合成生物学 ›› 2020, Vol. 1 ›› Issue (1): 44-59.DOI: 10.12211/2096-8280.2020-015

• 特约评述 • 上一篇    下一篇

塑造低碳经济的第三代固碳生物炼制

史硕博1,2, 孟琼宇1, 乔玮博1, 赵惠民3   

  1. 1.北京化工大学北京软物质科学与工程高精尖创新中心,北京 100029
    2.北京化工大学秦皇岛环渤海生物产业研究院,河北 秦皇岛 066000
    3.美国伊利诺伊大学香槟分校化学与生物分子工程系,伊利诺伊州厄巴纳-香槟市 IL618 01
  • 收稿日期:2020-03-02 修回日期:2020-04-14 出版日期:2020-02-25 发布日期:2020-07-07
  • 通讯作者: 赵惠民
  • 作者简介:史硕博(1981-),男,博士,教授,主要从事微生物代谢工程及合成生物学研究。E-mail:shishuobo@mail.buct.edu.cn|赵惠民(1969-),男,博士,现为伊利诺伊大学香槟分校化学与生物分子工程系Steven L. Miller讲座教授,主要从事合成生物学研究。E-mail:zhao5@illinois.edu
  • 基金资助:
    国家自然科学基金(21878013);国家重点研发计划(2018YFA0901800)

Establishing carbon dioxide-based third-generation biorefinery for a sustainable low-carbon economy

Shuobo SHI1,2, Qiongyu MENG1, Weibo QIAO1, Huimin ZHAO3   

  1. 1.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    2.Qinhuangdao Bohai Biological Research Institute, Beijing University of Chemical Technology, Qinhuangdao, 066000, Hebei, China
    3.Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL618 01, USA
  • Received:2020-03-02 Revised:2020-04-14 Online:2020-02-25 Published:2020-07-07
  • Contact: Huimin ZHAO

摘要:

目前人类社会面临的两大挑战是如何实现非化石来源化学品和燃料的可持续生产以及如何应对大量二氧化碳排放造成的温室效应。第三代固碳生物炼制利用细胞工厂可将二氧化碳固定为一系列化学品和燃料,有望解决这一问题,从而建立以低能耗、低污染、低排放为基础的低碳经济模式。构建可利用二氧化碳的细胞工厂是迈向建立第三代固碳生物炼制平台的重要一步。随着生命科学的飞速发展,越来越多的二氧化碳固定机制被揭示。为了提高固碳效率,研究人员利用合成生物学改造天然固碳途径,并在此基础上设计人工固碳途径,或引入新颖的能源供应模式,甚至使异养模式生物变为合成自养生物。本文将对上述领域进行总结,并讨论微生物固定二氧化碳的主要挑战及其未来前景。

关键词: 合成生物学, 生物炼制, 二氧化碳, 低碳经济, 细胞工厂

Abstract:

Due to the sharply increased greenhouse gas (GHG) emissions, there is an urgent need to transit from the traditional ‘take-make-dispose’ economy to a sustainable economy with ecological balances through circular green technologies such as biorefineries. Based on the source of the feedstocks, existing biorefineries can be classified into three types: starch-based first-generation biorefinery, cellulosic biomass-based second-generation biorefinery, and carbon dioxide (CO2)-based third-generation biorefinery. Compared to the first- and second-generation biorefineries, the third-generation biorefinery will not only significantly reduce the GHG emissions but also have no issues on food and water security. However, one of the major challenges in establishing the third-generation biorefinery is the design and engineering of microbial cell factories capable of efficiently utilizing CO2 for the production of chemicals, fuels, and materials. In the past decades, a variety of CO2 fixation pathways have been discovered in naturally occurring CO2 fixation microorganisms (autotrophs) such as microalgae, cyanobacteria, and acetogens, and significant progress has been made in engineering these autotrophs to extend the product portfolio or improve the carbon fixation efficiencies. Recently, some of these CO2 fixation pathways were successfully incorporated into heterotrophic microorganisms commonly used as microbial cell factories such as Escherichia coli and Pichia pastoris. In this review, we will first introduce both the naturally occurring and artificially designed CO2 fixation pathways, and then discuss the application of synthetic biology strategies and tools for engineering autotrophs and heterotrophs to convert CO2 into a variety of industrially important compounds. Finally, we will briefly comment on the prospects of CO2-based biorefinery and the relevant scientific opportunities and challenges.

Key words: synthetic biology, biorefinery, carbon dioxide, low-carbon economy, microbial cell factory

中图分类号: