efficiency biosynthesis of 6'-sialyllactose through metabolic engineering of Bacillus subtilis[D]. Jiangnan University, 2024. | |
[97] | Mao S, Zhao A, Jiang H, et al. Patterns of Human Milk Oligosaccharides in Mature Milk Are Associated with Certain Gut Microbiota in Infants. Nutrients. 2024;16(9):1287.. |
[98] | Kang J, Gu P, Wang Y, et al. Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli.Metab Eng. 2012;14(6):623-629.. |
[99] | EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, et al. Safety of 3'-sialyllactose (3'-SL) sodium salt produced by a derivative strain (Escherichia coli NEO3) of E. coli W (ATCC 9637) as a Novel Food pursuant to Regulation (EU) 2015/2283. EFSA J. 2023;21(9):e08224 |
[100] | Bénet T, Frei N, Spichtig V, Cuany D, Austin S. Determination of Seven Human Milk Oligosaccharides (HMOs) in Infant Formula and Adult Nutritionals: First Action 2022.07. J AOAC Int. 2024;107(2):286-302. |
[101] | Yang M, Jiang Z, Zhou L, et al. 3'-Sialyllactose and B. infantis synergistically alleviate gut inflammation and barrier dysfunction by enriching cross-feeding bacteria for short-chain fatty acid biosynthesis. Gut Microbes. 2025;17(1):248651. |
[102] | Ding J, Ouyang R, Zheng S, et al. Effect of Breastmilk Microbiota and Sialylated Oligosaccharides on the Colonization of Infant Gut Microbial Community and Fecal Metabolome. Metabolites. 2022;12(11):1136. |
[103] | Bajic D, Wiens F, Wintergerst E, Deyaert S, Baudot A, Van den Abbeele P. HMOs Exert Marked Bifidogenic Effects on Children's Gut Microbiota Ex Vivo, Due to Age-Related Bifidobacterium Species Composition. Nutrients. 2023;15(7):1701. |
[104] | Zhu L, Wang M, Li H, et al. Supplementation of 3'-Sialyllactose During the Growth Period Improves Learning and Memory Development in Mice. J Agric Food Chem. 2024;72(44):24518-24529. |
[105] | Golden RK, Sutkus LT, Donovan SM, Dilger RN. Dietary supplementation of 3'-sialyllactose or 6'-sialyllactose elicits minimal influence on cognitive and brain development in growing pigs. Front Behav Neurosci. 2024;17:1337897. |
[106] | Thomson P, Medina DA, Garrido D. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization. Food Microbiol. 2018;75:37-46. |
[107] | Bauer J, Osborn HM. Sialic acids in biological and therapeutic processes: opportunities and challenges. Future Med Chem. 2015;7(16):2285-2299. |
[108] | Kim J, Kim YJ, Kim JW. Bacterial Clearance Is Enhanced by α2,3- and α2,6-Sialyllactose via Receptor-Mediated Endocytosis and Phagocytosis. Infect Immun. 2018;87(1):e00694-18. |
[109] | Kang LJ, Kwon ES, Lee KM, et al. 3'-Sialyllactose as an inhibitor of p65 phosphorylation ameliorates the progression of experimental rheumatoid arthritis. Br J Pharmacol. 2018;175(23):4295-4309. |
[110] | Duan Q, Yu B, Huang Z, et al. Sialyllactose Attenuates Inflammation and Injury of Intestinal Epithelial Cells upon Enterotoxigenic Escherichia coli Infection. Int J Mol Sci. 2025;26(8):3860. |
[111] | Park DB, Kim L, Hwang JH, et al. Temporal quantitative profiling of sialyllactoses and sialic acids after oral administration of sialyllactose to mini-pigs with osteoarthritis. RSC Adv. 2023;13(2):1115-1124. |
[112] | Yamabe M, Kaihatsu K, Ebara Y. Binding inhibition of various influenza viruses by sialyllactose-modified trimer DNAs. Bioorg Med Chem Lett. 2019;29(5):744-748. |
[113] | Cooper P, Bolton KD, Velaphi S, et al. Early Benefits of a Starter Formula Enriched in Prebiotics and Probiotics on the Gut Microbiota of Healthy Infants Born to HIV+ Mothers: A Randomized Double-Blind Controlled Trial. Clin Med Insights Pediatr. 2017;10:119-130. |
[114] | Lim B, Kim KS, Ahn JY, Na K. Overcoming antibiotic resistance caused by genetic mutations of Helicobacter pylori with mucin adhesive polymer-based therapeutics. Biomaterials. 2024;308:122541. |
[115] | Schelch S, Zhong C, Petschacher B, Nidetzky B. Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv. 2020;44:107613. |
[1] | 吴柯, 罗家豪, 李斐然. 机器学习驱动的基因组规模代谢模型构建与优化[J]. 合成生物学, 2025, 6(3): 566-584. |
[2] | 田晓军, 张日新. 合成基因回路面临的细胞“经济学窘境”[J]. 合成生物学, 2025, 6(3): 532-546. |
[3] | 章益蜻, 刘高雯. 合成生物学视角下的基因功能探索与酵母工程菌株文库构建[J]. 合成生物学, 2025, 6(3): 685-700. |
[4] | 黄怡, 司同, 陆安静. 生物制造标准体系建设的现状、问题与建议[J]. 合成生物学, 2025, 6(3): 701-714. |
[5] | 宋成治, 林一瀚. AI+定向进化赋能蛋白改造及优化[J]. 合成生物学, 2025, 6(3): 617-635. |
[6] | 盛周煌, 陈智仙, 张彦. 酵母甘露糖蛋白的研究进展[J]. 合成生物学, 2025, 6(2): 408-421. |
[7] | 张梦瑶, 蔡鹏, 周雍进. 合成生物学助力萜类香精香料可持续生产[J]. 合成生物学, 2025, 6(2): 334-356. |
[8] | 张璐鸥, 徐丽, 胡晓旭, 杨滢. 合成生物学助力化妆品走进生物制造新时代[J]. 合成生物学, 2025, 6(2): 479-491. |
[9] | 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造[J]. 合成生物学, 2025, 6(2): 422-444. |
[10] | 伊进行, 唐宇琳, 李春雨, 吴鹤云, 马倩, 谢希贤. 氨基酸衍生物在化妆品中的应用及其生物合成研究进展[J]. 合成生物学, 2025, 6(2): 254-289. |
[11] | 韦灵珍, 王佳, 孙新晓, 袁其朋, 申晓林. 黄酮类化合物生物合成及其在化妆品中应用的研究[J]. 合成生物学, 2025, 6(2): 373-390. |
[12] | 肖森, 胡立涛, 石智诚, 王发银, 余思婷, 堵国成, 陈坚, 康振. 可控分子量透明质酸的生物合成研究进展[J]. 合成生物学, 2025, 6(2): 445-460. |
[13] | 王倩, 果士婷, 辛波, 钟成, 王钰. L-精氨酸的微生物合成研究进展[J]. 合成生物学, 2025, 6(2): 290-305. |
[14] | 左一萌, 张姣姣, 连佳长. 酿酒酵母使能技术在化妆品原料合成中的应用[J]. 合成生物学, 2025, 6(2): 233-253. |
[15] | 汤传根, 王璟, 张烁, 张昊宁, 康振. 功能肽合成和挖掘策略研究进展[J]. 合成生物学, 2025, 6(2): 461-478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||