合成生物学 ›› 2022, Vol. 3 ›› Issue (2): 352-368.DOI: 10.12211/2096-8280.2021-045
许仕琳, 许海燕
收稿日期:
2021-04-13
修回日期:
2021-07-29
出版日期:
2022-04-30
发布日期:
2022-05-11
通讯作者:
许海燕
作者简介:
基金资助:
Shilin XU, Haiyan XU
Received:
2021-04-13
Revised:
2021-07-29
Online:
2022-04-30
Published:
2022-05-11
Contact:
Haiyan XU
摘要:
单克隆抗体已经广泛用于肿瘤的靶向治疗,但由于肿瘤属于异质性疾病,涉及介导疾病进展的多种配受体信号变化以及信号级联通路之间的交互作用。因此,针对单一抗原的治疗难以有效抑制疾病的进程,而阻断多种不同的病理因素和途径是有望提高治疗效果的重要途径。近年来,合成生物学、生物工程和纳米技术等在不断发展,利用这些技术来设计工程化的治疗性抗体或可为肿瘤靶向免疫治疗带来新的思路。双特异性抗体是一种具有两种抗体特异性的人工抗体,可以同时识别不同的抗原或表位,由此实现多种功能,例如可以将T细胞重定向至肿瘤细胞并同时阻断两条不同的或相互串扰的细胞信号传导通路;与此同时,备受关注的纳米载体技术则为双抗体药物的研发与应用提供了有利的新工具。本文首先对双特异性抗体的生产和制备做简要介绍,然后对双特异性抗体在恶性血液肿瘤(急性髓细胞白血病和B细胞恶性血液肿瘤)和实体瘤(乳腺癌、卵巢癌、肺癌和头颈癌等)免疫治疗中的应用进展做分类介绍,并进一步介绍了双特异性抗体与纳米技术相结合形成的递送系统在肿瘤免疫治疗中的研究进展;最后讨论了双特异性抗体在设计和医学应用中面临的问题,并展望了纳米技术介导的靶向治疗策略在肿瘤治疗中的应用前景,以及双特异性抗体与免疫检查点抑制剂或疫苗等其他疗法联合应用的可能。
中图分类号:
许仕琳, 许海燕. 双特异性抗体及纳米技术在肿瘤免疫治疗中的应用进展[J]. 合成生物学, 2022, 3(2): 352-368.
Shilin XU, Haiyan XU. Progress of bispecific antibodies and nanotechnology in tumor immunotherapies[J]. Synthetic Biology Journal, 2022, 3(2): 352-368.
1 | TAN X, LETENDRE J H, COLLINS J J, et al. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics[J]. Cell, 2021, 184(4): 881-898. |
2 | YANG Y P. Cancer immunotherapy: harnessing the immune system to battle cancer[J]. The Journal of Clinical Investigation, 2015, 125(9): 3335-3337. |
3 | CHESTER C, MARABELLE A, HOUOT R, et al. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors[J]. Current Opinion in Immunology, 2015, 33: 1-8. |
4 | REICHERT J M. Antibody-based therapeutics to watch in 2011[J]. mAbs, 2011, 3(1): 76-99. |
5 | NELSON A L, DHIMOLEA E, REICHERT J M. Development trends for human monoclonal antibody therapeutics[J]. Nature Reviews Drug Discovery, 2010, 9(10): 767-774. |
6 | VEEKEN J VAN DER, OLIVEIRA S, SCHIFFELERS R M, et al. Crosstalk between epidermal growth factor receptor- and insulin-like growth factor-1 receptor signaling: implications for cancer therapy[J]. Current Cancer Drug Targets, 2009, 9(6): 748-760. |
7 | JONES H E, GEE J M W, HUTCHESON I R, et al. Growth factor receptor interplay and resistance in cancer[J]. Endocrine-Related Cancer, 2006, 13(S1): S45-S51. |
8 | DHIMOLEA E, REICHERT J M. World bispecific antibody summit, September 27-28, 2011, Boston, MA[J]. mAbs, 2012, 4(1): 4-13. |
9 | STAERZ U D, KANAGAWA O, BEVAN M J. Hybrid antibodies can target sites for attack by T cells[J]. Nature, 1985, 314(6012): 628-631. |
10 | BRENNAN M, DAVISON P F, PAULUS H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments[J]. Science, 1985, 229(4708): 81-83. |
11 | FAN G W, WANG Z J, HAO M J, et al. Bispecific antibodies and their applications[J]. Journal of Hematology & Oncology, 2015, 8: 130. |
12 | SUURS F V, LUB-DE HOOGE M N, DE VRIES E G E, et al. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges[J]. Pharmacology & Therapeutics, 2019, 201: 103-119. |
13 | IRVINE D J, DANE E L. Enhancing cancer immunotherapy with nanomedicine[J]. Nature Reviews Immunology, 2020, 20(5): 321-334. |
14 | HUANG L F, HUANG J, HUANG J B, et al. Nanomedicine - a promising therapy for hematological malignancies[J]. Biomaterials Science, 2020, 8(9): 2376-2393. |
15 | HOSSEINI S S, KHALILI S, BARADARAN B, et al. Bispecific monoclonal antibodies for targeted immunotherapy of solid tumors: recent advances and clinical trials[J]. International Journal of Biological Macromolecules, 2021, 167: 1030-1047. |
16 | BRINKMANN U, KONTERMANN R E. The making of bispecific antibodies[J]. mAbs, 2017, 9(2): 182-212. |
17 | SHIM H. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations[J]. Biomolecules, 2020, 10(3): 360. |
18 | SPIESS C, ZHAI Q T, CARTER P J. Alternative molecular formats and therapeutic applications for bispecific antibodies[J]. Molecular Immunology, 2015, 67(2): 95-106. |
19 | KONTERMANN R E, BRINKMANN U. Bispecific antibodies[J]. Drug Discovery Today, 2015, 20(7): 838-847. |
20 | ESTEY E, DÖHNER H. Acute myeloid leukaemia[J]. The Lancet, 2006, 368(9550): 1894-1907. |
21 | DOMBRET H, GARDIN C. An update of current treatments for adult acute myeloid leukemia[J]. Blood, 2016, 127(1): 53-61. |
22 | SUN S L, ZOU H X, LI L, et al. CD123/CD33 dual-antibody modified liposomes effectively target acute myeloid leukemia cells and reduce antigen-negative escape[J]. International Journal of Pharmaceutics, 2019, 568: 118518. |
23 | FRIEDRICH M, HENN A, RAUM T, et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia[J]. Molecular Cancer Therapeutics, 2014, 13(6): 1549-1557. |
24 | LEONG S R, SUKUMARAN S, HRISTOPOULOS M, et al. An anti-CD3/anti-CLL-1 bispecific antibody for the treatment of acute myeloid leukemia[J]. Blood, 2017, 129(5): 609-618. |
25 | JITSCHIN R, SAUL D, BRAUN M, et al. CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells[J]. Journal for Immunotherapy of Cancer, 2018, 6(1): 116. |
26 | RAVANDI F, WALTER R B, SUBKLEWE M, et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML)[J]. Journal of Clinical Oncology, 2020, 38(): 7508. |
27 | UY G L, ALDOSS I, FOSTER M C, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia[J]. Blood, 2021, 137(6): 751-762. |
28 | UY G L, RETTIG M P, VEY N, et al. Phase 1 cohort expansion of flotetuzumab, a CD123 × CD3 bispecific Dart® protein in patients with relapsed/refractory acute myeloid leukemia (AML)[J]. Blood, 2018, 132(): 764. |
29 | CHU S Y, PONG E, CHEN H, et al. Immunotherapy with long-lived anti-CD123 × anti-CD3 bispecific antibodies stimulates potent T cell-mediated killing of human AML cell lines and of CD123+ cells in monkeys: a potential therapy for acute myelogenous leukemia[J]. Blood, 2014, 124(21): 2316. |
30 | RAVANDI F, BASHEY A, STOCK W, et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of vibecotamab (XmAb14045), a CD123 × CD3 T cell-engaging bispecific antibody; initial results of a phase 1 study[J]. Blood, 2020, 136: 4-5. |
31 | GAUDET F, NEMETH J F, MCDAID R, et al. Development of a CD123×CD3 bispecific antibody (JNJ-63709178) for the treatment of acute myeloid leukemia (AML)[J]. Blood, 2016, 128(22): 2824. |
32 | GUY D G, UY G L. Bispecific antibodies for the treatment of acute myeloid leukemia[J]. Current Hematologic Malignancy Reports, 2018, 13(6): 417-425. |
33 | SCHUBERT I, KELLNER C, STEIN C, et al. A recombinant triplebody with specificity for CD19 and HLA-DR mediates preferential binding to antigen double-positive cells by dual-targeting[J]. mAbs, 2012, 4(1): 45-56. |
34 | KÜGLER M, STEIN C, KELLNER C, et al. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting[J]. British Journal of Haematology, 2010, 150(5): 574-586. |
35 | SINGER H, KELLNER C, LANIG H, et al. Effective elimination of acute myeloid leukemic cells by recombinant bispecific antibody derivatives directed against CD33 and CD16[J]. Journal of Immunotherapy, 2010, 33(6): 599-608. |
36 | BRACIAK T A, ROSKOPF C C, WILDENHAIN S, et al. Dual-targeting triplebody 33-16-123 (SPM-2) mediates effective redirected lysis of primary blasts from patients with a broad range of AML subtypes in combination with natural killer cells[J]. OncoImmunology, 2018, 7(9): e1472195. |
37 | SEIFERT M, SCHOLTYSIK R, KÜPPERS R. Origin and pathogenesis of B cell lymphomas[M]// Lymphoma. Totowa: Humana Press, 2019: 1-25. |
38 | FOWLER N, OKI Y. Developing novel strategies to target B-cell malignancies[J]. American Society of Clinical Oncology Educational Book, 2013(33): 366-372. |
39 | ZIMMERMAN Z, MANIAR T, NAGORSEN D. Unleashing the clinical power of T cells: CD19/CD3 bi-specific T cell engager (BiTE®) antibody construct blinatumomab as a potential therapy[J]. International Immunology, 2014, 27(1): 31-37. |
40 | BUATOIS V, JOHNSON Z, SALGADO-PIRES S, et al. Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-cell lymphoma and leukemia[J]. Molecular Cancer Therapeutics, 2018, 17(8): 1739-1751. |
41 | TITA-NWA F, MOLDENHAUER G, HERBST M, et al. Cytokine-induced killer cells targeted by the novel bispecific antibody CD19×CD5 (HD37×T5.16) efficiently lyse B-lymphoma cells[J]. Cancer Immunology, Immunotherapy, 2007, 56(12): 1911-1920. |
42 | LIU L Q, LAM C Y K, LONG V, et al. MGD011, A CD19 x CD3 dual-affinity retargeting bi-specific molecule incorporating extended circulating half-life for the treatment of B-cell malignancies[J]. Clinical Cancer Research, 2017, 23(6): 1506-1518. |
43 | PRZEPIORKA D, KO C W, DEISSEROTH A, et al. FDA approval: Blinatumomab[J]. Clinical Cancer Research, 2015, 21(18): 4035-4039. |
44 | BARGOU R, LEO E, ZUGMAIER G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody[J]. Science, 2008, 321(5891): 974-977. |
45 | GOEBELER M E, KNOP S, VIARDOT A, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study[J]. Journal of Clinical Oncology, 2016, 34(10): 1104-1111. |
46 | VIARDOT A, GOEBELER M E, HESS G, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma[J]. Blood, 2016, 127(11): 1410-1416. |
47 | EINSELE H, BORGHAEI H, ORLOWSKI R Z, et al. The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types[J]. Cancer, 2020, 126(14): 3192-3201. |
48 | WATKINS M P, BARTLETT N L. CD19-targeted immunotherapies for treatment of patients with non-Hodgkin B-cell lymphomas[J]. Expert Opinion on Investigational Drugs, 2018, 27(7): 601-611. |
49 | IZHAK L, CULLEN D E, ELGAWLY M, et al. Potent antitumor activity of duvortuxizumab, a CD19×CD3 DART® molecule, in lymphoma models[J]. Cancer Research, 2017, 77: 3636. |
50 | SZCZEPANOWSKI M, RICHTER J, KEHDEN B, et al. CD20 expression and response to rituximab treatment in B-cell precursor lymphoblastic leukemia-results of the GMALL 08/2013 trial[J]. Blood, 2018, 132(S1): 1409. |
51 | DWORZAK M N, SCHUMICH A, PRINTZ D, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy[J]. Blood, 2008, 112(10): 3982-3988. |
52 | DICKINSON M J, MORSCHHAUSER F, IACOBONI G, et al. Cd20-tcb (Rg6026), a novel “2: 1” format t-cell-engaging bispecific antibody, induces complete remissions in relapsed/refractory B-cell non-Hodgkin’s lymphoma[J]. Hematological Oncology, 2019, 37: 92-93. |
53 | BANNERJI R, ARNASON J E, ADVANI R, et al. Emerging clinical activity of REGN1979, an anti-CD20 × anti-CD3 bispecific antibody, in patients with relapsed/refractory follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and other B-cell non-Hodgkin lymphoma (B-NHL) subtypes[J]. Blood, 2018, 132: 1690. |
54 | KIESLICH A, RUF P, LINDHOFER H, et al. Immunotherapy with the trifunctional anti-CD20×anti-CD3 antibody FBTA05 in a patient with relapsed t(8;14)-positive post-transplant lymphoproliferative disease[J]. Leukemia & Lymphoma, 2017, 58(8): 1989-1992. |
55 | BACAC M, COLOMBETTI S, HERTER S, et al. CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic malignancies[J]. Clinical Cancer Research, 2018, 24(19): 4785-4797. |
56 | BUHMANN R, MICHAEL S, JUERGEN H, et al. Immunotherapy with FBTA05 (Bi20), a trifunctional bispecific anti-CD3 × anti-CD20 antibody and donor lymphocyte infusion (DLI) in relapsed or refractory B-cell lymphoma after allogeneic stem cell transplantation: study protocol of an investigator-driven, open-label, non-randomized, uncontrolled, dose-escalating Phase I/II-trial[J]. Journal of Translational Medicine, 2013, 11: 160. |
57 | BROWN E J, FRAZIER W A. Integrin-associated protein (CD47) and its ligands[J]. Trends in Cell Biology, 2001, 11(3): 130-135. |
58 | JAISWAL S, JAMIESON C H M, PANG W W, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis[J]. Cell, 2009, 138(2): 271-285. |
59 | BARCLAY A N, BROWN M H. The SIRP family of receptors and immune regulation[J]. Nature Reviews Immunology, 2006, 6(6): 457-464. |
60 | PICCIONE E C, JUAREZ S, LIU J, et al. A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells[J]. mAbs, 2015, 7(5): 946-956. |
61 | LEJEUNE M, KÖSE M C, DURAY E, et al. Bispecific, T-cell-recruiting antibodies in B-cell malignancies[J]. Frontiers in Immunology, 2020, 11: 762. |
62 | 赫捷, 陈万青, 李霓, 等. 中国女性乳腺癌筛查与早诊早治指南(2021,北京)[J]. 中国肿瘤, 2021, 30(3): 161-191. |
HE J, CHEN W Q, LI N, et al. China guideline for the screening and early detection of female breast cancer (2021, Beijing)[J]. China Cancer, 2021, 30(3): 161-191. | |
63 | SLAMON D J, CLARK G M, WONG S G, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene[J]. Science, 1987, 235(4785): 177-182. |
64 | DAWOOD S, SIROHI B. Pertuzumab: a new anti-HER2 drug in the management of women with breast cancer[J]. Future Oncology, 2015, 11(6): 923-931. |
65 | VAZQUEZ-MARTIN A, OLIVERAS-FERRAROS C, CUFÍ S, et al. Lapatinib, a dual HER1/HER2 tyrosine kinase inhibitor, augments basal cleavage of HER2 extracellular domain (ECD) to inhibit HER2-driven cancer cell growth[J]. Journal of Cellular Physiology, 2011, 226(1): 52-57. |
66 | BEDARD P L, DE AZAMBUJA E, CARDOSO F. Beyond trastuzumab: overcoming resistance to targeted HER-2 therapy in breast cancer[J]. Current Cancer Drug Targets, 2009, 9(2): 148-162. |
67 | KIEWE P, THIEL E. Ertumaxomab: a trifunctional antibody for breast cancer treatment[J]. Expert Opinion on Investigational Drugs, 2008, 17(10): 1553-1558. |
68 | YU S N, ZHANG J, YAN Y X, et al. A novel asymmetrical anti-HER2/CD3 bispecific antibody exhibits potent cytotoxicity for HER2-positive tumor cells[J]. Journal of Experimental & Clinical Cancer Research, 2019, 38(1): 355. |
69 | KOL A, SCHELTINGA A G T T VAN, TIMMER-BOSSCHA H, et al. HER3, serious partner in crime: therapeutic approaches and potential biomarkers for effect of HER3-targeting[J]. Pharmacology & Therapeutics, 2014, 143(1): 1-11. |
70 | MCDONAGH C F, HUHALOV A, HARMS B D, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3[J]. Molecular Cancer Therapeutics, 2012, 11(3): 582-593. |
71 | KIROUAC D C, DU J Y, LAHDENRANTA J, et al. Computational modeling of ERBB2-amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors[J]. Science Signaling, 2013, 6(288): ra68. |
72 | IMAI S, NAGANO K, YOSHIDA Y, et al. Development of an antibody proteomics system using a phage antibody library for efficient screening of biomarker proteins[J]. Biomaterials, 2011, 32(1): 162-169. |
73 | TAKI S, KAMADA H, INOUE M, et al. A novel bispecific antibody against human CD3 and ephrin receptor A10 for breast cancer therapy[J]. PLoS One, 2015, 10(12): e0144712. |
74 | LIU B N, GUO H Z, XU J, et al. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses[J]. mAbs, 2018, 10(2): 315-324. |
75 | IIZUKA A, NONOMURA C, ASHIZAWA T, et al. A T-cell-engaging B7-H4/CD3-bispecific Fab-scFv antibody targets human breast cancer[J]. Clinical Cancer Research, 2019, 25(9): 2925-2934. |
76 | GILL S, PESTON D, VONDERHAAR B K, et al. Expression of prolactin receptors in normal, benign, and malignant breast tissue: an immunohistological study[J]. Journal of Clinical Pathology, 2001, 54(12): 956-960. |
77 | ZHOU Y X, ZONG H F, HAN L, et al. A novel bispecific antibody targeting CD3 and prolactin receptor (PRLR) against PRLR-expression breast cancer[J]. Journal of Experimental & Clinical Cancer Research, 2020, 39(1): 87. |
78 | 张文文, 姜亮亮, 王晶. CAR-T疗法在卵巢癌中的应用前景[J]. 实用肿瘤学杂志, 2021, 35(1): 59-63. |
ZHANG W W, JIANG L L, WANG J. Application prospect of CAR-T therapy in ovarian cancer[J]. Practical Oncology Journal, 2021, 35(1): 59-63. | |
79 | MANTIA-SMALDONE G M, CORR B, CHU C S. Immunotherapy in ovarian cancer[J]. Human Vaccines & Immunotherapeutics, 2012, 8(9):1179-1191. |
80 | WEI H F, ZHAO L K, HELLSTROM I, et al. Dual targeting of CD137 co-stimulatory and PD-1 co-inhibitory molecules for ovarian cancer immunotherapy[J]. OncoImmunology, 2014, 3: e28248. |
81 | SPIZZO G, WENT P, DIRNHOFER S, et al. Overexpression of epithelial cell adhesion molecule (Ep-CAM) is an independent prognostic marker for reduced survival of patients with epithelial ovarian cancer[J]. Gynecologic Oncology, 2006, 103(2): 483-488. |
82 | WENT P, VASEI M, BUBENDORF L, et al. Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers[J]. British Journal of Cancer, 2006, 94(1): 128-135. |
83 | SEIMETZ D, LINDHOFER H, BOKEMEYER C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM × anti-CD3) as a targeted cancer immunotherapy[J]. Cancer Treatment Reviews, 2010, 36(6): 458-467. |
84 | BURGES A, WIMBERGER P, KÜMPER C, et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM×anti-CD3 antibody: a phase Ⅰ/Ⅱ study[J]. Clinical Cancer Research, 2007, 13(13): 3899-3905. |
85 | SEHOULI J, REINTHALLER A, MARTH C, et al. Intra- and postoperative catumaxomab in patients with epithelial ovarian cancer: safety and two-year efficacy results from a multicentre, single-arm, phase II study[J]. British Journal of Cancer, 2014, 111(8): 1519-1525. |
86 | BRISCHWEIN K, SCHLERETH B, GULLER B, et al. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors[J]. Molecular Immunology, 2006, 43(8): 1129-1143. |
87 | FERRARI F, BELLONE S, BLACK J, et al. Solitomab, an EpCAM/CD3 bispecific antibody construct (BiTE®), is highly active against primary uterine and ovarian carcinosarcoma cell lines in vitro [J]. Journal of Experimental & Clinical Cancer Research, 2015, 34: 123. |
88 | ENGLISH D P, BELLONE S, SCHWAB C L, et al. Solitomab, an epithelial cell adhesion molecule/CD3 bispecific antibody (BiTE), is highly active against primary chemotherapy-resistant ovarian cancer cell lines in vitro and fresh tumor cells ex vivo [J]. Cancer, 2015, 121(3): 403-412. |
89 | KEBENKO M, GOEBELER M E, WOLF M, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors[J]. OncoImmunology, 2018, 7(8): e1450710. |
90 | WALSENG E, NELSON C G, QI J P, et al. Chemically programmed bispecific antibodies in diabody format[J]. Journal of Biological Chemistry, 2016, 291(37): 19661-19673. |
91 | QI J P, HYMEL D, NELSON C G, et al. Conventional and chemically programmed asymmetric bispecific antibodies targeting folate receptor 1[J]. Frontiers in Immunology, 2019, 10: 1994. |
92 | SHIVANGE G, URBANEK K, PRZANOWSKI P, et al. A single-agent dual-specificity targeting of FOLR1 and DR5 as an effective strategy for ovarian cancer[J]. Cancer Cell, 2018, 34(2): 331-345.e11. |
93 | CHEN C, ZHANG Y Y, ZHANG Y, et al. Superior antitumor activity of a novel bispecific antibody cotargeting human epidermal growth factor receptor 2 and type I insulin-like growth factor receptor[J]. Molecular Cancer Therapeutics, 2014, 13(1): 90-100. |
94 | SALOMON D S, BRANDT R, CIARDIELLO F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies[J]. Critical Reviews in Oncology/Hematology, 1995, 19(3): 183-232. |
95 | TABERNERO J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents[J]. Molecular Cancer Research, 2007, 5(3): 203-220. |
96 | ZHANG H Z, YUN S J, BATUWANGALA T D, et al. A dual-targeting antibody against EGFR-VEGF for lung and head and neck cancer treatment[J]. International Journal of Cancer, 2012, 131(4): 956-969. |
97 | HURWITZ S J, ZHANG H Z, YUN S J, et al. Pharmacodynamics of DT-IgG, a dual-targeting antibody against VEGF-EGFR, in tumor xenografted mice[J]. Cancer Chemotherapy and Pharmacology, 2012, 69(3): 577-590. |
98 | LI C R, HUANG S, ARMSTRONG E A, et al. Antitumor effects of MEHD7945A, a dual-specific antibody against EGFR and HER3, in combination with radiation in lung and head and neck cancers[J]. Molecular Cancer Therapeutics, 2015, 14(9): 2049-2059. |
99 | SCHAEFER G, HABER L, CROCKER L M, et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies[J]. Cancer Cell, 2011, 20(4): 472-486. |
100 | HUANG S, LI C R, ARMSTRONG E A, et al. Dual targeting of EGFR and HER3 with MEHD7945A overcomes acquired resistance to EGFR inhibitors and radiation[J]. Cancer Research, 2013, 73(2): 824-833. |
101 | JIMENO A, MACHIELS J P, WIRTH L, et al. Phase Ib study of duligotuzumab (MEHD7945A) plus cisplatin/5-fluorouracil or carboplatin/paclitaxel for first-line treatment of recurrent/metastatic squamous cell carcinoma of the head and neck[J]. Cancer, 2016, 122(24): 3803-3811. |
102 | FAYETTE J, WIRTH L, OPREAN C, et al. Randomized phase II study of duligotuzumab (MEHD7945A) vs. cetuximab in squamous cell carcinoma of the head and neck (MEHGAN study)[J]. Frontiers in Oncology, 2016, 6: 232. |
103 | CROASDALE R, WARTHA K, SCHANZER J M, et al. Development of tetravalent IgG1 dual targeting IGF-1R-EGFR antibodies with potent tumor inhibition[J]. Archives of Biochemistry and Biophysics, 2012, 526(2): 206-218. |
104 | GUO H F, VANDER KOOI C W. Neuropilin functions as an essential cell surface receptor[J]. Journal of Biological Chemistry, 2015, 290(49): 29120-29126. |
105 | PRUD'HOMME G J, GLINKA Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity[J]. Oncotarget, 2012, 3(9): 921-939. |
106 | HONG T M, CHEN Y L, WU Y Y, et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer[J]. Clinical Cancer Research, 2007, 13(16): 4759-4768. |
107 | KIM Y J, BAEK D S, LEE S, et al. Dual-targeting of EGFR and neuropilin-1 attenuates resistance to EGFR-targeted antibody therapy in KRAS-mutant non-small cell lung cancer[J]. Cancer Letters, 2019, 466: 23-34. |
108 | ANDERSON D M, MARASKOVSKY E, BILLINGSLEY W L, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function[J]. Nature, 1997, 390(6656): 175-179. |
109 | AHERN E, HARJUNPÄÄ H, BARKAUSKAS D, et al. Co-administration of RANKL and CTLA4 antibodies enhances lymphocyte-mediated antitumor immunity in mice[J]. Clinical Cancer Research, 2017, 23(19): 5789-5801. |
110 | AHERN E, HARJUNPÄÄ H, O'DONNELL J S, et al. RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer[J]. OncoImmunology, 2018, 7(6): e1431088. |
111 | BAKHRU P, ZHU M L, WANG H H, et al. Combination central tolerance and peripheral checkpoint blockade unleashes antimelanoma immunity[J]. JCI Insight, 2017, 2(18): e93265. |
112 | DOUGALL W C, ROMAN AGUILERA A, SMYTH M J. Retracted: dual targeting of RANKL and PD-1 with a bispecific antibody improves anti-tumor immunity[J]. Clinical & Translational Immunology, 2019, 8(10): e01081. |
113 | ZHAO L, YANG Y D, ZHOU P F, et al. Targeting CD133 high colorectal cancer cells in vitro and in vivo with an asymmetric bispecific antibody[J]. Journal of Immunotherapy, 2015, 38(6): 217-228. |
114 | DONG J Y, SERENO A, AIVAZIAN D, et al. A stable IgG-like bispecific antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor demonstrates superior anti-tumor activity[J]. mAbs, 2011, 3(3): 273-288. |
115 | CAMBLIN A J, PACE E A, ADAMS S, et al. Dual inhibition of IGF-1R and ErbB3 enhances the activity of gemcitabine and nab-paclitaxel in preclinical models of pancreatic cancer[J]. Clinical Cancer Research, 2018, 24(12): 2873-2885. |
116 | KUNDRANDA M, GRACIAN A C, ZAFAR S F, et al. Randomized, double-blind, placebo-controlled phase II study of istiratumab (MM-141) plus nab-paclitaxel and gemcitabine versus nab-paclitaxel and gemcitabine in front-line metastatic pancreatic cancer (CARRIE)[J]. Annals of Oncology, 2020, 31(1): 79-87. |
117 | SONG W T, DAS M, CHEN X S. Nanotherapeutics for immuno-oncology: a crossroad for new paradigms[J]. Trends in Cancer, 2020, 6(4): 288-298. |
118 | KAO C H, WANG J Y, CHUANG K H, et al. One-step mixing with humanized anti-mPEG bispecific antibody enhances tumor accumulation and therapeutic efficacy of mPEGylated nanoparticles[J]. Biomaterials, 2014, 35(37): 9930-9940. |
119 | CHENG Y A, CHEN I J, SU Y C, et al. Enhanced drug internalization and therapeutic efficacy of PEGylated nanoparticles by one-step formulation with anti-mPEG bispecific antibody in intrinsic drug-resistant breast cancer[J]. Biomaterials Science, 2019, 7(8): 3404-3417. |
120 | CHENG Y A, WU T H, WANG Y M, et al. Humanized bispecific antibody (mPEG×HER2) rapidly confers PEGylated nanoparticles tumor specificity for multimodality imaging in breast cancer[J]. Journal of Nanobiotechnology, 2020, 18(1): 118. |
121 | XU Y D, WANG D D, MASON B, et al. Structure, heterogeneity and developability assessment of therapeutic antibodies[J]. mAbs, 2019, 11(2): 239-264. |
122 | SCHROEDER H W JR, CAVACINI L. Structure and function of immunoglobulins[J]. Journal of Allergy and Clinical Immunology, 2010, 125(2): S41-S52. |
123 | JIANG C T, CHEN K G, LIU A, et al. Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy[J]. Nature Communications, 2021, 12: 1359. |
124 | BAI C, HU P C, ZHANG W, et al. Modular design of bi-specific nanoplatform engaged in malignant lymphoma immunotherapy[J]. Nanoscale, 2020, 12(35): 18418-18428. |
125 | DING L, TIAN C P, FENG S, et al. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy[J]. Theranostics, 2015, 5(4): 378-398. |
126 | XU M, WEN Y Y, LIU Y N, et al. Hollow mesoporous ruthenium nanoparticles conjugated bispecific antibody for targeted anti-colorectal cancer response of combination therapy[J]. Nanoscale, 2019, 11(19): 9661-9678. |
127 | ALHALLAK K, SUN J, WASDEN K, et al. Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy[J]. Leukemia, 2021, 35(8): 2346-2357. |
128 | SCHOLZEN T, GERDES J. The Ki-67 protein: from the known and the unknown[J]. Journal of Cellular Physiology, 2000, 182(3): 311-322. |
129 | WANG S, HÜTTMANN G, SCHOLZEN T, et al. A light-controlled switch after dual targeting of proliferating tumor cells via the membrane receptor EGFR and the nuclear protein Ki-67[J]. Scientific Reports, 2016, 6: 27032. |
130 | CHANG K, PASTAN I, WILLNGHAM M C. Frequent expression of the tumor antigen cak1 in squamous-cell carcinomas[J]. International Journal of Cancer, 1992, 51(4): 548-554. |
131 | BANO J DEL, FLORÈS-FLORÈS R, JOSSELIN E, et al. A bispecific antibody-based approach for targeting mesothelin in triple negative breast cancer[J]. Frontiers in Immunology, 2019, 10: 1593. |
132 | ZHANG X L, YANG Y Y, FAN D M, et al. The development of bispecific antibodies and their applications in tumor immune escape[J]. Experimental Hematology & Oncology, 2017, 6: 12. |
133 | THAKUR A, LUM L G. “NextGen” biologics: bispecific antibodies and emerging clinical results[J]. Expert Opinion on Biological Therapy, 2016, 16(5): 675-688. |
134 | LAMERIS R, DE BRUIN R C G, SCHNEIDERS F L, et al. Bispecific antibody platforms for cancer immunotherapy[J]. Critical Reviews in Oncology/Hematology, 2014, 92(3): 153-165. |
135 | ALIBAKHSHI A, KAHAKI F A, AHANGARZADEH S, et al. Targeted cancer therapy through antibody fragments-decorated nanomedicines[J]. Journal of Controlled Release, 2017, 268: 323-334. |
[1] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[2] | 江莎莎, 王晨, 路冉, 刘俸君, 李俊, 王斌. T细胞免疫反应载体疫苗在人类疾病预防和治疗中的应用[J]. 合成生物学, 2024, 5(2): 294-309. |
[3] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[4] | 谭子斌, 梁康, 陈有海. 合成生物学在基于微生物载体肿瘤疫苗设计中的应用[J]. 合成生物学, 2024, 5(2): 221-238. |
[5] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[6] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[7] | 马孟丹, 尚梦宇, 刘宇辰. CRISPR-Cas9系统在肿瘤生物学中的应用及前景[J]. 合成生物学, 2023, 4(4): 703-719. |
[8] | 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023, 4(4): 720-737. |
[9] | 陈家文, 黄建东, 孙海涛. 工程菌在肿瘤治疗方面的应用进展[J]. 合成生物学, 2023, 4(4): 690-702. |
[10] | 谢君鸿, 何晶晶, 周鹏辉. 合成生物学与工程化T细胞治疗[J]. 合成生物学, 2023, 4(2): 373-393. |
[11] | 林思思, 潘超, 张一帆, 刘尽尧. 基于表面涂层益生菌的肿瘤抗原口服递送系统[J]. 合成生物学, 2022, 3(4): 810-820. |
[12] | 施茜, 吴园园, 杨洋. DNA纳米技术与合成生物学[J]. 合成生物学, 2022, 3(2): 302-319. |
[13] | 郑涵奇, 吴晴, 李洪军, 顾臻. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301. |
[14] | 宋斐, 刘宇辰, 蔡志明, 黄卫人. 基于CRISPR/Cas工具的肿瘤基因线路构建及应用[J]. 合成生物学, 2022, 3(1): 53-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||