1 |
FEYNMAN R. There's plenty of room at the bottom[M]// GILBERT D H. Miniaturization. New York: Reinhold Publishing Corporation, 1960.
|
2 |
DREXLER K E, PETERSON C, PERGAMIT G, et al. Unbounding the future: the nanotechnology revolution[M]. New York: William Morrow and Company, Inc, 1991.
|
3 |
JARIWALA D, SANGWAN V K, LAUHON L J, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing[J]. Chemical Society Reviews, 2013, 42, (7): 2824-2860.
|
4 |
ROCO M C. Nanotechnology: convergence with modern biology and medicine[J]. Current Opinion in Biotechnology, 2003, 14, (3): 337-346.
|
5 |
ZHANG X E. Nanobiology-symphony of bioscience and nanoscience[J]. Science China Life Sciences, 2020, 63, (8): 1099-1102.
|
6 |
CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12, (5): 381-390.
|
7 |
丁明珠,李炳志,王颖, 等. 合成生物学重要研究方向进展[J]. 合成生物学, 2020, 1(1): 7-28.
|
|
DING Mingzhu, LI Bingzhi, WANG Ying,et al. Significant research progress in synthetic biology[J]. Synthetic Biology Journal, 2020, 1(1): 7-28.
|
8 |
郑涵奇, 吴晴, 李洪军, 等. 合成生物学与纳米生物学的交叉融合及其在生物医药领域的应用[J]. 合成生物学, 2022, 3(2): 279-301.
|
|
ZHENG Hanqi, WU Qing, LI Hongjun, et al. Integration of synthetic biology and nanobiotechnology for biomedical applications[J]. Synthetic Biology Journal, 2022, 3(2): 279-301.
|
9 |
冯晴晴, 张天鲛, 赵潇, 等. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿[J]. 合成生物学, 2022, 3(2): 260-278.
|
|
FENG Qingqing, ZHANG Tianjiao, ZHAO Xiao, et al. Synthetic nanobiology——fusion of synthetic biology and nanobiology[J]. Synthetic Biology Journal, 2022, 3(2): 260-278.
|
10 |
施茜, 吴园园, 杨洋. DNA纳米技术与合成生物学[J]. 合成生物学, 2022, 3(2): 302-319.
|
|
SHI Qian, WU Yuanyuan, YANG yang. DNA nanotechnology and synthetic biology[J]. Synthetic Biology Journal, 2022, 3(2): 302-319.
|
11 |
翟婷婷, 顾宏周, 樊春海. 蛋白质组装体辅助的酶固定: 精准构建有机相高效生物催化剂[J]. 合成生物学, 2022, 3(2): 256-259.
|
|
ZHAI Tingting, GU Hongzhou, PAN Chunhai. Enzyme immobilization assisted by protein assemblies for highly efficient biocatalysis in organic systems[J]. Synthetic Biology Journal, 2022, 3(2): 256-259.
|
12 |
许仕琳, 许海燕. 双特异性抗体及纳米技术在肿瘤免疫治疗中的应用进展[J]. 合成生物学, 2022, 3(2): 352-368.
|
|
XU Shilin, XU Haiyan. Progress of bispecific antibodies and nanotechnology in tumor immunotherapies[J]. Synthetic Biology Journal, 2022, 3(2):352-368.
|
13 |
刘奇奇, 王春玉, 齐天翊, 等. 合成生物纳米酶[J]. 合成生物学, 2022, 3(2): 320-334.
|
|
LIU Qiqi, WANG Chunyu, QI Tianyi, et al. Synthetic biological nanozyme[J]. Synthetic Biology Journal, 2022, 3(2): 320-334.
|
14 |
胥欣欣, 匡华. 基于合成受体的食品污染物生物检测进展[J]. 合成生物学, 2022, 3(2): 399-414.
|
|
XU Xinxin, KUANG Hua. Advances in the biological detection of food contaminants based on synthetic receptors[J]. Synthetic Biology Journal, 2022, 3(2): 399-414..
|
15 |
黄利利, 张韩, 王伟伟, 等. 基于生物正交反应的病毒功能化及其生物医学应用[J]. 合成生物学, 2022, 3(2): 335-351.
|
|
HUANG Lili, ZHANG Han, WANG Weiwei, et al. Bioorthogonal functionalization of viruses for biomedical applications[J]. Synthetic Biology Journal, 2022, 3(2): 335-351.
|
16 |
武伟红, 李炜, 张先恩, 等. 合成生物学与荧光成像技术[J]. 合成生物学, 2022, 3(2): 369-384.
|
|
WU Weihong, LI Wei, ZHANG Xian'en, et al. Synthetic biology for fluorescent bioimaging[J]. Synthetic Biology Journal, 2022, 3(2): 369-384.
|
17 |
梁晓声, 郭永超, 门冬, 等. 病毒-纳米金杂合导电网络结构在电化学分析的应用[J]. 合成生物学, 2022, 3(2): 415-427.
|
|
LIANG Xiaosheng, GUO Yongchao, Dong MEN, et al. Hybrid systems of virus and nano-gold conducting networks for electrochemical analysis[J]. Synthetic Biology Journal, 2022, 3(2): : 415-427.
|
18 |
CUI R, LIU H H, XIE H Y, et al. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. [J]. Advanced Functional Materials, 2009, 19(15): 2359-2364.
|
19 |
贾剑红, 杨玲玲, 刘安安, 等. “时-空耦合”活细胞合成量子点[J]. 合成生物学, 2022,3(2): 385-398.
|
|
JIA Jianhong, YANG Lingling, LIU An'an, et al. Space-time-coupled live-cell synthesis of quantum dots[J]. Synthetic Biology Journal, 2022, 3(2): 385-398.
|