• 特约评述 •
刘婕1, 郜钰1, 马永硕1,2, 尚轶1
收稿日期:
2025-06-23
修回日期:
2025-09-07
出版日期:
2025-09-09
通讯作者:
马永硕,尚轶
作者简介:
基金资助:
LIU Jie1, GAO Yu1, MA Yongshuo1,2, SHANG Yi1
Received:
2025-06-23
Revised:
2025-09-07
Online:
2025-09-09
Contact:
MA Yongshuo, SHANG Yi
摘要:
合成生物学通过工程化设计与新生命系统构建,为农业带来了革命性的突破。与传统农业技术相比,合成生物学汇聚农业科技领域的高新技术,可以更高效、更广泛地解决光合作用、生物固氮、作物抗逆、农业生态可持续性等世界性农业难题。合成生物学技术不仅可以提高作物产量和优化营养品质,还可以利用生物质副产物产生健康的肥料和土壤,实现废弃物资源化循环的新模式,是应对人口增加和气候变化,促进生物经济可持续发展的战略制高点。本文首先回顾了农业合成生物学的发展历程,综述了基因编辑技术、代谢工程策略、生物传感器元件开发、基因回路设计、人工智能等在农业中广泛应用的合成生物学技术的最新研究进展。随后阐述了合成生物学在农业中的核心应用,包括提高作物产量和资源利用率、增强抗逆性、作物营养强化以及改善微生物互作等方面。最后讨论了目前农业合成生物学应解决的问题以及今后的发展趋势。合成生物学在农业领域的多维应用,将有效保障粮食安全并且助力未来农业可持续发展。
中图分类号:
刘婕, 郜钰, 马永硕, 尚轶. 合成生物学在农业中的进展及挑战[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-065.
LIU Jie, GAO Yu, MA Yongshuo, SHANG Yi. Progress and challenges of synthetic biology in agriculture[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-065.
Year | Findings | References |
---|---|---|
2005 | 二代黄金大米的总胡萝卜素得到23倍的增加 | [ |
2011 | 植物传感器开始发展 | [ |
2012 | 番茄中抗坏血酸含量的增加 | [ |
2014 | 谷类作物中固氮途径的引入,增加作物固氮量 | [ |
2014 | 油料作物种子中高效合成ω-3不饱和脂肪酸 | [ |
2016 | 烟草叶片中青蒿素的合成 | [ |
2017 | 番茄果实中GABA的大量积累 | [ |
2017 | 大麦中引入固氮系统,提高氮利用效率 | [ |
2018 | 水稻胚乳中虾青素的生物合成 | [ |
2019 | 烟草中引入光呼吸途径,增加C3作物的产量 | [ |
2019 | 水稻中引入光呼吸旁路,增加光合效率 | [ |
2020 | 初级编辑器在作物中的应用 | [ |
2021 | C3作物中C4高光效特征的模拟 | [ |
2022 | 烟草中马钱子碱的生物合成途径重构 | [ |
2024 | 烟草中疫苗佐剂QS-21的生物合成途径重构 | [ |
表 1 合成生物学在农业领域的关键成果
Table 1 Key achievements of synthetic biology in Agriculture
Year | Findings | References |
---|---|---|
2005 | 二代黄金大米的总胡萝卜素得到23倍的增加 | [ |
2011 | 植物传感器开始发展 | [ |
2012 | 番茄中抗坏血酸含量的增加 | [ |
2014 | 谷类作物中固氮途径的引入,增加作物固氮量 | [ |
2014 | 油料作物种子中高效合成ω-3不饱和脂肪酸 | [ |
2016 | 烟草叶片中青蒿素的合成 | [ |
2017 | 番茄果实中GABA的大量积累 | [ |
2017 | 大麦中引入固氮系统,提高氮利用效率 | [ |
2018 | 水稻胚乳中虾青素的生物合成 | [ |
2019 | 烟草中引入光呼吸途径,增加C3作物的产量 | [ |
2019 | 水稻中引入光呼吸旁路,增加光合效率 | [ |
2020 | 初级编辑器在作物中的应用 | [ |
2021 | C3作物中C4高光效特征的模拟 | [ |
2022 | 烟草中马钱子碱的生物合成途径重构 | [ |
2024 | 烟草中疫苗佐剂QS-21的生物合成途径重构 | [ |
植物底盘 | 微生物底盘 | |
---|---|---|
优点 | 富含辅酶因子和前体物质 高度进化的细胞器可以储存前体物质和代谢物 组织特异性的酶表达模式 可以直接食用 | 生长周期短 培养条件和产量可控性强 基因转化效率高 |
缺点 | 生长环境要求高 代谢调控网络复杂 转化效率低 | 需要外源基因引入且依赖完整的途径解析 缺乏植物来源的酶表达所需的隔膜系统 依赖外部碳源 对有毒中间产物耐受性低 |
表 2 植物和微生物底盘的优缺点
Table 2 Advantages and disadvantages of plant chassis and microbial chassis
植物底盘 | 微生物底盘 | |
---|---|---|
优点 | 富含辅酶因子和前体物质 高度进化的细胞器可以储存前体物质和代谢物 组织特异性的酶表达模式 可以直接食用 | 生长周期短 培养条件和产量可控性强 基因转化效率高 |
缺点 | 生长环境要求高 代谢调控网络复杂 转化效率低 | 需要外源基因引入且依赖完整的途径解析 缺乏植物来源的酶表达所需的隔膜系统 依赖外部碳源 对有毒中间产物耐受性低 |
[1] | LUCIDO A, BASALLO O, MARIN-SANGUINO A, et al. Multiscale Mathematical Modeling in Systems Biology: A Framework to Boost Plant Synthetic Biology [J]. Plants, 2025, 14(3): 470. |
[2] | KE J, WANG B, YOSHIKUNI Y. Microbiome Engineering: Synthetic Biology of Plant-Associated Microbiomes in Sustainable Agriculture [J]. Trends Biotechnol, 2021, 39(3): 244-61. |
[3] | 张博, 马永硕, 尚轶, 等. 植物合成生物学研究进展 [J]. 合成生物学, 2020, 1(02): 121-140. |
ZHANG B, MA Y S, SHANG Y, et al. Recent advances in plant synthetic biology [J]. Synthetic Biology Journal, 2020, 1(2): 121-140. | |
[4] | BROPHY J A N, MAGALLON K J, DUAN L N, et al. Synthetic genetic circuits as a means of reprogramming plant roots [J]. Science, 2022, 377(6607): 747-751. |
[5] | ZHANG X E, LIU C, DAI J, et al. Enabling technology and core theory of synthetic biology [J]. Science China Life Sciences, 2023, 66(8): 1742-1785. |
[6] | DOUDNA J A, CHARPENTIER E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9 [J]. Science, 2014, 346(6213): 1258096. |
[7] | TIAN Y S, WANG B, PENG R H, et al. Enhancing carotenoid biosynthesis in rice endosperm by metabolic engineering [J]. Plant Biotechnology Journal, 2019, 17(5): 849-851. |
[8] | XIONG D. Perspectives of improving rice photosynthesis for higher grain yield [J]. Crop and Environment, 2024, 3(3): 123-137. |
[9] | 燕永亮, 田长富, 杨建国, 等. 人工高效生物固氮体系创建及其农业应用 [J]. 生命科学, 2021, 33(12): 1532-1543. |
YAN Y L, TIAN C F, YANG J G, et al. Establishment of artificial efficiency biological nitrogen fixation system and its agricultural application [J]. Chinese Bulletin of Life Sciences, 2021, 33(12): 1532-1543. | |
[10] | 潘明慧, 杨雪, 杜国忠, 等. 合成生物学助力链霉菌天然产物农药创制与产业化 [J]. 植物保护, 2023, 49(05): 371-389. |
PAN M H, YANG X, DU G Z, et al. The exploitation and bio-manufacture of natural product pesticides from Streptomyces by synthetic biology [J]. Plant Protection, 2023, 49(05): 371-389. | |
[11] | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
[12] | YE X, AL-BABILI S, KLÖTI A, et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm [J]. Science, 2000, 287(5451): 303-305. |
[13] | BHULLAR S, CHAKRAVARTHY S, ADVANI S, et al. Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping [J]. Plant Physiology, 2003, 132(2): 988-998. |
[14] | ENGLER C, KANDZIA R, MARILLONNET S. A one pot, one step, precision cloning method with high throughput capability [J]. PLoS One, 2008, 3(11): e3647. |
[15] | ENGLER C, GRUETZNER R, KANDZIA R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes [J]. PLoS One, 2009, 4(5): e5553. |
[16] | AMOS M. Population-based microbial computing: a third wave of synthetic biology? [J]. Internationl Journal of General Systems, 2014, 43(7): 770-782. |
[17] | FISHER A K, FREEDMAN B G, BEVAN D R, et al. A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories [J]. Computational and Structural Biotechnology Journal, 2014, 11(18): 91-99. |
[18] | LU X, VORA H, KHOSLA C. Overproduction of free fatty acids in E. coli: implications for biodiesel production [J]. Metabolic Engineering, 2008, 10(6): 333-339. |
[19] | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-823. |
[20] | SHAN Q, WANG Y, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system [J]. Nature Biotechnology, 2013, 31(8): 686-688. |
[21] | CHAN A N, WANG L L, ZHU Y J, et al. Identification through fine mapping and verification using CRISPR/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice [J]. Theoretical and Applied Genetics, 2021, 134(1): 327-337. |
[22] | JARVIS D E, HO Y S, LIGHTFOOT D J, et al. The genome of Chenopodium quinoa [J]. Nature, 2017, 542(7641): 307-312. |
[23] | ZIMIN A V, PUIU D, HALL R, et al. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum [J]. GigaScience, 2017, 6(11): 1-7. |
[24] | YU W, YAU Y Y, BIRCHLER J A. Plant artificial chromosome technology and its potential application in genetic engineering [J]. Plant Biotechnology Journal, 2016, 14(5): 1175-1182. |
[25] | XU C, BIRCHLER J A. Editorial: Plant artificial chromosomes: progress and perspectives [J]. Frontiers in Plant Science, 2023, 14: 1290386. |
[26] | RAVIKUMAR S, BAYLON M G, PARK S J, et al. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery [J]. Microbial Cell Factories, 2017, 16(1): 62. |
[27] | ARACIC S, MANNA S, PETROVSKI S, et al. Innovative biological approaches for monitoring and improving water quality [J]. Frontiers in Microbiology, 2015, 6: 826. |
[28] | NEETHIRAJAN S, RAGAVAN V, WENG X, et al. Biosensors for Sustainable Food Engineering: Challenges and Perspectives [J]. Biosensors, 2018, 8(1): 23. |
[29] | 刘华梅, 许国建. 微生物农药苏云金杆菌G033A [J]. 农药科学与管理, 2018, 39(04): 59-60. |
LIU H M, XU G J. Microbial pesticide Bacillus thuringiensis G033A [J]. Pesticide Science and Administration, 2018, 39(04): 59-60. | |
[30] | 王晓梅, 李辉尚, 杨小薇. 全球农业合成生物学发展现状及对中国的启示 [J]. 农业展望, 2023, 19(04): 71-6. |
WANG X M, LI H S, YANG X W. Development Status of Global Agricultural Synthetic Biology and Its Enlightenment to China [J]. Agricultural Outlook, 2023, 19(04): 71-76. | |
[31] | WALTZ E. GABA-enriched tomato is first CRISPR-edited food to enter market [J]. Nature Biotechnology, 2022, 40(1): 9-11. |
[32] | PAINE J A, SHIPTON C A, CHAGGAR S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content [J]. Nature Biotechnology, 2005, 23(4): 482-487. |
[33] | ANTUNES M S, MOREY K J, SMITH J J, et al. Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway [J]. PLoS One, 2011, 6(1) :e16292. |
[34] | BULLEY S, WRIGHT M, ROMMENS C, et al. Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase [J]. Plant Biotechnology Journal, 2012, 10(4): 390-397. |
[35] | ROGERS C, OLDROYD G E. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals [J]. Journal of Experimental Botany, 2014, 65(8): 1939-1946. |
[36] | RUIZ-LOPEZ N, HASLAM R P, NAPIER J A, et al. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop [J]. The Plant Journal, 2014, 77(2): 198-208. |
[37] | WANG B, KASHKOOLI A B, SALLETS A, et al. Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua [J]. Metabolic Engineering, 2016, 38: 159-169. |
[38] | NONAKA S, ARAI C, TAKAYAMA M, et al. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis [J]. Scientific Reports, 2017, 7(1): 7057. |
[39] | PERCHLIK M, TEGEDER M. Improving Plant Nitrogen Use Efficiency through Alteration of Amino Acid Transport Processes [J]. Plant Physiology, 2017, 175(1): 235-247. |
[40] | ZHU Q, ZENG D, YU S, et al. From Golden Rice to aSTARice: Bioengineering Astaxanthin Biosynthesis in Rice Endosperm [J]. Molecular Plant, 2018, 11(12): 1440-1448. |
[41] | SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field [J]. Science, 2019, 363(6422): eaat9077. |
[42] | SHEN B R, WANG L M, LIN X L, et al. Engineering a New Chloroplastic Photorespiratory Bypass to Increase Photosynthetic Efficiency and Productivity in Rice [J]. Molecular Plant, 2019, 12(2): 199-214. |
[43] | LIN Q P, ZONG Y, XUE C X, et al. Prime genome editing in rice and wheat [J]. Nature Biotechnology, 2020, 38(5): 582-585. |
[44] | ROELL M S, SCHADA VON BORZYKOWSKI L, WESTHOFF P, et al. A synthetic C4 shuttle via the β-hydroxyaspartate cycle in C3 plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(21): e2022307118. |
[45] | HONG B K, GRZECH D, CAPUTI L, et al. Biosynthesis of strychnine [J]. Nature, 2022, 607(7919): 617-622. |
[46] | MARTIN L B B, KIKUCHI S, REJZEK M, et al. Complete biosynthesis of the potent vaccine adjuvant QS-21 [J]. Nature Chemical Biology, 2024, 20(4): 493-502. |
[47] | WU H, YANG J, SHEN P, et al. High-Level Production of Indole-3-acetic Acid in the Metabolically Engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2021, 69(6): 1916-1924. |
[48] | ZHANG Y, CHIU T Y, ZHANG J T, et al. Systematical Engineering of Synthetic Yeast for Enhanced Production of Lycopene [J]. Bioengineering, 2021, 8(1):14. |
[49] | ZHANG Y, YUAN M, WU X, et al. The construction and optimization of engineered yeast chassis for efficient biosynthesis of 8-hydroxygeraniol [J]. mLife, 2023, 2(4): 438-449. |
[50] | ZHU Y, LI J, PENG L, et al. High-yield production of protopanaxadiol from sugarcane molasses by metabolically engineered Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2022, 21(1): 230. |
[51] | TAN G Y, DENG K, LIU X, et al. Heterologous Biosynthesis of Spinosad: An Omics-Guided Large Polyketide Synthase Gene Cluster Reconstitution in Streptomyces [J]. ACS Synthetic Biology, 2017, 6(6): 995-1005. |
[52] | WANG Q, BAO T, HU M K, et al. Efficient Acetoin Production in Bacillus subtilis by Multivariate Modular Metabolic Engineering with Spatiotemporal Modulation [J]. ACS Sustainable Chemistry & Engineering, 2025, 13(5): 1927-1936. |
[53] | SABATE R, DE GROOT N S, VENTURA S. Protein folding and aggregation in bacteria [J]. Cellular and Molecular Life Sciences, 2010, 67(16): 2695-2715. |
[54] | TIAN Y, KONG L Z, LI Q, et al. Structural diversity, evolutionary origin, and metabolic engineering of plant specialized benzylisoquinoline alkaloids [J]. Natural Product Reports, 2024, 41(11): 1787-1810. |
[55] | SUN Q Y, DING L W, LOMONOSSOFF G P, et al. Improved expression and purification of recombinant human serum albumin from transgenic tobacco suspension culture [J]. Journal of Biotechnology, 2011, 155(2): 164-172. |
[56] | VASILEV N, SCHMITZ C, DONG L, et al. Comparison of plant-based expression platforms for the heterologous production of geraniol [J]. Plant Cell Tissue and Organ Culture, 2014, 117(3): 373-380. |
[57] | LIU J, ZHAO Y, ZHANG J, et al. Production of species-specific anthocyanins through an inducible system in plant hairy roots [J]. Metabolic Engineering, 2024, 81: 182-196. |
[58] | YOUSEFIAN S, LOHRASEBI T, FARHADPOUR M, et al. Effect of methyl jasmonate on phenolic acids accumulation and the expression profile of their biosynthesis-related genes in Mentha spicata hairy root cultures [J]. Plant Cell Tissue and Organ Culture, 2020, 142(2): 285-297. |
[59] | WU S J, XIE X G, FENG K M, et al. Transcriptome sequencing and signal transduction for the enhanced tanshinone production in Salvia miltiorrhiza hairy roots induced by Trichoderma atroviride D16 polysaccharide fraction [J]. Bioscience, Biotechnology, and Biochemistry, 2022, 86(8): 1049-1059. |
[60] | KUŹMA Ł, KISIEL W, KRÓLICKA A, et al. Genetic transformation of Salvia austriaca by Agrobacterium rhizogenes and diterpenoid isolation [J]. Die Pharmazie, 2011, 66(11): 904-907. |
[61] | NOGUEIRA M, ENFISSI E M A, WELSCH R, et al. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids [J]. Metabolic Engineering, 2019, 52: 243-352. |
[62] | BEYRAGHDAR KASHKOOLI A, VAN DER KROL A R, RABE P, et al. Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production [J]. Metabolic Engineering, 2019, 54: 12-23. |
[63] | FORESTIER E C F, CZECHOWSKI T, CORDING A C, et al. Developing a Nicotiana benthamiana transgenic platform for high-value diterpene production and candidate gene evaluation [J]. Plant Biotechnology Journal, 2021, 19(8): 1614-1623. |
[64] | ZHU Q, YU S, ZENG D, et al. Development of "Purple Endosperm Rice" by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System [J]. Molecular Plant, 2017, 10(7): 918-929. |
[65] | LIU X, MA X, WANG H, et al. Metabolic engineering of astaxanthin-rich maize and its use in the production of biofortified eggs [J]. Plant Biotechnology Journal, 2021, 19(9): 1812-1823. |
[66] | LAM E, MICHAEL T P. Wolffia, a minimalist plant and synthetic biology chassis [J]. Trends in Plant Science, 2022, 27(5): 430-439. |
[67] | BI G, ZHAO S, YAO J, et al. Near telomere-to-telomere genome of the model plant Physcomitrium patens [J]. Nature Plants, 2024, 10(2): 327-343. |
[68] | LI Y, LIANG J, DENG B, et al. Applications and Prospects of CRISPR/Cas9-Mediated Base Editing in Plant Breeding [J]. Current Issues in Molecular Biology, 2023, 45(2): 918-935. |
[69] | GAUDELLI N M, KOMOR A C, REES H A, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage [J]. Nature, 2017, 551(7681): 464-471. |
[70] | LI C, ZHANG R, MENG X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors [J]. Nature Biotechnology, 2020, 38(7): 875-882. |
[71] | MIKAMI M, TOKI S, ENDO M. In Planta Processing of the SpCas9-gRNA Complex [J]. Plant and Cell Physiology, 2017, 58(11): 1857-1867. |
[72] | CAMPA C C, WEISBACH N R, SANTINHA A J, et al. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts [J]. Nature Methods, 2019, 16(9): 887-893. |
[73] | LI C, ZONG Y, JIN S, et al. SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds [J]. Genome Biology, 2020, 21(1): 141. |
[74] | LIU H J, JIAN L, XU J, et al. High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize [J]. The Plant Cell, 2020, 32(5): 1397-1413. |
[75] | BAI M, YUAN J, KUANG H, et al. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean [J]. Plant Biotechnology Journal, 2020, 18(3): 721-731. |
[76] | JACOBS T B, ZHANG N, PATEL D, et al. Generation of a Collection of Mutant Tomato Lines Using Pooled CRISPR Libraries [J]. Plant Physiology, 2017, 174(4): 2023-2037. |
[77] | KUANG Y, LI S, REN B, et al. Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms [J]. Molecular Plant, 2020, 13(4): 565-572. |
[78] | HU N, TIAN H, LI Y, et al. pHNRhCas9NG, single expression cassette-based dual-component dual-transcription unit CRISPR/Cas9 system for plant genome editing [J]. Trends in Biotechnology, 2025, 43(7): 1788-1808. |
[79] | TATSIS E C, O'CONNOR S E. New developments in engineering plant metabolic pathways [J]. Current Opinion in Biotechnology, 2016, 42: 126-132. |
[80] | WU Q Y, HUANG Z Y, WANG J Y, et al. Construction of an Escherichia coli cell factory to synthesize taxadien-5α-ol, the key precursor of anti-cancer drug paclitaxel [J]. Bioresources and Bioprocessing, 2022, 9(1): 82. |
[81] | IGNEA C, ATHANASAKOGLOU A, IOANNOU E, et al. Carnosic acid biosynthesis elucidated by a synthetic biology platform [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3681-3686. |
[82] | TAN H, CHEN X, LIANG N, et al. Transcriptome analysis reveals novel enzymes for apo-carotenoid biosynthesis in saffron and allows construction of a pathway for crocetin synthesis in yeast [J]. Journal of Experimental Botany, 2019, 70(18): 4819-4834. |
[83] | ZHANG J, HANSEN L G, GUDICH O, et al. A microbial supply chain for production of the anti-cancer drug vinblastine [J]. Nature, 2022, 609(7926): 341-347. |
[84] | LIU J, WANG X, DAI G, et al. Microbial chassis engineering drives heterologous production of complex secondary metabolites [J]. Biotechnology Advances, 2022, 59: 107966. |
[85] | KWAN B D, SELIGMANN B, NGUYEN T D, et al. Leveraging synthetic biology and metabolic engineering to overcome obstacles in plant pathway elucidation [J]. Current opinion in plant biology, 2023, 71: 102330. |
[86] | BUTELLI E, TITTA L, GIORGIO M, et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors [J]. Nature Biotechnology, 2008, 26(11): 1301-1308. |
[87] | MALHOTRA K, SUBRAMANIYAN M, RAWAT K, et al. Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells [J]. Molecular Plant, 2016, 9(11): 1464-1477. |
[88] | POLTURAK G, BREITEL D, GROSSMAN N, et al. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants [J]. New Phytologist, 2016, 210(1): 269-283. |
[89] | MAJER E, LLORENTE B, RODRÍGUEZ-CONCEPCIÓN M, et al. Rewiring carotenoid biosynthesis in plants using a viral vector [J]. Scientific Reports, 2017, 7: 41645. |
[90] | FUCHS L K, HOLLAND A H, LUDLOW R A, et al. Genetic Manipulation of Biosynthetic Pathways in Mint [J]. Frontiers in Plant Science, 2022, 13: 928178. |
[91] | D'ANDREA L, SIMON-MOYA M, LLORENTE B, et al. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening [J]. Journal of Experimental Botany, 2018, 69(7): 1557-1568. |
[92] | PETRIE J R, SHRESTHA P, BELIDE S, et al. Metabolic engineering Camelina sativa with fish oil-like levels of DHA [J]. PLoS One, 2014, 9(1): e85061. |
[93] | KIM J Y, KIM J H, JANG Y H, et al. Transcriptome and Metabolite Profiling of Tomato SGR-Knockout Null Lines Using the CRISPR/Cas9 System [J]. International Journal of Molecular Sciences, 2022, 24(1): 109. |
[94] | TU M, FANG J, ZHAO R, et al. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accumulation in grapevine (Vitis vinifera) [J]. Horticulture Research, 2022, 9:uhac022. |
[95] | WEN D, WU L, WANG M, et al. CRISPR/Cas9-Mediated Targeted Mutagenesis of FtMYB45 Promotes Flavonoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum) [J]. Frontiers in Plant Science, 2022, 13: 879390. |
[96] | DEVIREDDY A R, ZANDALINAS S I, FICHMAN Y, et al. Integration of reactive oxygen species and hormone signaling during abiotic stress [J]. The Plant Journal, 2021, 105(2): 459-476. |
[97] | MIYAWAKI A, LLOPIS J, HEIM R, et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin [J]. Nature, 1997, 388(6645): 882-887. |
[98] | BRUNOUD G, WELLS D M, OLIVA M, et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution [J]. Nature, 2012, 482(7383): 103-106. |
[99] | LIAO C Y, SMET W, BRUNOUD G, et al. Reporters for sensitive and quantitative measurement of auxin response [J]. Nature Methods, 2015, 12(3): 207-210. |
[100] | JONES A M. A new look at stress: abscisic acid patterns and dynamics at high-resolution [J]. New Phytologist, 2016, 210(1): 38-44. |
[101] | FERNANDEZ-MORENO J P, STEPANOVA A N. Monitoring Ethylene in Plants: Genetically Encoded Reporters and Biosensors [J]. Small Methods, 2020, 4(8). |
[102] | RIZZA A, JONES A M. The makings of a gradient: spatiotemporal distribution of gibberellins in plant development [J]. Current Opinion in Plant Biology, 2019, 47: 9-15. |
[103] | ORTEGA-VILLASANTE C, BURÉN S, BARÓN-SOLA Á, et al. In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives [J]. Methods, 2016, 109: 92-104. |
[104] | ZÜRCHER E, TAVOR-DESLEX D, LITUIEV D, et al. A robust and sensitive synthetic sensor to monitor the transcriptional output of the cytokinin signaling network in planta [J]. Plant Physiology, 2013, 161(3): 1066-1075. |
[105] | STEINER E, LIVNE S, KOBINSON-KATZ T, et al. The Putative O-Linked N-Acetylglucosamine Transferase SPINDLY Inhibits Class I TCP Proteolysis to Promote Sensitivity to Cytokinin [J]. Plant Physiology, 2016, 171(2): 1485-1894. |
[106] | WU R, DUAN L, PRUNEDA-PAZ J L, et al. The 6xABRE Synthetic Promoter Enables the Spatiotemporal Analysis of ABA-Mediated Transcriptional Regulation [J]. Plant Physiology, 2018, 177(4): 1650-1665. |
[107] | MÜLLER B, SHEEN J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis [J]. Nature, 2008, 453(7198): 1094-1097. |
[108] | RIZZA A, WALIA A, TANG B, et al. Visualizing Cellular Gibberellin Levels Using the nlsGPS1 Förster Resonance Energy Transfer (FRET) Biosensor [J]. Journal of Visualized Experiments, 2019, (143). |
[109] | LARRIEU A, CHAMPION A, LEGRAND J, et al. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants [J]. Nature Communications, 2015, 6: 6043. |
[110] | POUVREAU B, VANHERCKE T, SINGH S. From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle [J]. Plant Science, 2018, 273: 3-12. |
[111] | WONG M H, GIRALDO J P, KWAK S Y, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics [J]. Nature Materials, 2017, 16(2): 264-272. |
[112] | PENG Y, ALLEN S, MILLWOOD R J, et al. 'Fukusensor:' a genetically engineered plant for reporting DNA damage in response to gamma radiation [J]. Plant Biotechnology Journal, 2014, 12(9): 1329-1332. |
[113] | JEZ J M, LEE S G, SHERP A M. The next green movement: Plant biology for the environment and sustainability [J]. Science, 2016, 353(6305): 1241-1244. |
[114] | FICHMAN Y, MILLER G, MITTLER R. Whole-Plant Live Imaging of Reactive Oxygen Species [J]. Molecular Plant, 2019, 12(9): 1203-1210. |
[115] | MCADAM E L, REID J B, FOO E. Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation [J]. Journal of Experimental Botany, 2018, 69(8): 2117-2130. |
[116] | CRUZ A P, FERREIRA V, PIANZZOLA M J, et al. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain [J]. Molecular Plant Microbe Interactions, 2014, 27(3): 277-285. |
[117] | MOHAMMAD-RAZDARI A, ROUSSEAU D, BAKHSHIPOUR A, et al. Recent advances in E-monitoring of plant diseases [J]. Biosensors and Bioelectronics, 2022, 201: 113953. |
[118] | JUGDER B E, ERTAN H, BOHL S, et al. Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation [J]. Frontiers in Microbiology, 2016, 7: 249. |
[119] | SAHA G, SHAHRIN F, KHAN F H, et al. Smart IoT-driven precision agriculture: Land mapping, crop prediction, and irrigation system [J]. PLoS One, 2025, 20(3): e0319268. |
[120] | CUZICK A, MAGUIRE K, HAMMOND-KOSACK K E. Lack of the plant signalling component SGT1b enhances disease resistance to Fusarium culmorum in Arabidopsis buds and flowers [J]. New Phytologist, 2009, 181(4): 901-912. |
[121] | JEONG H J, JUNG K H. Rice tissue-specific promoters and condition-dependent promoters for effective translational application [J]. Journal of Integrative Plant Biology, 2015, 57(11): 913-924. |
[122] | JUSIAK B, CLETO S, PEREZ-PIÑERA P, et al. Engineering Synthetic Gene Circuits in Living Cells with CRISPR Technology [J]. Trends in Biotechnology, 2016, 34(7): 535-547. |
[123] | LLOYD J P B, LY F, GONG P, et al. Synthetic memory circuits for stable cell reprogramming in plants [J]. Nature Biotechnology, 2022, 40(12): 1862-1872. |
[124] | KHAN M A, HERRING G, ZHU J Y, et al. CRISPRi-based circuits to control gene expression in plants [J]. Nature Biotechnology, 2025, 43(3): 416-430. |
[125] | WEINBERG B H, PHAM N T H, CARABALLO L D, et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells [J]. Nature Biotechnology, 2017, 35(5): 453-462. |
[126] | GUIZIOU S, MARANAS C J, CHU J C, et al. An integrase toolbox to record gene-expression during plant development [J]. Nature Communications, 2023, 14(1): 1844. |
[127] | LI S, LI Z, TAN G Y, et al. In vitro allosteric transcription factor-based biosensing [J]. Trends in Biotechnology, 2023, 41(8): 1080-1095. |
[128] | FERREIRA S S, ANTUNES M S. Genetically encoded Boolean logic operators to sense and integrate phenylpropanoid metabolite levels in plants [J]. New Phytologist, 2024, 243(2): 674-687. |
[129] | LIANG Y, RICHARDSON S, YAN J, et al. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants [J]. ACS Synthetic Biology, 2017, 6(5): 806-816. |
[130] | KASENIIT K E, KATZ N, KOLBER N S, et al. Modular, programmable RNA sensing using ADAR editing in living cells [J]. Nature Biotechnology, 2023, 41(4): 482-487. |
[131] | KONERMANN S, LOTFY P, BRIDEAU N J, et al. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors [J]. Cell, 2018, 173(3): 665-676. |
[132] | MARAND A P, CHEN Z, GALLAVOTTI A, et al. A cis-regulatory atlas in maize at single-cell resolution [J]. Cell, 2021, 184(11): 3041-3055.e21. |
[133] | HE Z, LUO Y, ZHOU X, et al. scPlantDB: a comprehensive database for exploring cell types and markers of plant cell atlases [J]. Nucleic Acids Research, 2024, 52(D1): D1629-D1638. |
[134] | RAI K, WANG Y D, O'CONNELL R W, et al. Using machine learning to enhance and accelerate synthetic biology [J]. Current Opinion in Biomedical Engineering, 2024, 31: 100553. |
[135] | LAM H Y I, ONG X E, MUTWIL M. Large language models in plant biology [J]. Trends in Plant Science, 2024, 29(10): 1145-1155. |
[136] | ZHU W, HAN R, SHANG X, et al. The CropGPT project: Call for a global, coordinated effort in precision design breeding driven by AI using biological big data [J]. Molecular Plant, 2024, 17(2): 215-218. |
[137] | JI Y, ZHOU Z, LIU H, et al. DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome [J]. Bioinformatics, 2021, 37(15): 2112-2120. |
[138] | ABRAMSON J, ADLER J, DUNGER J, et al. Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J]. Nature, 2024, 636(8042): E4. |
[139] | CUI H, WANG C, MAAN H, et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI [J]. Nature Methods, 2024, 21(8): 1470-1480. |
[140] | WANG J, ZHANG L, WANG S, et al. AlphaFold-Guided Bespoke Gene Editing Enhances Field-Grown Soybean Oil Contents [J]. Advanced Science, 2025, 12(23): e2500290. |
[141] | 宋成治, 林一瀚. AI+定向进化赋能蛋白改造及优化 [J]. 合成生物学, 2025, 6(3): 617-635. |
SONG C Z, LIN Y H. AI-enabled directed evolution for protein engineering and optimization [J]. Synthetic Biology Journal, 2025, 6(3): 617-635. | |
[142] | SHARMA A, JAIN A, GUPTA P, et al. Machine Learning Applications for Precision Agriculture: A Comprehensive Review [J]. IEEE Access, 2021, 9: 4843-4873. |
[143] | LIAKOS K G, BUSATO P, MOSHOU D, et al. Machine Learning in Agriculture: A Review [J]. Sensors, 2018, 18(8): 2674. |
[144] | ESLAMI M, ADLER A, CACERES R S, et al. Artificial Intelligence for Synthetic Biology [J]. Communications of the ACM, 2022, 65(5): 88-97. |
[145] | YANG J S, REYNA-LLORENS I. Plant synthetic biology: exploring the frontiers of sustainable agriculture and fundamental plant biology [J]. Journal of Experimentl Botany, 2023, 74(13): 3787-3790. |
[146] | ORR D J, ALCÂNTARA A, KAPRALOV M V, et al. Surveying Rubisco Diversity and Temperature Response to Improve Crop Photosynthetic Efficiency [J]. Plant Physiology, 2016, 172(2): 707-717. |
[147] | LIN M T, OCCHIALINI A, ANDRALOJC P J, et al. A faster Rubisco with potential to increase photosynthesis in crops [J]. Nature, 2014, 513(7519): 547-550. |
[148] | MANNING T, BIRCH R, STEVENSON T, et al. Bacterial Form II Rubisco can support wild-type growth and productivity in Solanum tuberosum cv. Desiree (potato) under elevated CO(2) [J]. PNAS Nexus, 2023, 2(2): pgac305. |
[149] | GUNN L H, MARTIN AVILA E, BIRCH R, et al. The dependency of red Rubisco on its cognate activase for enhancing plant photosynthesis and growth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25890-25896. |
[150] | MATSUMURA H, SHIOMI K, YAMAMOTO A, et al. Hybrid Rubisco with Complete Replacement of Rice Rubisco Small Subunits by Sorghum Counterparts Confers C(4) Plant-like High Catalytic Activity [J]. Molecular Plant, 2020, 13(11): 1570-1581. |
[151] | MAO Y, CATHERALL E, DÍAZ-RAMOS A, et al. The small subunit of Rubisco and its potential as an engineering target [J]. Journal of Experimental Botany, 2023, 74(2): 543-561. |
[152] | ADLER L, DÍAZ-RAMOS A, MAO Y, et al. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields [J]. Plant Physiology, 2022, 190(3): 1609-1627. |
[153] | GONG H Y, LI Y, FANG G, et al. Transgenic Rice Expressing Ictb and FBP/Sbpase Derived from Cyanobacteria Exhibits Enhanced Photosynthesis and Mesophyll Conductance to CO2 [J]. PLoS One, 2015, 10(10): e0140928. |
[154] | LONG B M, HEE W Y, SHARWOOD R E, et al. Carboxysome encapsulation of the CO(2)-fixing enzyme Rubisco in tobacco chloroplasts [J]. Nature Communications, 2018, 9(1): 3570. |
[155] | CHEN T, HOJKA M, DAVEY P, et al. Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis [J]. Nature Communications, 2023, 14(1): 2118. |
[156] | FURBANK R T. Evolution of the C(4) photosynthetic mechanism: are there really three C(4) acid decarboxylation types? [J]. Journal of Experimental Botany, 2011, 62(9): 3103-3108. |
[157] | FURBANK R, KELLY S, VON CAEMMERER S. Photosynthesis and food security: the evolving story of C(4) rice [J]. Photosynthesis Research, 2023, 158(2): 121-130. |
[158] | ERMAKOVA M, DANILA F R, FURBANK R T, et al. On the road to C(4) rice: advances and perspectives [J]. The Plant Journal, 2020, 101(4): 940-950. |
[159] | ERMAKOVA M, ARRIVAULT S, GIULIANI R, et al. Installation of C(4) photosynthetic pathway enzymes in rice using a single construct [J]. Plant Biotechnology Journal, 2021, 19(3): 575-588. |
[160] | SMITH E N, VAN AALST M, TOSENS T, et al. Improving photosynthetic efficiency toward food security: Strategies, advances, and perspectives [J]. Molecular Plant, 2023, 16(10): 1547-1563. |
[161] | LIN X, LONG Y, YAO Z, et al. Synthetic photorespiratory bypass more stably increases potato yield per plant by improving photosynthesis [J]. Plant Biotechnology Journal, 2025, 23(7): 2526-2536. |
[162] | MO B, CHEN X, YANG J, et al. Engineering of photorespiration-dependent glycine betaine biosynthesis improves photosynthetic carbon fixation and panicle architecture in rice [J]. Journal of Integrative Plant Biology, 2025, 67(4): 979-992. |
[163] | WALTZ E. A new crop of microbe startups raises big bucks, takes on the establishment [J]. Nature Biotechnology, 2017, 35(12): 1120-1122. |
[164] | ALLEN R S, TILBROOK K, WARDEN A C, et al. Expression of 16 Nitrogenase Proteins within the Plant Mitochondrial Matrix [J]. Frontiers in Plant Science, 2017, 8: 287. |
[165] | BIRCHLER J A, SWYERS N C. Engineered minichromosomes in plants [J]. Experimental Cell Research, 2020, 388(2): 111852. |
[166] | OLDROYD G E, DIXON R. Biotechnological solutions to the nitrogen problem [J]. Current Opinion in Biotechnology, 2014, 26: 19-24. |
[167] | BAGESHWAR U K, SRIVASTAVA M, PARDHA-SARADHI P, et al. An Environmentally Friendly Engineered Azotobacter Strain That Replaces a Substantial Amount of Urea Fertilizer while Sustaining the Same Wheat Yield [J]. Applied and Environmental Microbiology, 2017, 83(15): e00590-17. |
[168] | GEDDES B A, PARAMASIVAN P, JOFFRIN A, et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria [J]. Nature Communications, 2019, 10(1): 3430. |
[169] | BLOCH S E, CLARK R, GOTTLIEB S S, et al. Biological nitrogen fixation in maize: optimizing nitrogenase expression in a root-associated diazotroph [J]. Journal of Experimental Botany, 2020, 71(15): 4591-4603. |
[170] | CHRISTIAENS O, TARDAJOS M G, MARTINEZ REYNA Z L, et al. Increased RNAi Efficacy in Spodoptera exigua via the Formulation of dsRNA With Guanylated Polymers [J]. Frontiers in Physiology, 2018, 9: 316. |
[171] | HUAN Y, KONG Q, MOU H, et al. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields [J]. Frontiers in Microbiology, 2020, 11: 582779. |
[172] | MARCOS J F, MUÑOZ A, PÉREZ-PAYÁ E, et al. Identification and rational design of novel antimicrobial peptides for plant protection [J]. Annual Review of Phytopathology, 2008, 46: 273-301. |
[173] | MONTESINOS E. Functional Peptides for Plant Disease Control [J]. Annual Review of Phytopathology, 2023, 61: 301-324. |
[174] | ZEITLER B, BERNHARD A, MEYER H, et al. [J]. Plant Molecular Biology, 2013, 81(3): 259-272. |
[175] | HOLÁSKOVÁ E, GALUSZKA P, MIČÚCHOVÁ A, et al. Molecular Farming in Barley: Development of a Novel Production Platform to Produce Human Antimicrobial Peptide LL-37 [J]. Biotechnology Journal, 2018, 13(6): e1700628. |
[176] | MIRZAEE M, HOLÁSKOVÁ E, MIČÚCHOVÁ A, et al. Long-Lasting Stable Expression of Human LL-37 Antimicrobial Peptide in Transgenic Barley Plants [J]. Antibiotics, 2021, 10(8): 898. |
[177] | BUNDÓ M, SHI X, VERNET M, et al. Rice Seeds as Biofactories of Rationally Designed and Cell-Penetrating Antifungal PAF Peptides [J]. Frontiers in Plant Science, 2019, 10: 731. |
[178] | KOCH A, KUMAR N, WEBER L, et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(48): 19324-9. |
[179] | SÚNICO V, HIGUERA J J, MOLINA-HIDALGO F J, et al. The Intragenesis and Synthetic Biology Approach towards Accelerating Genetic Gains on Strawberry: Development of New Tools to Improve Fruit Quality and Resistance to Pathogens [J]. Plants, 2021, 11(1): 57. |
[180] | MOORE B D, ANDREW R L, KÜLHEIM C, et al. Explaining intraspecific diversity in plant secondary metabolites in an ecological context [J]. New Phytologist, 2014, 201(3): 733-750. |
[181] | AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens [J]. Trends in Plant Science, 2012, 17(2): 73-90. |
[182] | HU H, LI J, DELATTE T, et al. Modification of chrysanthemum odour and taste with chrysanthemol synthase induces strong dual resistance against cotton aphids [J]. Plant Biotechnology Journal, 2018, 16(8): 1434-1445. |
[183] | MITTLER R, BLUMWALD E. Genetic engineering for modern agriculture: challenges and perspectives [J]. Annual Review of Plant Biology, 2010, 61: 443-462. |
[184] | SHI H, YE T, CHAN Z. Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L). Pers.) varieties contrasting in drought stress resistance [J]. Plant Physiology and Biochemistry, 2014, 82: 218-228. |
[185] | HU H, XIONG L. Genetic engineering and breeding of drought-resistant crops [J]. Annual Review of Plant Biology, 2014, 65: 715-741. |
[186] | CHEN S, XU K, KONG D, et al. Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2;1 [J]. Plant Biotechnology Journal, 2022, 20(9): 1743-1755. |
[187] | DING L, MILHIET T, PARENT B, et al. The plasma membrane aquaporin ZmPIP2;5 enhances the sensitivity of stomatal closure to water deficit [J]. Plant Cell and Environment, 2022, 45(4): 1146-1156. |
[188] | XU Y, HU W, LIU J, et al. An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.) [J]. Plant Physiology and Biochemistry, 2020, 147: 66-76. |
[189] | SAJA-GARBARZ D, LIBIK-KONIECZNY M, FELLNER M, et al. Silicon-induced alterations in the expression of aquaporins and antioxidant system activity in well-watered and drought-stressed oilseed rape [J]. Plant Physiology and Biochemistry, 2022, 174: 73-86. |
[190] | HOSSEINIFARD M, STEFANIAK S, JAVID M G, et al. Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review [J]. International Journal of Molecular Sciences, 2022, 23(9): 5186. |
[191] | ARAÚJO W L, NUNES-NESI A, OSORIO S, et al. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture[J]. The Plant Cell, 2011, 23(2): 600-627. |
[192] | MOVAHEDI A, DZINYELA R, AGHAEI-DARGIRI S, et al. Advanced Study of Drought-Responsive Protein Pathways in Plants [J]. Agronomy, 2023, 13(3): 849. |
[193] | EDWARDS R A, NG X Y, TUCKER M R, et al. Plant synthetic biology as a tool to help eliminate hidden hunger [J]. Current Opinion in Biotechnology, 2024, 88: 103168. |
[194] | BEYENE G, SOLOMON F R, CHAUHAN R D, et al. Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch [J]. Plant Biotechnology Journal, 2018, 16(6): 1186-1200. |
[195] | LOW J W, MWANGA R O M, ANDRADE M, et al. Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa [J]. Global Food Security, 2017, 14: 23-30. |
[196] | LI K T, MOULIN M, MANGEL N, et al. Increased bioavailable vitamin B6 in field-grown transgenic cassava for dietary sufficiency [J]. Nature Biotechnology, 2015, 33(10): 1029-1032. |
[197] | DE LEPELEIRE J, STROBBE S, VERSTRAETE J, et al. Folate Biofortification of Potato by Tuber-Specific Expression of Four Folate Biosynthesis Genes [J]. Molecular Plant, 2018, 11(1): 175-188. |
[198] | BULLEY S, LAING W. The regulation of ascorbate biosynthesis [J]. Current Opinion in Plant Biology, 2016, 33: 15-22. |
[199] | WANG L, MENG X, YANG D, et al. Overexpression of tomato GDP-L-galactose phosphorylase gene in tobacco improves tolerance to chilling stress [J]. Plant Cell Reports, 2014, 33(9): 1441-1451. |
[200] | ALI B, PANTHA S, ACHARYA R, et al. Enhanced ascorbate level improves multi-stress tolerance in a widely grown indica rice variety without compromising its agronomic characteristics [J]. Journal of Plant Physiology, 2019, 240: 152998. |
[201] | MA L, WANG Y, LIU W, et al. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation [J]. Biotechnology Letters, 2014, 36(11): 2331-2341. |
[202] | LI X, YE J, MUNIR S, et al. Biosynthetic Gene Pyramiding Leads to Ascorbate Accumulation with Enhanced Oxidative Stress Tolerance in Tomato [J]. International Journal of Molecular Sciences, 2019, 20(7): 1558. |
[203] | ZHANG G Y, LIU R R, ZHANG C Q, et al. Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance [J]. PLoS One, 2015, 10(5): e0125870. |
[204] | LI J, SCARANO A, GONZALEZ N M, et al. Biofortified tomatoes provide a new route to vitamin D sufficiency [J]. Nature Plants, 2022, 8(6): 611-616. |
[205] | UPADHYAYA D C, BAGRI D S, UPADHYAYA C P, et al. Genetic engineering of potato (Solanum tuberosum L.) for enhanced α-tocopherols and abiotic stress tolerance [J]. Physiologia Plantrum, 2021, 173(1): 116-128. |
[206] | BOONYAVES K, WU T Y, GRUISSEM W, et al. Enhanced Grain Iron Levels in Rice Expressing an IRON-REGULATED METAL TRANSPORTER, NICOTIANAMINE SYNTHASE, and FERRITIN Gene Cassette [J]. Frontiers in Plant Science, 2017, 8: 130. |
[207] | NARAYANAN N, BEYENE G, CHAUHAN R D, et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin [J]. Nature Biotechnology, 2019, 37(2): 144-151. |
[208] | HARRINGTON S A, CONNORTON J M, NYANGOMA N I M, et al. A two-gene strategy increases iron and zinc concentrations in wheat flour, improving mineral bioaccessibility [J]. Plant Physiology, 2023, 191(1): 528-541. |
[209] | NAGESH C R, PRASHAT G R, GOSWAMI S, et al. Sulfate transport and metabolism: strategies to improve the seed protein quality [J]. Molecular Biology Reports, 2024, 51(1): 242. |
[210] | KIM W S, SUN-HYUNG J, OEHRLE N W, et al. Overexpression of ATP sulfurylase improves the sulfur amino acid content, enhances the accumulation of Bowman-Birk protease inhibitor and suppresses the accumulation of the β-subunit of β-conglycinin in soybean seeds [J]. Scientific Reports, 2020, 10(1): 14989. |
[211] | HUANG Y, WANG H, ZHU Y, et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize [J]. Nature, 2022, 612(7939): 292-300. |
[212] | LEE S, PARK J, LEE J, et al. OsASN1 Overexpression in Rice Increases Grain Protein Content and Yield under Nitrogen-Limiting Conditions [J]. Plant and Cell Physiology, 2020, 61(7): 1309-1320. |
[213] | LIU X, LI S, YANG W, et al. Synthesis of Seed-Specific Bidirectional Promoters for Metabolic Engineering of Anthocyanin-Rich Maize [J]. Plant and Cell Physiology, 2018, 59(10): 1942-1955. |
[214] | GONZALI S, PERATA P. Anthocyanins from Purple Tomatoes as Novel Antioxidants to Promote Human Health [J]. Antioxidants, 2020, 9(10): 1017. |
[215] | BEYER P, AL-BABILI S, YE X, et al. Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency [J]. The Journal of Nutrition, 2002, 132(3): 506s-510s. |
[216] | HAN L, SILVESTRE S, SAYANOVA O, et al. Using field evaluation and systematic iteration to rationalize the accumulation of omega-3 long-chain polyunsaturated fatty acids in transgenic Camelina sativa [J]. Plant Biotechnology Journal, 2022, 20(9): 1833-1852. |
[217] | RYU M H, ZHANG J, TOTH T, et al. Control of nitrogen fixation in bacteria that associate with cereals [J]. Nature Microbiology, 2020, 5(2): 314-330. |
[218] | SHULSE C N, CHOVATIA M, AGOSTO C, et al. Engineered Root Bacteria Release Plant-Available Phosphate from Phytate [J]. Applied and Environmental Microbiology, 2019, 85(18): e01210-19. |
[219] | SHAO J, LI S, ZHANG N, et al. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9 [J]. Microbial Cell Factories, 2015, 14: 130. |
[220] | ZÚÑIGA A, FUENTE F, FEDERICI F, et al. An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth [J]. ACS Synthetic Biology, 2018, 7(6): 1519-1527. |
[221] | TRDÁ L, BAREŠOVÁ M, ŠAŠEK V, et al. Cytokinin Metabolism of Pathogenic Fungus Leptosphaeria maculans Involves Isopentenyltransferase, Adenosine Kinase and Cytokinin Oxidase/Dehydrogenase [J]. Frontiers in Microbiology, 2017, 8: 1374. |
[222] | SALOMON M V, BOTTINI R, DE SOUZA FILHO G A, et al. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine [J]. Physiologia Plantarum, 2014, 151(4): 359-374. |
[223] | MULLINS A J, MURRAY J A H, BULL M J, et al. Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria [J]. Nature Microbiology, 2019, 4(6): 996-1005. |
[224] | LI Z, HUANG P, WANG M, et al. Stepwise increase of thaxtomins production in Streptomyces albidoflavus J1074 through combinatorial metabolic engineering [J]. Metabolic Engineering, 2021, 68: 187-198. |
[225] | LIU Y, ZHU A, TAN H, et al. Engineering banana endosphere microbiome to improve Fusarium wilt resistance in banana [J]. Microbiome, 2019, 7(1): 74. |
[226] | SANATI NEZHAD A. Microfluidic platforms for plant cells studies [J]. Lab on a Chip, 2014, 14(17): 3262-3274. |
[227] | MASSALHA H, KORENBLUM E, MALITSKY S, et al. Live imaging of root-bacteria interactions in a microfluidics setup [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(17): 4549-4554. |
[228] | KEHE J, KULESA A, ORTIZ A, et al. Massively parallel screening of synthetic microbial communities [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(26): 12804-12809. |
[229] | ZENGLER K, HOFMOCKEL K, BALIGA N S, et al. EcoFABs: advancing microbiome science through standardized fabricated ecosystems [J]. Nature Methods, 2019, 16(7): 567-571. |
[230] | LIU P, PANDA K, EDWARDS S A, et al. Transposase-assisted target-site integration for efficient plant genome engineering [J]. Nature, 2024, 631(8021): 593-600. |
[231] | 邵洁, 刘海利, 王勇. 植物合成生物学的现在与未来 [J]. 合成生物学, 2020, 1(4): 395-412. |
SHAO J, LIU H L, WANG Y. Present and future of plant synthetic biology [J]. Synthetic Biology Journal, 2020, 1(4): 395-412. | |
[232] | SANDHYA D, JOGAM P, ALLINI V R, et al. The present and potential future methods for delivering CRISPR/Cas9 components in plants [J]. Journal of Genetic Engineering and Biotechnology, 2020, 18(1): 25. |
[233] | CHEN L, LIU G, ZHANG T. Integrating machine learning and genome editing for crop improvement [J]. aBIOTECH, 2024, 5(2): 262-277. |
[234] | BAUER-PANSKUS A, MIYAZAKI J, KAWALL K, et al. Risk assessment of genetically engineered plants that can persist and propagate in the environment [J]. Environmental Sciences Europe, 2020, 32(1). |
[235] | LI J, ZHAO H, ZHENG L, et al. Advances in Synthetic Biology and Biosafety Governance [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 598087. |
[236] | 王盼娣, 熊小娟, 付萍, 等.«生物安全法»实施背景下对合成生物学的监管 [J]. 华中农业大学学报, 2021, 40(6): 231-245. |
WANG P D, XIONG X J, FU P, et al. Regulation of synthetic biology under background of implementing Biosafety Law [J]. Journal of Huazhong Agriculture University, 2021, 40(6): 231-245. | |
[237] | DE SOUZA A P, BURGESS S J, DORAN L, et al. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection [J]. Science, 2022, 377(6608): 851-854. |
[238] | SPRONCKEN C C M, LIU P, MONNEY J, et al. Large-area, self-healing block copolymer membranes for energy conversion [J]. Nature, 2024, 630(8018): 866-871. |
[239] | HE Y, NING T, XIE T, et al. Large-scale production of functional human serum albumin from transgenic rice seeds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(47): 19078-19083. |
[1] | 方馨仪, 孙丽超, 霍毅欣, 王颖, 岳海涛. 微生物合成高级醇的发展趋势与挑战[J]. 合成生物学, 2025, 6(4): 873-898. |
[2] | 李永珠, 陈禹. 酵母基因组规模模型进展及发展趋势[J]. 合成生物学, 2025, 6(3): 585-602. |
[3] | 夏辰亮, 张泽成, 管星悦, 唐乾元. 统计物理与人工智能驱动的蛋白质结构生物信息学[J]. 合成生物学, 2025, 6(3): 547-565. |
[4] | 高琪, 肖文海. 酵母合成单萜类化合物的研究进展[J]. 合成生物学, 2025, 6(2): 357-372. |
[5] | 肖森, 胡立涛, 石智诚, 王发银, 余思婷, 堵国成, 陈坚, 康振. 可控分子量透明质酸的生物合成研究进展[J]. 合成生物学, 2025, 6(2): 445-460. |
[6] | 王倩, 果士婷, 辛波, 钟成, 王钰. L-精氨酸的微生物合成研究进展[J]. 合成生物学, 2025, 6(2): 290-305. |
[7] | 左一萌, 张姣姣, 连佳长. 酿酒酵母使能技术在化妆品原料合成中的应用[J]. 合成生物学, 2025, 6(2): 233-253. |
[8] | 黄姝涵, 马赫, 罗云孜. 生物合成红景天苷的研究进展[J]. 合成生物学, 2025, 6(2): 391-407. |
[9] | 郭姝媛, 张倩楠, 姑丽克孜·买买提热夏提, 杨一群, 于涛. 液体生物燃料合成与炼制的研究进展[J]. 合成生物学, 2025, 6(1): 18-44. |
[10] | 温艳华, 刘合栋, 曹春来, 巫瑞波. 蛋白质工程在医药产业中的应用[J]. 合成生物学, 2025, 6(1): 65-86. |
[11] | 邵明威, 孙思勉, 杨时茂, 陈国强. 基于极端微生物的生物制造[J]. 合成生物学, 2024, 5(6): 1419-1436. |
[12] | 赵亮, 李振帅, 付丽平, 吕明, 王士安, 张全, 刘立成, 李福利, 刘自勇. 生物转化一碳化合物原料产油脂与单细胞蛋白研究进展[J]. 合成生物学, 2024, 5(6): 1300-1318. |
[13] | 竺方欢, 岑雪聪, 陈振. 微生物合成二元醇研究进展[J]. 合成生物学, 2024, 5(6): 1367-1385. |
[14] | 禹伟, 高教琪, 周雍进. 一碳生物转化合成有机酸的研究进展[J]. 合成生物学, 2024, 5(5): 1169-1188. |
[15] | 陈锡玮, 张华然, 邹懿. 真菌源非核糖体肽类药物生物合成及代谢工程[J]. 合成生物学, 2024, 5(3): 571-592. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||