• 特约评述 •
赵欣雨, 盛琦, 刘开放, 刘佳, 刘立明
收稿日期:
2025-04-02
修回日期:
2025-06-18
出版日期:
2025-06-19
通讯作者:
刘佳,刘立明
作者简介:
基金资助:
ZHAO Xinyu, SHENG Qi, LIU Kaifang, LIU Jia, LIU Liming
Received:
2025-04-02
Revised:
2025-06-18
Online:
2025-06-19
Contact:
LIU Jia, LIU Liming
摘要:
氨基酸作为动物饲料的重要组成部分,是提高畜禽消化机能、禽肉品质、蛋白转化效率,降低豆粕使用量的关键要素。合成生物学技术的快速发展为氨基酸高产菌株构建和优化铺平了道路,极大地提升了氨基酸生产效率,显著降低了生产成本。本文在分析L-赖氨酸、L-甲硫氨酸、L-苏氨酸和L-异亮氨酸等四种天冬氨酸族氨基酸合成途径的基础上,详细介绍了菌种改造方法和策略,包括代谢路径重构、代谢途径优化、辅因子供应和增强产物外排等四个方面,并从工业环境抗逆性、底物利用范围的拓展以及动态调控系统的优化三个方面进行展望,以期为高性能氨基酸生产菌株的创制提供理论指导和技术支撑。
中图分类号:
赵欣雨, 盛琦, 刘开放, 刘佳, 刘立明. 天冬氨酸族饲用氨基酸微生物细胞工厂的创制[J]. 合成生物学, DOI: 10.12211/2096-8280.2025-032.
ZHAO Xinyu, SHENG Qi, LIU Kaifang, LIU Jia, LIU Liming. Construction of microbial cell factories for aspartate-family feed amino acids[J]. Synthetic Biology Journal, DOI: 10.12211/2096-8280.2025-032.
产品 | 菌种 | |
---|---|---|
液体L-赖氨酸碱 | 大肠杆菌KCCM 80190 | 大肠杆菌NITE BP-02917 |
谷氨酸棒状杆菌KCCM 80216 | 谷氨酸棒状杆菌KCTC 12307BP | |
谷氨酸棒状杆菌NRRL-B-67439 | 谷氨酸棒状杆菌NRRL-B-67535 | |
液体L-赖氨酸单盐酸盐 | 大肠杆菌NITE BP-02917 | |
技术纯L-赖氨酸单盐酸盐 | 大肠杆菌NITE BP-02917 | 谷氨酸棒状杆菌NRRL-B-67439 |
谷氨酸棒状杆菌DSM 32932 | 谷氨酸棒状杆菌CGMCC 7.266 | |
谷氨酸棒状杆菌KCCM 80183 | 谷氨酸棒状杆菌CGMCC 17927 | |
谷氨酸棒状杆菌NRRL B-67535 | 谷氨酸棒状杆菌CCTCC M 2015595 | |
L-赖氨酸硫酸盐 | 大肠杆菌CGMCC 7.398 | 谷氨酸棒状杆菌CGMCC 7.266 |
谷氨酸棒状杆菌KFCC 11043 | 谷氨酸棒状杆菌CGMCC 17927 | |
谷氨酸棒状杆菌KCCM 80227 | 谷氨酸棒状杆菌CCTCC M 2015595 | |
L-苏氨酸 | 大肠杆菌DSM 25085 | 大肠杆菌FERM BP-11383 |
大肠杆菌DSM 25086 | 大肠杆菌FERM BP-10942 | |
大肠杆菌CGMCC 3703 | 大肠杆菌NRRL B-30843 | |
大肠杆菌CGMCC 7.58 | 大肠杆菌KCCM 11133P | |
大肠杆菌CGMCC 7.232 | 谷氨酸棒状杆菌KCCM 80117 | |
大肠杆菌CGMCC 13325 | 谷氨酸棒状杆菌KCCM 80118 | |
L-甲硫氨酸 | 大肠杆菌KCCM 80245 | 谷氨酸棒状杆菌KCCM 80246 |
L-异亮氨酸 | 大肠杆菌FERM ABP-1064 | 谷氨酸棒杆菌KCCM 80189 |
谷氨酸棒杆菌KCCM 80185 | 谷氨酸棒杆菌CGMCC 20437 |
表1 欧盟授权允许可在饲料中使用的天冬氨酸族氨基酸生产菌种
Table 1 EU-authorized microbial strains for production of aspartate-family amino acids approved as feed additives
产品 | 菌种 | |
---|---|---|
液体L-赖氨酸碱 | 大肠杆菌KCCM 80190 | 大肠杆菌NITE BP-02917 |
谷氨酸棒状杆菌KCCM 80216 | 谷氨酸棒状杆菌KCTC 12307BP | |
谷氨酸棒状杆菌NRRL-B-67439 | 谷氨酸棒状杆菌NRRL-B-67535 | |
液体L-赖氨酸单盐酸盐 | 大肠杆菌NITE BP-02917 | |
技术纯L-赖氨酸单盐酸盐 | 大肠杆菌NITE BP-02917 | 谷氨酸棒状杆菌NRRL-B-67439 |
谷氨酸棒状杆菌DSM 32932 | 谷氨酸棒状杆菌CGMCC 7.266 | |
谷氨酸棒状杆菌KCCM 80183 | 谷氨酸棒状杆菌CGMCC 17927 | |
谷氨酸棒状杆菌NRRL B-67535 | 谷氨酸棒状杆菌CCTCC M 2015595 | |
L-赖氨酸硫酸盐 | 大肠杆菌CGMCC 7.398 | 谷氨酸棒状杆菌CGMCC 7.266 |
谷氨酸棒状杆菌KFCC 11043 | 谷氨酸棒状杆菌CGMCC 17927 | |
谷氨酸棒状杆菌KCCM 80227 | 谷氨酸棒状杆菌CCTCC M 2015595 | |
L-苏氨酸 | 大肠杆菌DSM 25085 | 大肠杆菌FERM BP-11383 |
大肠杆菌DSM 25086 | 大肠杆菌FERM BP-10942 | |
大肠杆菌CGMCC 3703 | 大肠杆菌NRRL B-30843 | |
大肠杆菌CGMCC 7.58 | 大肠杆菌KCCM 11133P | |
大肠杆菌CGMCC 7.232 | 谷氨酸棒状杆菌KCCM 80117 | |
大肠杆菌CGMCC 13325 | 谷氨酸棒状杆菌KCCM 80118 | |
L-甲硫氨酸 | 大肠杆菌KCCM 80245 | 谷氨酸棒状杆菌KCCM 80246 |
L-异亮氨酸 | 大肠杆菌FERM ABP-1064 | 谷氨酸棒杆菌KCCM 80189 |
谷氨酸棒杆菌KCCM 80185 | 谷氨酸棒杆菌CGMCC 20437 |
图3 天冬氨酸族氨基酸的反馈调控机制及代谢路径优化策略(thrA编码天冬氨酸激酶Ⅰ;metL编码天冬氨酸激酶Ⅱ;lysC编码天冬氨酸激酶Ⅲ;hom编码高丝氨酸脱氢酶;thrB编码高丝氨酸激酶;ilvA编码苏氨酸脱水酶Ⅰ;tdcB编码苏氨酸脱水酶Ⅱ;ilvBN编码乙酰乳酸合酶Ⅰ;ilvGM编码乙酰乳酸合酶Ⅱ;ilvIH编码乙酰乳酸合酶Ⅲ;asd编码天冬氨酸半醛脱氢酶;pntAB编码NAD(P)转氢酶亚基;gapN/gapA编码甘油醛-3-磷酸脱氢酶;lrp编码转录调控因子Lrp;G3P:3-磷酸甘油醛;3-PGA:3-磷酸甘油酸;ASD:天冬氨酸半醛脱氢酶)
Fig. 3 Feedback regulation mechanism and metabolic pathway optimization strategy of aspartate-family amino acids(thrA: encoding aspartate kinase Ⅰ; metL: encoding aspartate kinase Ⅱ; lysC: encoding aspartate kinase Ⅲ; hom: encoding homoserine dehydrogenase; thrB: encoding homoserine kinase; thrB: encoding homoserine kinase; ilvA: encoding threonine dehydrase Ⅰ; tdcB: encoding threonine dehydrase Ⅱ; ilvBN: encoding acetolactate synthase Ⅰ; ilvGM: encoding acetolactate synthase Ⅱ; ilvIH: encoding acetolactate synthase Ⅲ; asd: encoding aspartate semialdehyde dehydrogenase; pntAB: encoding subunits of NAD(P) transhydrogenase; gapN/gapA: encoding glyceraldehyde-3-phosphate dehydrogenase; lrp: encoding transcriptional regulatory factor Lrp; G3P: glyceraldehyde 3-phosphate; 3-PGA: 3-Phosphoglyceric acid; ASD: aspartate semialdehyde dehydrogenase)
酶/前导肽/阻遏蛋白 | 基因 | 菌株 | 策略 | 效果 | 参考 文献 |
---|---|---|---|---|---|
AK | lysC | E. coli | T344M | L-赖氨酸产量6.3 g/L | [ |
T352I | L-苏氨酸产量14.4 g/L,提升30.9% | [ | |||
C. glutamicum | T311I | L-苏氨酸产量0.27 g/L | [ | ||
S301F | L-苏氨酸产量14.17 g/L,提升4.2% | [ | |||
thrA | E. coli | S345F | L-苏氨酸产量82.4mM | [ | |
G433R | L-苏氨酸产量36.61 mg/L | [ | |||
AHAS | ilvH | E. coli | G14D, S17F | L-异亮氨酸产量0.322 g/L | [ |
ilvN | E. coli | H47L | L-异亮氨酸产量5.1 g/L,提升59.4% | [ | |
ilvB | E. coli | K30Q, N156D, V233I | L-异亮氨酸产量5.1 g/L,提升59.4% | [ | |
C. glutamicum | P176S, D426E, L575W | L-异亮氨酸产量4.17 g/L,提升61.0% | [ | ||
I47Y | L-异亮氨酸产量22.7 g/L,提升10.2% | [ | |||
TD | ilvA | E. coli | S97F | L-异亮氨酸产量0.322 g/L | [ |
C. glutamicum | G96D | L-异亮氨酸产量12 g/L | [ | ||
ThrL | thrL | E. coli | 敲除thrL基因 | L-苏氨酸产量1.63 g/L | [ |
MetJ | metJ | E. coli | 敲除metJ基因 | L-甲硫氨酸产量提升11% | [ |
表2 解除反馈调节机制的策略
Table 2 Strategies for relieving feedback regulation mechanisms
酶/前导肽/阻遏蛋白 | 基因 | 菌株 | 策略 | 效果 | 参考 文献 |
---|---|---|---|---|---|
AK | lysC | E. coli | T344M | L-赖氨酸产量6.3 g/L | [ |
T352I | L-苏氨酸产量14.4 g/L,提升30.9% | [ | |||
C. glutamicum | T311I | L-苏氨酸产量0.27 g/L | [ | ||
S301F | L-苏氨酸产量14.17 g/L,提升4.2% | [ | |||
thrA | E. coli | S345F | L-苏氨酸产量82.4mM | [ | |
G433R | L-苏氨酸产量36.61 mg/L | [ | |||
AHAS | ilvH | E. coli | G14D, S17F | L-异亮氨酸产量0.322 g/L | [ |
ilvN | E. coli | H47L | L-异亮氨酸产量5.1 g/L,提升59.4% | [ | |
ilvB | E. coli | K30Q, N156D, V233I | L-异亮氨酸产量5.1 g/L,提升59.4% | [ | |
C. glutamicum | P176S, D426E, L575W | L-异亮氨酸产量4.17 g/L,提升61.0% | [ | ||
I47Y | L-异亮氨酸产量22.7 g/L,提升10.2% | [ | |||
TD | ilvA | E. coli | S97F | L-异亮氨酸产量0.322 g/L | [ |
C. glutamicum | G96D | L-异亮氨酸产量12 g/L | [ | ||
ThrL | thrL | E. coli | 敲除thrL基因 | L-苏氨酸产量1.63 g/L | [ |
MetJ | metJ | E. coli | 敲除metJ基因 | L-甲硫氨酸产量提升11% | [ |
产品 | 竞争/降解路径 | 菌株 | 策略 | 参考文献 |
---|---|---|---|---|
L-苏氨酸 | L-赖氨酸、L-甲硫氨酸 | E. coli | 敲除lysA和metA基因 | [ |
L-赖氨酸、L-甲硫氨酸、 L-异亮氨酸、L-甘氨酸 | E. coli | 敲除lysA、metA和tdh基因,引入ilvAS97F基因 | [ | |
L-赖氨酸、L-异亮氨酸 | C. glutamicum | 异源表达Streptococcus pneumoniae来源的dapA基因和E. coli来源的ilvA基因 | [ | |
L-赖氨酸、L-异亮氨酸、L-丙氨酸 | C. glutamicum | 引入ilvAG96D和dapAK68H基因,敲除alaT和avtA基因 | [ |
表3 阻断竞争路径和弱化降解路径的策略
Table 3 Strategies for blocking competing pathways and attenuating degradation pathways
产品 | 竞争/降解路径 | 菌株 | 策略 | 参考文献 |
---|---|---|---|---|
L-苏氨酸 | L-赖氨酸、L-甲硫氨酸 | E. coli | 敲除lysA和metA基因 | [ |
L-赖氨酸、L-甲硫氨酸、 L-异亮氨酸、L-甘氨酸 | E. coli | 敲除lysA、metA和tdh基因,引入ilvAS97F基因 | [ | |
L-赖氨酸、L-异亮氨酸 | C. glutamicum | 异源表达Streptococcus pneumoniae来源的dapA基因和E. coli来源的ilvA基因 | [ | |
L-赖氨酸、L-异亮氨酸、L-丙氨酸 | C. glutamicum | 引入ilvAG96D和dapAK68H基因,敲除alaT和avtA基因 | [ |
产品 | 菌株 | 策略 | 参考文献 |
---|---|---|---|
L-苏氨酸 | E. coli | 过表达thrB、thrC和编码抗反馈抑制突变体的thrAS345F基因 | [ |
P cysJ 启动子动态调控asd和thrABC基因的表达量 | [ | ||
C. glutamicum | 过表达asd、thrB以及编码抗反馈抑制突变体的lysCT311I和homG378E基因 | [ | |
L-甲硫氨酸 | E. coli | 过表达metC和编码抗反馈抑制突变体的metAR27C,I296S,P298L基因 | [ |
C. glutamicum | 过表达lysC、asd、hom、metH、aecD和metYX基因 | [ | |
L-赖氨酸 | E. coli | 过表达lysC和lysA基因 | [ |
C. glutamicum | 过表达lysC、asd、dapA、dapB、ddh和lysA基因 | [ | |
L-异亮氨酸 | E. coli | 过表达编码抗反馈抑制突变体的ilvAP363L、ilvNK30Q,N156D,V233I、metAG189C和metBQ5R, L29H, G69D, F87I, E136G, N148Y, K273G, A346T基因 | [ |
C. glutamicum | 过表达编码抗反馈抑制突变体的ilvAF383V和ilvBP176S,D426EE,L575W基因 | [ |
表4 重构主合成代谢路径的策略
Table 4 Strategies for reconstructing primary anabolic pathways
产品 | 菌株 | 策略 | 参考文献 |
---|---|---|---|
L-苏氨酸 | E. coli | 过表达thrB、thrC和编码抗反馈抑制突变体的thrAS345F基因 | [ |
P cysJ 启动子动态调控asd和thrABC基因的表达量 | [ | ||
C. glutamicum | 过表达asd、thrB以及编码抗反馈抑制突变体的lysCT311I和homG378E基因 | [ | |
L-甲硫氨酸 | E. coli | 过表达metC和编码抗反馈抑制突变体的metAR27C,I296S,P298L基因 | [ |
C. glutamicum | 过表达lysC、asd、hom、metH、aecD和metYX基因 | [ | |
L-赖氨酸 | E. coli | 过表达lysC和lysA基因 | [ |
C. glutamicum | 过表达lysC、asd、dapA、dapB、ddh和lysA基因 | [ | |
L-异亮氨酸 | E. coli | 过表达编码抗反馈抑制突变体的ilvAP363L、ilvNK30Q,N156D,V233I、metAG189C和metBQ5R, L29H, G69D, F87I, E136G, N148Y, K273G, A346T基因 | [ |
C. glutamicum | 过表达编码抗反馈抑制突变体的ilvAF383V和ilvBP176S,D426EE,L575W基因 | [ |
前体 | 产品 | 菌株 | 策略 | 参考文献 |
---|---|---|---|---|
草酰乙酸 | L-赖氨酸 | C. glutamicum | 过表达ppc和pyc基因,敲除pck基因 | [ |
L-苏氨酸 | E. coli | 过表达ppc基因,异源表达Rhizobium etli来源的pyc基因,利用P flic 启动子动态调控gltA基因 | [ | |
过表达ppc和acs基因,敲除iclR基因 | [ | |||
C. glutamicum | 过表达ppc、pyc和aspB基因,异源表达E. coli来源的aspA基因 | [ | ||
L-甲硫氨酸 | E. coli | 敲除pykA和pykF基因 | [ | |
过表达sucA基因,敲除sucD基因 | [ | |||
C. glutamicum | 过表达pycP458S基因,敲除pyk2基因 | [ | ||
L-异亮氨酸 | E. coli | 敲除ptsG、pykF和iclR基因,过表达ppc基因,异源表达Methanococcus jannaschii来源的cimAI47V,E114V,H126Q,T204A,L238S,V373STOP基因 | [ | |
敲除aceA和sucCD基因,过表达metA和metB基因 | [ | |||
C. glutamicum | 敲除alaT和alr基因 | [ |
表5 强化关键代谢节点前体供应的策略
Table 5 Strategies for enhancing precursor supply at key metabolic nodes
前体 | 产品 | 菌株 | 策略 | 参考文献 |
---|---|---|---|---|
草酰乙酸 | L-赖氨酸 | C. glutamicum | 过表达ppc和pyc基因,敲除pck基因 | [ |
L-苏氨酸 | E. coli | 过表达ppc基因,异源表达Rhizobium etli来源的pyc基因,利用P flic 启动子动态调控gltA基因 | [ | |
过表达ppc和acs基因,敲除iclR基因 | [ | |||
C. glutamicum | 过表达ppc、pyc和aspB基因,异源表达E. coli来源的aspA基因 | [ | ||
L-甲硫氨酸 | E. coli | 敲除pykA和pykF基因 | [ | |
过表达sucA基因,敲除sucD基因 | [ | |||
C. glutamicum | 过表达pycP458S基因,敲除pyk2基因 | [ | ||
L-异亮氨酸 | E. coli | 敲除ptsG、pykF和iclR基因,过表达ppc基因,异源表达Methanococcus jannaschii来源的cimAI47V,E114V,H126Q,T204A,L238S,V373STOP基因 | [ | |
敲除aceA和sucCD基因,过表达metA和metB基因 | [ | |||
C. glutamicum | 敲除alaT和alr基因 | [ |
辅因子 | 菌株 | 产品 | 策略 | 参考文献 |
---|---|---|---|---|
NADPH | E. coli | L-苏氨酸 | 过表达pntAB基因,异源表达Tistrella mobilis来源的asd基因 | [ |
L-异亮氨酸 | 过表达aspA、bcd和pntAB基因 | [ | ||
C. glutamicum | L-赖氨酸 | 过表达pntAB和zwf基因,P lysE 启动子动态调控gapN基因 | [ | |
L-甲硫氨酸 | 过表达zwf fbr和gnd fbr基因,异源表达Clostridium acetobutylicum来源的gapC基因 | [ | ||
ATP | E. coli | L-苏氨酸 | 异源表达Tistrella mobilis来源的asd基因和Pseudomonas aeruginosa来源的adh基因,敲除amn基因,异源表达Mannheimia succiniciproducens来源的pckA基因和Vitreoscilla来源的血红蛋白突变体编码基因vgbH36R, Q66R | [ |
C. glutamicum | L-赖氨酸 | 过表达pgk和pyk基因,敲除amn基因 | [ | |
异源表达M. maripaludis来源的glk/pfk基因,过表达ndh基因,敲除sigH基因 | [ |
表6 辅因子工程
Table 6 Cofactor engineering
辅因子 | 菌株 | 产品 | 策略 | 参考文献 |
---|---|---|---|---|
NADPH | E. coli | L-苏氨酸 | 过表达pntAB基因,异源表达Tistrella mobilis来源的asd基因 | [ |
L-异亮氨酸 | 过表达aspA、bcd和pntAB基因 | [ | ||
C. glutamicum | L-赖氨酸 | 过表达pntAB和zwf基因,P lysE 启动子动态调控gapN基因 | [ | |
L-甲硫氨酸 | 过表达zwf fbr和gnd fbr基因,异源表达Clostridium acetobutylicum来源的gapC基因 | [ | ||
ATP | E. coli | L-苏氨酸 | 异源表达Tistrella mobilis来源的asd基因和Pseudomonas aeruginosa来源的adh基因,敲除amn基因,异源表达Mannheimia succiniciproducens来源的pckA基因和Vitreoscilla来源的血红蛋白突变体编码基因vgbH36R, Q66R | [ |
C. glutamicum | L-赖氨酸 | 过表达pgk和pyk基因,敲除amn基因 | [ | |
异源表达M. maripaludis来源的glk/pfk基因,过表达ndh基因,敲除sigH基因 | [ |
产品 | 菌株 | 策略 | 参考文献 |
---|---|---|---|
L-赖氨酸 | C. glutamicum | 敲除pgi基因,过表达ptsG基因 | [ |
过表达lysE基因,敲除lysP基因,异源表达E. coli来源的ybjE基因 | [ | ||
L-苏氨酸 | E. coli | 敲除crr、sstT和tdcC基因,过表达glk、rhtC和rhtA基因,异源表达Zymomonas mobilis来源的glf基因 | [ |
C. glutamicum | 过表达thrE基因,异源表达E. coli来源的rhtC基因 | [ | |
L-甲硫氨酸 | E. coli | 过表达yjeH基因,敲除metD和rhtA基因 | [ |
C. glutamicum | 过表达brnFE基因,敲除metD基因 | [ | |
L-异亮氨酸 | E. coli | 过表达brnFE基因,敲除brnQ基因 | [ |
过表达glk、ygaZH基因,敲除ptsG和rhtC基因 | [ | ||
过表达ygaZH基因,敲除rhtC和livJ基因 | [ |
表7 转运体工程
Table 7 Transporter engineering
产品 | 菌株 | 策略 | 参考文献 |
---|---|---|---|
L-赖氨酸 | C. glutamicum | 敲除pgi基因,过表达ptsG基因 | [ |
过表达lysE基因,敲除lysP基因,异源表达E. coli来源的ybjE基因 | [ | ||
L-苏氨酸 | E. coli | 敲除crr、sstT和tdcC基因,过表达glk、rhtC和rhtA基因,异源表达Zymomonas mobilis来源的glf基因 | [ |
C. glutamicum | 过表达thrE基因,异源表达E. coli来源的rhtC基因 | [ | |
L-甲硫氨酸 | E. coli | 过表达yjeH基因,敲除metD和rhtA基因 | [ |
C. glutamicum | 过表达brnFE基因,敲除metD基因 | [ | |
L-异亮氨酸 | E. coli | 过表达brnFE基因,敲除brnQ基因 | [ |
过表达glk、ygaZH基因,敲除ptsG和rhtC基因 | [ | ||
过表达ygaZH基因,敲除rhtC和livJ基因 | [ |
91 | Zhang Hongwei, Wang Pengchao. Research Progress of Microbial Cofactor Engineering[J]. Chinese Biotechnology, 2023, 43(4): 112-122. |
92 | GAO Cong, SONG Wei, YE Chao, et al. Bifunctional optogenetic switch powered NADPH availability for improving L-valine production in Escherichia coli [J]. ACS Sustainable Chemistry & Engineering, 2024, 12(41): 15103-15113. |
93 | 刘开放. 新型微生物辅因子系统的开发与应用[D]. 无锡: 江南大学, 2024. |
Liu Kaifang. Development and application of novel cofactor systems in microorganisms[D]. Wuxi: Jiangnan Univisity, 2024. | |
94 | BLACK William B., ZHANG Linyue, Wai Shun MAK, et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis[J]. Nature Chemical Biology, 2020, 16(1): 87-94. |
95 | 于袁欢, 周阳, 王欣怡, 等. 光遗传学照进生物医学研究进展[J]. 合成生物学, 2023, 4(1): 102-140. |
Yu Yuanhuan, Zhou Yang, Wang Xinyi, et al. Advances in optogenetics for biomedical research[J]. Synthetic Biology Journal, 2023, 4(1): 102-140. | |
96 | CHEN Ruibing, YANG Shan, ZHANG Lei, et al. Advanced strategies for production of natural products in yeast[J]. Iscience, 2020, 23(3): 100879. |
97 | CHEN Ruibing, GAO Jiaoqi, YU Wei, et al. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast[J]. Nature Chemical Biology, 2022, 18(5): 520-529. |
98 | ZHANG Yufei, ZHANG Guoyan, ZHANG Huifang, et al. Efficient fermentative production of β-alanine from glucose through multidimensional engineering of Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2024, 72(25): 14274-14283. |
99 | LINDNER Steffen N., PETROV Dimitar P., HAGMANN Christian T., et al. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains[J]. Applied and Environmental Microbiology, 2013, 79(8): 2588-2595. |
100 | MOLINA-VAZQUEZ Eliseo R., CASPETA Luis, GOSSET Guillermo, et al. Tailoring Escherichia coli BL21(DE3) for preferential xylose utilization via metabolic and regulatory engineering[J]. Applied Microbiology and Biotechnology, 2025, 109(1): 54. |
101 | ZHU Xinna, FAN Feiyu, QIU Huanna, et al. New xylose transporters support the simultaneous consumption of glucose and xylose in Escherichia coli [J]. Mlife, 2022, 1(2): 156-170. |
102 | LI Jia, QIU Zetian, ZHAO Guangrong. Modular engineering of E. coli coculture for efficient production of resveratrol from glucose and arabinose mixture[J]. Synthetic and Systems Biotechnology, 2022, 7(2): 718-729. |
103 | HALLE Lars, HOEPPNER Daniela, DOSER Marvin, et al. From molasses to purified α-ketoglutarate with engineered Corynebacterium glutamicum [J]. Bioresource Technology, 2025, 416: 131803. |
104 | MOON Min-Woo, PARK Sun-Yang, CHOI Soo-Keun, et al. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation[J]. Journal of Molecular Microbiology and Biotechnology, 2007, 12(1-2): 43-50. |
105 | 刘冬冬. 强化葡萄糖代谢途径提高L-赖氨酸发酵水平的研究[D]. 无锡: 江南大学, 2017. |
Liu Dongdong. Increasing the fermentation level of L-lysine via enhancing glucose metabolism pathways[D]. Wuxi: Jiangnan Univisity, 2017. | |
106 | PARCHE S., BURKOVSKI A., SPRENGER G. A., et al. Corynebacterium glutamicum: a dissection of the PTS[J]. Journal of Molecular Microbiology and Biotechnology, 2001, 3(3): 423-428. |
107 | WANG Lian, LI Ning, YU Shiqin, et al. Enhancing caffeic acid production in Escherichia coli by engineering the biosynthesis pathway and transporter[J]. Bioresource Technology, 2023, 368: 128320. |
108 | 郭亮, 高聪, 柳亚迪, 等. 大肠杆菌生产饲用氨基酸的研究进展[J]. 合成生物学, 2021, 2(6): 964-981. |
Guo Liang, Gao Cong, Liu Yadi, et al. Advances in bioproduction of feed amino acid by Escherichia coli [J]. Synthetic Biology Journal, 2021, 2(6): 964-981. | |
109 | 于勇, 朱欣娜, 毕昌昊, 等. 大肠杆菌细胞工厂的创建技术[J]. 生物工程学报, 2021, 37(5): 1564-1577. |
Yu Yong, Zhu Xinna, Bi Changhao, et al. Construction of Escherichia coli cell factories[J]. Chinese journal of biotechnology, 2021, 37(5): 1564-1577. | |
110 | 赵静. 几种主要饲用氨基酸的营养研究进展[J]. 中国饲料添加剂, 2016, 0(1): 10-13. |
Zhao Jing. Research advance on nutritional efects of several major feeding amino acids[J]. China Feed Additive, 2016, 0(1): 10-13. | |
111 | ISOGAI Shota, TAKAGI Hiroshi. Enhancement of lysine biosynthesis confers high-temperature stress tolerance to Escherichia coli cells[J]. Applied Microbiology and Biotechnology, 2021, 105(18): 6899-6908. |
112 | LIU Jiao, ZHAO Xiaojia, CHENG Haijiao, et al. Comprehensive screening of industrially relevant components at genome scale using a high-quality gene overexpression collection of Corynebacterium glutamicum [J]. Trends in Biotechnology, 2025, 43(1): 220-247. |
113 | ZHANG Yiwen, YANG Junjie, QIAN Fenghui, et al. Engineering a xylose fermenting yeast for lignocellulosic ethanol production[J]. Nature Chemical Biology, 2025, 21(3): 443-450. |
114 | GAO Jiaoqi, LI Yunxia, YU Wei, et al. Rescuing yeast from cell death enables overproduction of fatty acids from sole methanol[J]. Nature Metabolism, 2022, 4(7): 932-943. |
115 | GE Chang, YU Zheng, SHENG Huakang, et al. Redesigning regulatory components of quorum-sensing system for diverse metabolic control[J]. Nature Communications, 2022, 13(1): 2182. |
1 | FANG Qunchao, ZHANG Xiaoying, DAI Guichao, et al. Low-opportunity-cost feed can reduce land-use-related environmental impacts by about one-third in China[J]. Nature Food, 2023, 4(8): 677-685. |
2 | MA Qian, ZHANG Quanwei, XU Qingyang, et al. Systems metabolic engineering strategies for the production of amino acids[J]. Synthetic and Systems Biotechnology, 2017, 2(2): 87-96. |
3 | 刘佳, 盛琦, 刘开放, 等. 微生物制造饲用氨基酸助力豆粕减量替代[J]. 中国科学院院刊, 2025, 40(1): 25-35. |
Liu Jia, Sheng Qi, Liu Kaifang, et al. Microbial production of feed amino acids promotes reduction and replacement of soybean meal[J]. Bulletin of Chinese Academy of Sciences, 2025, 40(1): 25-35. | |
4 | KIM So-Young. What would be the next feed amino acid based on a microbial point of view?[J]. Journal of Animal Science, 2021, 99(1): 12-13. |
5 | LIAO Jialong, ZHANG Pengguang, YIN Jingdong, et al. New insights into the effects of dietary amino acid composition on meat quality in pigs: a review[J]. Meat Science, 2025, 221: 109721. |
6 | OLUWABIYI Cecilia T., SONG Zhigang. Branched-chain amino acids supplementation in low-protein broiler diets: a review[J]. Animal Feed Science and Technology, 2024, 318: 116114. |
7 | LI Ming-Hou, LI Han, ZHANG Xue, et al. Metabolic engineering of Corynebacterium glutamicum: unlocking its potential as a key cell factory platform for organic acid production[J]. Biotechnology Advances, 2024, 77: 108475. |
8 | LIU Jie, XU Jianzhong, RAO Zhiming, et al. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects[J]. Microbiological Research, 2022, 262: 127101. |
9 | LI Chenyi, ZHANG Ruihua, WANG Jian, et al. Protein engineering for improving and diversifying natural product biosynthesis[J]. Trends in Biotechnology, 2020, 38(7): 729-744. |
10 | DONG Xunyan, ZHAO Yue, HU Jinyu, et al. Attenuating L-lysine production by deletion of ddh and lysE and their effect on L-threonine and L-isoleucine production in Corynebacterium glutamicum [J]. Enzyme and Microbial Technology, 2016, 93: 70-78. |
11 | BOMMAREDDY Rajesh Reddy, CHEN Zhen, RAPPERT Sugima, et al. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase[J]. Metabolic Engineering, 2014, 25: 30-37. |
12 | CHEN Yuanyuan, HUANG Lianggang, YU Tao, et al. Balancing the AspC and AspA pathways of Escherichia coli by systematic metabolic engineering strategy for high-efficient L-homoserine production[J]. ACS Synthetic Biology, 2024, 13(8): 2457-2469. |
13 | BASSALO Marcelo C., GARST Andrew D., CHOUDHURY Alaksh, et al. Deep scanning lysine metabolism in Escherichia coli [J]. Molecular Systems Biology, 2018, 14(11): e8371. |
14 | OSIRE Tolbert, YANG Taowei, XU Meijuan, et al. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli [J]. International Journal of Biological Macromolecules, 2021, 169: 8-17. |
15 | XIAO Jing, WANG Datao, WANG Lei, et al. Increasing L-lysine production in Corynebacterium glutamicum by engineering amino acid transporters[J]. Amino Acids, 2020, 52(10): 1363-1374. |
16 | LIU Jie, Ying OU, XU Jianzhong, et al. L-lysine production by systems metabolic engineering of an NADPH auto-regulated Corynebacterium glutamicum [J]. Bioresource Technology, 2023, 387: 129701. |
17 | MALLA Sailesh, VAN DER HELM Eric, DARBANI Behrooz, et al. A novel efficient L-lysine exporter identified by functional metagenomics[J]. Frontiers in Microbiology, 2022, 13: 855736. |
18 | LI Zhongcai, LIU Qian, SUN Jiahui, et al. Multivariate modular metabolic engineering for enhanced L-methionine biosynthesis in Escherichia coli [J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 101. |
19 | LI Ying, CONG Hua, LIU Bingnan, et al. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2016, 109(9): 1185-1197. |
20 | ZHOU Benzheng, ZHAO Guihong, YU Jing, et al. Multi-step metabolic engineering Corynebacterium glutamicum ATCC13032 to produce L-methionine[J]. Systems Microbiology and Biomanufacturing, 2024. |
21 | ZHAO Zhenqiang, YOU Jiajia, SHI Xuanping, et al. Multi-module engineering to guide the development of an efficient L-threonine-producing cell factory[J]. Bioresource Technology, 2025, 416: 131802. |
22 | LEE Kwang Ho, PARK Jin Hwan, KIM Tae Yong, et al. Systems metabolic engineering of Escherichia coli for L-threonine production[J]. Molecular Systems Biology, 2007, 3: 149. |
23 | Toan Minh VO, PARK Joon Young, KIM Donghyuk, et al. Use of acetate as substrate for sustainable production of homoserine and threonine by Escherichia coli W3110: a modular metabolic engineering approach[J]. Metabolic Engineering, 2024, 84: 13-22. |
24 | ZHAO Guihong, ZHANG Dezhi, ZHOU Benzheng, et al. Fine-regulating the carbon flux of L-isoleucine producing Corynebacterium glutamicum WM001 for efficient L-threonine production[J]. ACS Synthetic Biology, 2024, 13(10): 3446-3460. |
25 | PU Wei, FENG Jinhui, CHEN Jiuzhou, et al. Engineering of L-threonine and L-proline biosensors by directed evolution of transcriptional regulator SerR and application for high-throughput screening[J]. Bioresources and Bioprocessing, 2025, 12(1): 4. |
26 | SONG Jie, ZHUANG Miaomiao, DU Chunyan, et al. Metabolic engineering of Escherichia coli for self-induced production of L-isoleucine[J]. ACS Synthetic Biology, 2025, 14(1): 179-192. |
27 | SHI Congrong, HUO Xiaojing, YOU Ran, et al. High yield production of L-isoleucine through readjusting the ratio of two direct precursors in Escherichia coli [J]. Bioresource Technology, 2025, 418: 131889. |
28 | LU Nan, WEI Minhua, YANG Xuejing, et al. Growth-coupled production of L-isoleucine in Escherichia coli via metabolic engineering[J]. Metabolic Engineering, 2024, 86: 181-193. |
29 | LI Yanjun, WEI Hongbo, WANG Ting, et al. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives[J]. Bioresource Technology, 2017, 245: 1588-1602. |
30 | LIU Zhenyang, LIU Jie, ZHANG Feng, et al. Modifying Corynebacterium glutamicum by metabolic engineering for efficient synthesis of L‑lysine[J]. Systems Microbiology and Biomanufacturing, 2025, 5(1): 288-299. |
31 | ZHANG Qiquan, WANG Yuheng, WANG Xiaolu, et al. Metabolic engineering of Escherichia coli for efficient L-isoleucine production based on the citramalate pathway[J]. Journal of Agricultural and Food Chemistry, 2025, 73(19): 11900-11911. |
32 | GUILLOUET S., RODAL A. A., AN G. H., et al. Metabolic redirection of carbon flow toward isoleucine by expressing a catabolic threonine dehydratase in a threonine-overproducing Corynebacterium glutamicum [J]. Applied Microbiology and Biotechnology, 2001, 57(5-6): 667-673. |
33 | YU Shengzhu, ZHENG Bo, CHEN Zhenya, et al. Metabolic engineering of Corynebacterium glutamicum for producing branched chain amino acids[J]. Microbial Cell Factories, 2021, 20(1): 230. |
34 | GUO Yanfeng, HAN Mei, XU Jianzhong, et al. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum [J]. Protein Expression and Purification, 2015, 109: 106-112. |
35 | YIN Lianghong, HU Xiaoqing, XU Daqing, et al. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum [J]. Metabolic Engineering, 2012, 14(5): 542-550. |
36 | SHI Jing, FENG Zhenzhen, SONG Qian, et al. Structural and functional insights into transcription activation of the essential LysR-type transcriptional regulators[J]. Protein Science, 2024, 33(6): e5012. |
37 | DE GRAAF Albert, EGGELING L., SAHM Hermann. Metabolic engineering for L-lysine production by Corynebacterium glutamicum [J]. Advances in biochemical engineering/biotechnology, 2001, 73: 9-29. |
38 | GRUZDEV Nadya, HACHAM Yael, HAVIV Hadar, et al. Conversion of methionine biosynthesis in Escherichia coli from trans- to direct-sulfurylation enhances extracellular methionine levels[J]. Microbial Cell Factories, 2023, 22(1): 151. |
39 | ZHOU Zhao, ZHANG Xiangyan, WU Jun, et al. Targeting cofactors regeneration in methylation and hydroxylation for high level production of ferulic acid[J]. Metabolic Engineering, 2022, 73: 247-255. |
40 | RHEE KY, PAREKH BS, HATFIELD GW. Leucine-responsive regulatory protein-DNA interactions in the leader region of the ilvGMEDA operon of Escherichia coli [J]. Journal of Biological Chemistry, 1996, 271(43): 26499-26507. |
41 | JAFRI Samina, CHEN Shaolin, CALVO Joseph M. IlvIH operon expression in Escherichia coli requires Lrp binding to two distinct regions of DNA[J]. Journal of Bacteriology, 2002, 184(19): 5293-5300. |
42 | MORBACH Susanne, JUNGER Carmen, SAHM Hermann, et al. Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site[J]. Journal of Bioscience and Bioengineering, 2000, 90(5): 501-507. |
43 | BOOB Aashutosh Girish, CHEN Junyu, ZHAO Huimin. Enabling pathway design by multiplex experimentation and machine learning[J]. Metabolic Engineering, 2024, 81: 70-87. |
44 | DING Dongqin, ZHU Yaru, BAI Danyang, et al. Monitoring and dynamically controlling glucose uptake rate and central metabolism[J]. Nature Chemical Engineering, 2025, 2(1): 50-62. |
45 | SHENG Qi, YI Lingxin, ZHONG Bin, et al. Shikimic acid biosynthesis in microorganisms: current status and future direction[J]. Biotechnology Advances, 2023, 62: 108073. |
46 | XU Jianzhong, HAN Mei, REN Xidong, et al. Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of L-lysine in Escherichia coli [J]. Biochemical Engineering Journal, 2016, 114: 82-89. |
47 | LEE J. H., LEE D. E., LEE B. U., et al. Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain[J]. Journal of Bacteriology, 2003, 185(18): 5442-5451. |
48 | ZHAO Zhenqiang, YOU Jiajia, SHI Xuanping, et al. Engineering Escherichia coli for L-threonine hyperproduction based on multidimensional optimization strategies[J]. Journal of Agricultural and Food Chemistry, 2024, 72(41): 22682-22691. |
49 | LIU Jianhang, LIU Jiao, LI Jiajun, et al. Reconstruction the feedback regulation of amino acid metabolism to develop a non-auxotrophic L-threonine producing Corynebacterium glutamicum [J]. Bioresources and Bioprocessing, 2024, 11(1): 43. |
50 | LIU Yadi, LI Yanyan, WANG Xiaoyuan. Acetohydroxyacid synthases: evolution, structure, and function[J]. Applied Microbiology and Biotechnology, 2016, 100(20): 8633-8649. |
51 | PARK Jin Hwan, Jae Eun OH, LEE Kwang Ho, et al. Rational design of Escherichia coli for L-isoleucine production[J]. ACS Synthetic Biology, 2012, 1(11): 532-540. |
52 | ZHANG Yanchao, LIU Yadi, ZHANG Shuyan, et al. Metabolic engineering of Corynebacterium glutamicum WM001 to improve L-isoleucine production[J]. Biotechnology and Applied Biochemistry, 2021, 68(3): 568-584. |
53 | MIN Duan, SHUO Chen, XINLI Liu, et al. The application of Corynebacterium glutamicum in L-threonine biosynthesis[J]. Fermentation, 2023, 9(9): 822. |
54 | LV Qinglan, HU Mengkai, TIAN Lingzhi, et al. Enhancing L-glutamine production in Corynebacterium glutamicum by rational metabolic engineering combined with a two-stage pH control strategy[J]. Bioresource Technology, 2021, 341: 125799. |
55 | JIN Xin, WANG Sumeng, GAO Yaping, et al. Combinatorial metabolic engineering of Escherichia coli to efficiently produce L-threonine from untreated cane molasses[J]. Bioresource Technology, 2025, 419: 132058. |
56 | YE Chao, LUO Qiuling, GUO Liang, et al. Improving lysine production through construction of an Escherichia coli enzyme-constrained model[J]. Biotechnology and Bioengineering, 2020, 117(11): 3533-3544. |
57 | JIANG Shuai, WANG Ruirui, WANG Dehu, et al. Metabolic reprogramming and biosensor-assisted mutagenesis screening for high-level production of L-arginine in Escherichia coli [J]. Metabolic Engineering, 2023, 76: 146-157. |
58 | WANG Lijuan, GUO Yingying, LI Mengyue, et al. Antibiotic-free high-level L-methionine production in engineered Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2024, 72(46): 25791-25800. |
59 | YE Jianwen, HU Dingkai, CHE Xuemei, et al. Engineering of Halomonas bluephagenesis for low cost production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose[J]. Metabolic Engineering, 2018, 47: 143-152. |
60 | YE Jianwen, HU Dingkai, YIN Jin, et al. Stimulus response-based fine-tuning of polyhydroxyalkanoate pathway in Halomonas [J]. Metabolic Engineering, 2020, 57: 85-95. |
61 | LI Teng, YE Jianwen, SHEN Rui, et al. Semirational approach for ultrahigh poly(3-hydroxybutyrate) accumulation in Escherichia coli by combining one-step library construction and high-throughput screening[J]. ACS Synthetic Biology, 2016, 5(11): 1308-1317. |
62 | SHEN Rui, YIN Jin, YE Jianwen, et al. Promoter engineering for enhanced P(3HB-co-4HB) production by Halomonas bluephagenesis [J]. ACS Synthetic Biology, 2018, 7(8): 1897-1906. |
63 | DU Fei, LI Zijia, LI Xin, et al. Optimizing multicopy chromosomal integration for stable high-performing strains[J]. Nature Chemical Biology, 2024, 20(12): 1670-1679. |
64 | BAEK Jang-Mi, MAZUMDAR Suman, LEE Sang-Woo, et al. Butyrate production in engineered Escherichia coli with synthetic scaffolds[J]. Biotechnology and Bioengineering, 2013, 110(10): 2790-2794. |
65 | DUEBER John E., WU Gabriel C., MALMIRCHEGINI G. Reza,et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8): 753-759. |
66 | ZHOU Hui, VONK Brenda, ROUBOS Johannes A., et al. Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor[J]. Nucleic Acids Research, 2015, 43(21): 10560-10570. |
67 | VENAYAK Naveen, ANESIADIS Nikolaos, CLUETT William R., et al. Engineering metabolism through dynamic control[J]. Current Opinion in Biotechnology, 2015, 34: 142-152. |
68 | CRESS Brady F., TRANTAS Emmanouil A., VERVERIDIS FiIipios, et al. Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways[J]. Current Opinion in Biotechnology, 2015, 36: 205-214. |
69 | IMMETHUN Cheryl M., DELORENZO Drew M., FOCHT Caroline M., et al. Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp. PCC 6803[J]. Biotechnology and Bioengineering, 2017, 114(7): 1561-1569. |
70 | SHEN Xiaolin, WANG Jia, LI Chenyi, et al. Dynamic gene expression engineering as a tool in pathway engineering[J]. Current Opinion in Biotechnology, 2019, 59: 122-129. |
71 | LALWANI Makoto A., ZHAO Evan M., AVALOS Jose L. Current and future modalities of dynamic control in metabolic engineering[J]. Current Opinion in Biotechnology, 2018, 52: 56-65. |
72 | PINTO Daniela, VECCHIONE Stefano, WU Hao, et al. Engineering orthogonal synthetic timer circuits based on extracytoplasmic function σ factors[J]. Nucleic Acids Research, 2018, 46(14): 7450-7464. |
73 | MEYER Adam J., SEGALL-SHAPIRO Thomas H., GLASSEY Emerson, et al. Escherichia coli "Marionette" strains with 12 highly optimized small-molecule sensors[J]. Nature Chemical Biology, 2019, 15(2): 196-204. |
74 | 叶健文, 陈江楠, 张旭, 等. 动态调控: 一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
Ye Jianwen, Chen Jiangnan, Zhang Xu, et al. Dynamic control: an efficient strategy for metabolically engineering microbial cell factories[J]. Biotechnology Bulletin, 2020, 36(6): 1-12. | |
75 | BORKOWSKI Olivier, BRICIO Carlos, MURGIANO Michela, et al. Cell-free prediction of protein expression costs for growing cells[J]. Nature Communications, 2018, 9(1): 1-11. |
76 | GUPTA Apoorv, REIZMAN Irene M. Brockman, REISCH Christopher R.,et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nature Biotechnology, 2017, 35(3): 273-279. |
77 | DING Xiaohu, YANG Wenjun, DU Xiaobin, et al. High-level and -yield production of L-leucine in engineered Escherichia coli by multistep metabolic engineering[J]. Metabolic Engineering, 2023, 78: 128-136. |
78 | YANG Linyan, MU Xiaoqing, NIE Yao, et al. Improving the production of NAD+ via multi-strategy metabolic engineering in Escherichia coli [J]. Metabolic Engineering, 2021, 64: 122-133. |
79 | BOUZON Madeleine, DORING Volker, DUBOIS Ivan, et al. Change in cofactor specificity of oxidoreductases by adaptive evolution of an Escherichia coli NADPH-auxotrophic strain[J]. Mbio, 2021, 12(4): e0032921. |
80 | WANG Ke, SONG Xitong, CUI Boya, et al. Metabolic engineering of Escherichia coli for efficient production of ectoine[J]. Journal of Agricultural and Food Chemistry, 2025, 73(1): 646-654. |
81 | LIU Bingnan, SUN Xinyu, LIU Yue, et al. Increased NADPH supply enhances glycolysis metabolic flux and L-methionine production in Corynebacterium glutamicum [J]. Foods, 2022, 11(7): 1031. |
82 | XU Jianzhong, RUAN Haozhe, YU Haibo, et al. Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar[J]. Microbial Cell Factories, 2020, 19(1): 39. |
83 | YU Fei, ZHAO Xinrui, ZHOU Jingwen, et al. Biosynthesis of high-active hemoproteins by the efficient heme-supply pichia pastoris chassis[J]. Advanced Science, 2023, 10(30): e2302826. |
84 | WANG Yusheng, BAI Yunlong, ZENG Qi, et al. Recent advances in the metabolic engineering and physiological opportunities for microbial synthesis of L-aspartic acid family amino acids: a review[J]. International Journal of Biological Macromolecules, 2023, 253(Pt 3): 126916. |
85 | 赵阔, 程金宇, 郭亮, 等. 谷氨酸棒杆菌代谢工程高效生产L-缬氨酸[J]. 生物工程学报, 2023, 39(8): 3253-3272. |
Zhao Kuo, Cheng Jinyu, Guo Liang, et al. Highly efficient production of L-valine by multiplex metabolic engineering of Corynebacterium glutamicum [J]. Chinese journal of biotechnology, 2023, 39(8): 3253-3272. | |
86 | XU Shenyuan, ZHOU Lei, XU Ying, et al. Recent advances in structure-based enzyme engineering for functional reconstruction[J]. Biotechnology and Bioengineering, 2023, 120(12): 3427-3445. |
87 | 贾男, 臧国伟, 李春, 等. 辅因子在微生物细胞工厂中的代谢调控与应用[J]. 中国生物工程杂志, 2022, 42(7): 79-89. |
Jia Nan, Zang Guowei, Li Chun, et al. Metabolic regulations and applications of cofactors in microbial cell factories[J]. Chinese Biotechnology, 2022, 42(7): 79-89. | |
88 | 陈修来, 刘佳, 罗秋玲, 等. 微生物辅因子平衡的代谢调控[J]. 生物工程学报, 2017, 33(1): 16-26. |
Chen Xiulai, Liu Jia, Luo Qiuling, et al. Manipulation of cofactor balance in microorganisms[J]. Chinese journal of biotechnology, 2017, 33(1): 16-26. | |
89 | 陈雅维. ATP调控策略及其在微生物代谢产物合成中的应用[J]. 生物工程学报, 2020, 36(8): 1515-1527. |
Chen Yawei. ATP regulation strategy and its application in the synthesis of microbial metabolites[J]. Chinese journal of biotechnology, 2020, 36(8): 1515-1527. | |
90 | WEUSTHUIS Ruud A., FOLCH Pauline L., Ana POZO-RODRIGUEZ, et al. Applying non-canonical redox cofactors in fermentation processes[J]. Iscience, 2020, 23(9): 101471. |
91 | 张鸿伟, 王鹏超. 微生物辅因子工程研究进展[J]. 中国生物工程杂志, 2023, 43(4): 112-122. |
[1] | 高琪, 肖文海. 酵母合成单萜类化合物的研究进展[J]. 合成生物学, 2025, 6(2): 357-372. |
[2] | 张梦瑶, 蔡鹏, 周雍进. 合成生物学助力萜类香精香料可持续生产[J]. 合成生物学, 2025, 6(2): 334-356. |
[3] | 张璐鸥, 徐丽, 胡晓旭, 杨滢. 合成生物学助力化妆品走进生物制造新时代[J]. 合成生物学, 2025, 6(2): 479-491. |
[4] | 鲁锦畅, 武耀康, 吕雪芹, 刘龙, 陈坚, 刘延峰. 神经酰胺类鞘脂的绿色生物制造[J]. 合成生物学, 2025, 6(2): 422-444. |
[5] | 伊进行, 唐宇琳, 李春雨, 吴鹤云, 马倩, 谢希贤. 氨基酸衍生物在化妆品中的应用及其生物合成研究进展[J]. 合成生物学, 2025, 6(2): 254-289. |
[6] | 韦灵珍, 王佳, 孙新晓, 袁其朋, 申晓林. 黄酮类化合物生物合成及其在化妆品中应用的研究[J]. 合成生物学, 2025, 6(2): 373-390. |
[7] | 肖森, 胡立涛, 石智诚, 王发银, 余思婷, 堵国成, 陈坚, 康振. 可控分子量透明质酸的生物合成研究进展[J]. 合成生物学, 2025, 6(2): 445-460. |
[8] | 王倩, 果士婷, 辛波, 钟成, 王钰. L-精氨酸的微生物合成研究进展[J]. 合成生物学, 2025, 6(2): 290-305. |
[9] | 左一萌, 张姣姣, 连佳长. 酿酒酵母使能技术在化妆品原料合成中的应用[J]. 合成生物学, 2025, 6(2): 233-253. |
[10] | 汤传根, 王璟, 张烁, 张昊宁, 康振. 功能肽合成和挖掘策略研究进展[J]. 合成生物学, 2025, 6(2): 461-478. |
[11] | 郭婷婷, 韩湘凝, 黄熙婷, 张婷婷, 孔健. 乳酸菌的合成生物学工具及在合成益肤因子中的应用[J]. 合成生物学, 2025, 6(2): 320-333. |
[12] | 张萍, 张维娇, 胥睿睿, 李江华, 陈坚, 康振. 防晒化合物类菌孢素氨基酸的生物合成[J]. 合成生物学, 2025, 6(2): 306-319. |
[13] | 黄姝涵, 马赫, 罗云孜. 生物合成红景天苷的研究进展[J]. 合成生物学, 2025, 6(2): 391-407. |
[14] | 郭姝媛, 张倩楠, 姑丽克孜·买买提热夏提, 杨一群, 于涛. 液体生物燃料合成与炼制的研究进展[J]. 合成生物学, 2025, 6(1): 18-44. |
[15] | 高歌, 边旗, 王宝俊. 合成基因线路的工程化设计研究进展与展望[J]. 合成生物学, 2025, 6(1): 45-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||