Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (2): 222-233.DOI: 10.12211/2096-8280.2020-048
• Invited Review • Previous Articles Next Articles
Hui ZHANG1,2, Yaomeng YUAN3,4, Chong ZHANG3,4, Song YANG1,2,5, Xinhui XING3,4
Received:
2020-06-15
Revised:
2021-01-11
Online:
2021-04-30
Published:
2021-04-29
Contact:
Song YANG, Xinhui XING
张卉1,2, 袁姚梦3,4, 张翀3,4, 杨松1,2,5, 邢新会3,4
通讯作者:
杨松,邢新会
作者简介:
基金资助:
CLC Number:
Hui ZHANG, Yaomeng YUAN, Chong ZHANG, Song YANG, Xinhui XING. Research progresses and future prospects of synthetic methylotrophic cell factory for methanol assimilation[J]. Synthetic Biology Journal, 2021, 2(2): 222-233.
张卉, 袁姚梦, 张翀, 杨松, 邢新会. 合成甲基营养细胞工厂同化甲醇的研究进展及未来展望[J]. 合成生物学, 2021, 2(2): 222-233.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-048
Fig. 1 The construction of the synthetic methylotrophic cell factory based on the sugar as the co-substrate[36-38, 41-45][The blue represents the Rump pathway; the orange, purple and gray represent the metabolic pathway of knocking out genes (edd, rpi and maldh) based on the gluconate as the co-substrate, knocking out genes (edd, rpi and pgi) using glucose as the the co-substrate, knocking out the gene rpi based on the xylose as the co-substrate, respectively; the green represents the heterologous expression of genes glpx and fba. The red represents the regulation of leucine-responsive protein, in which "+" represents the activation pathway and "-" represents the inhibition pathway]
碳源 | 宿主 | Mdh、Hps和Phi来源 | 甲醇同化进展 | 文献 |
---|---|---|---|---|
甲醇和酵母抽提物 | 大肠杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 39%三羧酸循环中间产物和53%糖酵解中间产物被13C甲醇标记,实现柚皮素合成 | [ |
大肠杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 增强核酮糖-5-磷酸再生和甲醇同化,增加3-磷酸甘油酸和磷酸烯醇式丙酮酸的13C甲醇标记量 | [ | |
大肠杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | Pfrm控制动态调控酶的活性,增加大肠杆菌在甲醇中的生长速率 | [ | |
甲醇和 葡萄糖 | 谷氨酸棒状杆菌 | 甲醇芽孢杆菌,枯草芽孢杆菌,枯草芽孢杆菌 | 甲醇消耗速率为1.7 mmol/(L·h) | [ |
大肠杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 增加甲醇进入中间代谢物的碳通量 | [ | |
甲醇和葡萄糖酸盐 | 大肠杆菌 | 甲醇芽孢杆菌,甲基鞭毛杆菌,甲基鞭毛杆菌 | 通过实验室适应性进化,24%甲醇进入中心碳代谢,甲醇可作为主要生长碳源 | [ |
甲醇和 木糖 | 大肠杆菌 | 钩虫贪铜菌,甲醇芽孢杆菌,甲基鞭毛杆菌 | 通过实验室适应性进化,甲醇和木糖大约以1∶1的摩尔比共同消耗,进化菌株的生长速率为(0.17±0.006) h-1,并利用甲醇生产乙醇和丁醇 | [ |
大肠杆菌 | 甲醇芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 进化的Mdh2突变体最大反应速度增加3.5倍,甲醇进入突变菌株中心代谢物的碳通量是未突变菌株的2倍 | [ | |
谷氨酸棒状杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 高达63%的13C甲醇进入细胞内代谢物 | [ | |
甲醇和 核糖 | 大肠杆菌 | 甲醇芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 40%的甲醇进入中心碳代谢途径 | [ |
谷氨酸棒状杆菌 | 甲醇芽孢杆菌,枯草芽孢杆菌,枯草芽孢杆菌 | 25%的13C标记出现在糖酵解和磷酸戊糖途径中间代谢物 | [ |
Tab. 1 Enhancement of methanol assimilation based on the sugar as the co-substrate
碳源 | 宿主 | Mdh、Hps和Phi来源 | 甲醇同化进展 | 文献 |
---|---|---|---|---|
甲醇和酵母抽提物 | 大肠杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 39%三羧酸循环中间产物和53%糖酵解中间产物被13C甲醇标记,实现柚皮素合成 | [ |
大肠杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 增强核酮糖-5-磷酸再生和甲醇同化,增加3-磷酸甘油酸和磷酸烯醇式丙酮酸的13C甲醇标记量 | [ | |
大肠杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | Pfrm控制动态调控酶的活性,增加大肠杆菌在甲醇中的生长速率 | [ | |
甲醇和 葡萄糖 | 谷氨酸棒状杆菌 | 甲醇芽孢杆菌,枯草芽孢杆菌,枯草芽孢杆菌 | 甲醇消耗速率为1.7 mmol/(L·h) | [ |
大肠杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 增加甲醇进入中间代谢物的碳通量 | [ | |
甲醇和葡萄糖酸盐 | 大肠杆菌 | 甲醇芽孢杆菌,甲基鞭毛杆菌,甲基鞭毛杆菌 | 通过实验室适应性进化,24%甲醇进入中心碳代谢,甲醇可作为主要生长碳源 | [ |
甲醇和 木糖 | 大肠杆菌 | 钩虫贪铜菌,甲醇芽孢杆菌,甲基鞭毛杆菌 | 通过实验室适应性进化,甲醇和木糖大约以1∶1的摩尔比共同消耗,进化菌株的生长速率为(0.17±0.006) h-1,并利用甲醇生产乙醇和丁醇 | [ |
大肠杆菌 | 甲醇芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 进化的Mdh2突变体最大反应速度增加3.5倍,甲醇进入突变菌株中心代谢物的碳通量是未突变菌株的2倍 | [ | |
谷氨酸棒状杆菌 | 嗜热脂肪芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 高达63%的13C甲醇进入细胞内代谢物 | [ | |
甲醇和 核糖 | 大肠杆菌 | 甲醇芽孢杆菌,甲醇芽孢杆菌,甲醇芽孢杆菌 | 40%的甲醇进入中心碳代谢途径 | [ |
谷氨酸棒状杆菌 | 甲醇芽孢杆菌,枯草芽孢杆菌,枯草芽孢杆菌 | 25%的13C标记出现在糖酵解和磷酸戊糖途径中间代谢物 | [ |
宿主 | 基因名称 | 基因功能 | 基因突变类型 | 依赖甲醇生长的预测功能 | 文献 |
---|---|---|---|---|---|
大肠杆菌 | frmA | 谷胱甘肽依赖的甲醛脱氢酶 | 移码突变 | 促进甲醛氧化为CO2,提供额外的NADH | [ |
fdoG | 甲酸脱氢酶 | 移码突变 | 促进甲酸氧化为CO2,提供额外的NADH | ||
gltA | 柠檬酸合成酶 | 转座子插入 | 降低三羧酸循环的碳通量,插入转座子元件 | ||
ptsH | 编码Hpr的蛋白酶 | 转座子插入 | 破坏磷酸糖转移酶系统,插入转座子元件 | ||
pgi | 磷酸葡萄糖异构酶 | 基因内缺失 | 提高磷酸葡萄糖异构酶酶活,增加细胞生长所需的NADPH | ||
大肠杆菌 | gntR | DNA结合转录抑制子 | 碱基置换 | 改变葡萄糖酸摄取量 | [ |
frmA | 谷胱甘肽依赖的甲醛脱氢酶 | 移码突变 | 失活甲醛氧化途径,甲醛用于同化途径 | ||
nadR | DNA结合转录抑制子/烟酰胺单核苷酸腺苷转移酶 | 碱基置换 | 改变NAD+/NADH比值 | ||
大肠杆菌 | ptsI | 组成磷酸转移酶系统的酶I | 基因内缺失 | 降低葡萄糖消耗速率 | [ |
icd | 异柠檬酸脱氢酶 | 基因内缺失 | 降低三羧酸循环的碳通量,以维持细胞氧化还原平衡 | ||
大肠杆菌 | zwf | 6-磷酸葡萄糖脱氢酶 | 碱基置换 | 调低Entner-Doudoroff途径通量 | [ |
pykF | 丙酮酸激酶I | 基因内插入 | 调低糖酵解途径通量 | ||
cyaA | 腺苷酸环化酶 | 基因内插入 | 降低三羧酸循环相关酶的转录水平,改变NAD+/NADH比值 | ||
deoD | 嘌呤核苷磷酸化酶 | 基因内插入 | 提供甲醛固定受体 | ||
frmAB, yaiO | 甲醛脱毒操纵子,外膜蛋白 | 基因间缺失 | 增加细胞内甲醛浓度 | ||
谷氨酸棒状杆菌 | atlR | 碳水化合物代谢的多功能调节子 | 碱基置换 | 提高醇脱氢酶和木糖激酶的催化活性以强化甲醇和木糖的利用效率 | [ |
metY | 邻乙酰高丝氨酸巯基化酶 | 碱基置换 | 提高宿主对甲醇的耐受性 | ||
mtrA | 参与细胞形态、抗生素易感性、渗透保护在内的基因功能的多重调控子 | 碱基置换 | 通过调节类谷氧还蛋白和NAD+合成酶,参与维持细胞内氧化还原状态 | ||
cgl2030, ctaE | 预测的ATP激酶,细胞色素C氧化酶亚基 蛋白酶 | 碱基置换 | 改变能量代谢 |
Tab. 2 Summary of mutations obtained by adaptive laboratory evolution in synthetic methanol-dependent strains
宿主 | 基因名称 | 基因功能 | 基因突变类型 | 依赖甲醇生长的预测功能 | 文献 |
---|---|---|---|---|---|
大肠杆菌 | frmA | 谷胱甘肽依赖的甲醛脱氢酶 | 移码突变 | 促进甲醛氧化为CO2,提供额外的NADH | [ |
fdoG | 甲酸脱氢酶 | 移码突变 | 促进甲酸氧化为CO2,提供额外的NADH | ||
gltA | 柠檬酸合成酶 | 转座子插入 | 降低三羧酸循环的碳通量,插入转座子元件 | ||
ptsH | 编码Hpr的蛋白酶 | 转座子插入 | 破坏磷酸糖转移酶系统,插入转座子元件 | ||
pgi | 磷酸葡萄糖异构酶 | 基因内缺失 | 提高磷酸葡萄糖异构酶酶活,增加细胞生长所需的NADPH | ||
大肠杆菌 | gntR | DNA结合转录抑制子 | 碱基置换 | 改变葡萄糖酸摄取量 | [ |
frmA | 谷胱甘肽依赖的甲醛脱氢酶 | 移码突变 | 失活甲醛氧化途径,甲醛用于同化途径 | ||
nadR | DNA结合转录抑制子/烟酰胺单核苷酸腺苷转移酶 | 碱基置换 | 改变NAD+/NADH比值 | ||
大肠杆菌 | ptsI | 组成磷酸转移酶系统的酶I | 基因内缺失 | 降低葡萄糖消耗速率 | [ |
icd | 异柠檬酸脱氢酶 | 基因内缺失 | 降低三羧酸循环的碳通量,以维持细胞氧化还原平衡 | ||
大肠杆菌 | zwf | 6-磷酸葡萄糖脱氢酶 | 碱基置换 | 调低Entner-Doudoroff途径通量 | [ |
pykF | 丙酮酸激酶I | 基因内插入 | 调低糖酵解途径通量 | ||
cyaA | 腺苷酸环化酶 | 基因内插入 | 降低三羧酸循环相关酶的转录水平,改变NAD+/NADH比值 | ||
deoD | 嘌呤核苷磷酸化酶 | 基因内插入 | 提供甲醛固定受体 | ||
frmAB, yaiO | 甲醛脱毒操纵子,外膜蛋白 | 基因间缺失 | 增加细胞内甲醛浓度 | ||
谷氨酸棒状杆菌 | atlR | 碳水化合物代谢的多功能调节子 | 碱基置换 | 提高醇脱氢酶和木糖激酶的催化活性以强化甲醇和木糖的利用效率 | [ |
metY | 邻乙酰高丝氨酸巯基化酶 | 碱基置换 | 提高宿主对甲醇的耐受性 | ||
mtrA | 参与细胞形态、抗生素易感性、渗透保护在内的基因功能的多重调控子 | 碱基置换 | 通过调节类谷氧还蛋白和NAD+合成酶,参与维持细胞内氧化还原状态 | ||
cgl2030, ctaE | 预测的ATP激酶,细胞色素C氧化酶亚基 蛋白酶 | 碱基置换 | 改变能量代谢 |
1 | CLOMBURG J M, CRUMBLEY A M, GONZALEZ R. Industrial biomanufacturing: the future of chemical production[J]. Science, 2017, 355(6320): 38. |
2 | ZHU T, ZHAO T, BANKEFA O E, et al. Engineering unnatural methylotrophic cell factories for methanol-based biomanufacturing: challenges and opportunities[J]. Biotechnology Advances, 2020, 39: 107467. |
3 | MARTENS J A, BOGAERTS A, DE KIMPE N, et al. The chemical route to a carbon dioxide neutral world[J]. Chemsuschem, 2017, 10(6): 1039-1055. |
4 | OLAH G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
5 | ZHANG M, YUAN X J, ZHANG C, et al. Bioconversion of methanol into value-added chemicals in native and synthetic methylotrophs[J]. Current Issues Molecular Biology, 2019, 33: 225-236. |
6 | SCHRADER J, SCHILLING M, HOLTMANN D, et al. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria[J]. Trends in Biotechnology, 2009, 27(2):107-115. |
7 | ZHANG W M, SONG M, YANG Q, et al. Current advance in bioconversion of methanol to chemicals[J]. Biotechnology for Biofuels, 2018, 11: 260. |
8 | CHISTOSERDOVA L, KALYUZHNAYA M G. Current trends in methylotrophy[J]. Trends in Microbiology, 2018, 26(8): 703-714. |
9 | CUI J, GOOD N M, HU B, et al. Metabolomics revealed an association of metabolite changes and defective growth in Methylobacterium extorquens AM1 overexpressing ecm during growth on methanol[J]. PLoS One, 2016, 11(4): e0154043. |
10 | ANTHONY C, GHOSH M. The structure and function of the PQQ-containing quinoprotein dehydrogenases[J]. Progress in Biophysics and Molecular Biology, 1998, 69(1): 1-21. |
11 | KROG A, HEGGESET T M, MÜLLER J E, et al. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties[J]. PLoS One, 2013, 8(3): e59188. |
12 | GUNKEL K, DIJK R VAN, VEENHUIS M, et al. Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery[J]. Molecular Biology of the Cell, 2004, 15(3): 1347-1355. |
13 | ZHU W L, CUI J Y, CUI L Y, et al. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway[J]. Applied Microbiology and Biotechnology, 2016, 100(5): 2171-2182. |
14 | LIANG W F, CUI L Y, CUI J Y, et al. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply[J]. Metabolic Engineering, 2017, 39: 159-168. |
15 | YANG Y M, CHEN W J, YANG J, et al. Production of 3-hydroxypropionic acid in engineered Methylobacterium extorquens AM1 and its reassimilation through a reductive route[J]. Microbial Cell Factories, 2017, 16(1): 179. |
16 | SONNTAG F, KRONER C, LUBUTA P, et al. Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol[J]. Metabolic Engineering, 2015, 32: 82-94. |
17 | LENNART S V B, REMUS-EMSERMANN M, WEISHAUPT R, et al. A set of versatile brick vectors and promoters for the assembly, expression, and integration of synthetic operons in Methylobacterium extorquens AM1 and other alphaproteobacteria[J]. ACS Synthetic Biology, 2015, 4(4): 430. |
18 | CARRILLO M, WAGNER M, PETIT F, et al. Design and control of extrachromosomal elements in Methylorubrum extorquens AM1[J]. ACS Synthetic Biology, 2019, 8(11): 2451-2456. |
19 | CHISTOSERDOVA L. Modularity of methylotrophy, revisited[J]. Environmental Microbiology, 2011, 13(10): 2603-2622. |
20 | MÜLLER J E, MEYER F, LITSANOV B, et al. Core pathways operating during methylotrophy of Bacillus methanolicus MGA3 and induction of a bacillithiol-dependent detoxification pathway upon formaldehyde stress[J]. Molecular Microbiology, 2015, 98(6): 1089-1100. |
21 | WHITAKER W B, SANDOVAL N R, BENNETT R K, et al. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization[J]. Current Opinion in Biotechnology, 2015, 33: 165-175. |
22 | WHITAKER W B, JONES J A, BENNETT R K, et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli[J]. Metabolic Engineering, 2017, 39: 49-59. |
23 | WOOLSTON B M, KING J R, REITER M, et al. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli[J]. Nature Communications, 2018, 9(1): 2387. |
24 | CHEN F Y H, JUNG H W, TSUEI C Y, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946. e14. |
25 | WITTHOFF S, SCHMITZ K, NIEDENFÜHR S, et al. Metabolic engineering of Corynebacterium glutamicum for methanol metabolism[J]. Applied and Environmental Microbiology, 2015, 81(6): 2215-2225. |
26 | MÜLLER J E N, MEYER F, LITSANOV B, et al. Engineering Escherichia coli for methanol conversion[J]. Metabolic Engineering, 2015, 28: 190-201. |
27 | WU T Y, CHEN C T, LIU J T J, et al. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4969-4983. |
28 | ROTH T B, WOOLSTON B M, STEPHANOPOULOS G, et al. Phage-assisted evolution of Bacillus methanolicus methanol dehydrogenase 2[J]. ACS Synthetic Biology, 2019, 8(4): 796-806. |
29 | SIEGEL J B, SMITH A L, POUST S, et al. Computational protein design enables a novel one-carbon assimilation pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3704-3709. |
30 | LU X, LIU Y, YANG Y, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design[J]. Nature Communications, 2019, 10(1): 1378. |
31 | PRICE J V, CHEN L, WHITAKER W B, et al. Scaffoldless engineered enzyme assembly for enhanced methanol utilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12691-12696. |
32 | FAN L, WANG Y, TUYISHIME P, et al. Engineering artificial fusion proteins for enhanced methanol bioconversion[J]. 2018, 19(23): Chembiochem, 2465-2471. |
33 | OSMAN D, PIERGENTILI C, CHEN J, et al. The effectors and sensory sites of formaldehyde-responsive regulator FrmR and metal-sensing variant[J]. The J ournal of Biological Chemistry, 2016, 291(37): 19502-19516. |
34 | DENBY K J, IWIG J, BISSON C, et al. The mechanism of a formaldehyde-sensing transcriptional regulator[J]. Scientific Reports, 2016, 6: 38879. |
35 | ROHLHILL J, SANDOVAL N R, PAPOUTSAKIS E T. Sort-seq approach to engineering a formaldehyde-inducible promoter for dynamically regulated Escherichia coli growth on methanol[J]. ACS Synthetic Biology, 2017, 6(8): 1584-1595. |
36 | BENNETT R K, GONZALEZ J E, WHITAKER W B, et al. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph[J]. Metabolic Engineering, 2018, 45: 75-85. |
37 | BRAUTASET T, JAKOBSEN M Ø M, FLICKINGER M C, et al. Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus[J]. Journal of Bacteriology, 2004, 186(5): 1229-1238. |
38 | MÜLLER J E, HEGGESET T M, WENDISCH V F, et al. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol[J]. Applied Microbiology and Biotechnology, 2015, 99(2): 535-551. |
39 | ROHLHILL J, GERALD HAR J R, ANTONIEWICZ M R, et al. Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation[J]. Metabolic Engineering, 2020, 57: 247-255. |
40 | KELLER P, NOOR E, MEYER F, et al. Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle[J]. Nature Communications, 2020, 11(1): 5403. |
41 | MEYER F, KELLER P, HARTL J, et al. Methanol-essential growth of Escherichia coli[J]. Nature Communications, 2018, 9(1): 1508. |
42 | BENNETT R K, DILLON M, GERALD HAR J R, et al. Engineering Escherichia coli for methanol-dependent growth on glucose for metabolite production[J]. Metabolic Engineering, 2020, 60: 45-55. |
43 | CHEN C T, CHEN F Y, BOGORAD I W, et al. Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production[J]. Metabolic Engineering, 2018, 49: 257-266. |
44 | TUYISHIME P, WANG Y, FAN L, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metabolic Engineering, 2018, 49: 220-231. |
45 | GONZALEZ J E, BENNETT R K, PAPOUTSAKIS E T, et al. Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein[J]. Metabolic Engineering, 2018, 45: 67-74. |
46 | LEßMEIER L, PFEIFENSCHNEIDER J, CARNICER M, et al. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10163-10176. |
47 | WANG X, WANG X L, LU X L, et al. Methanol fermentation increases the production of NAD(P)H-dependent chemicals in synthetic methylotrophic Escherichia coli[J]. Biotechnology for Biofuels, 2019, 12(1): 17. |
48 | WANG C, REN J, ZHOU L, et al. An aldolase-catalyzed new metabolic pathway for the assimilation of formaldehyde and methanol to synthesize 2-keto-4-hydroxybutyrate and 1, 3-propanediol in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(11): 2483-2493. |
49 | YU H, LIAO J C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds[J]. Nature Communications, 2018, 9(1): 3992. |
50 | HE H, HOPER R, DODENHOFT M, et al. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli[J]. Metabolic Engineering, 2020, 60: 1-13. |
51 | DAI Z, GU H, ZHANG S, et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae[J]. Bioresource Technology, 2017, 245(pt b): 1407-1412. |
52 | BOGORAD I W, CHEN C T, THEISEN M K, et al. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): 15928-15933. |
53 | CHOU A, CLOMBURG J M, QIAN S, et al. 2-Hydroxyacyl-CoA lyase catalyzes acyloin condensation for one-carbon bioconversion[J]. Nature Chemical Biology, 2019, 15(9): 900-906. |
54 | YANG X, YUAN Q, LUO H, et al. Systematic design and in vitro validation of novel one-carbon assimilation pathways[J]. Metabolic Engineering, 2019, 56: 142-153. |
55 | ZHANG J, JENSEN M K, KEASLING J D. Development of biosensors and their application in metabolic engineering[J]. Current Opinion in Chemical Biology, 2015, 28: 1-8. |
56 | ROGERS J K, TAYLOR N D, CHURCH G M. Biosensor-based engineering of biosynthetic pathways[J]. Current Opinion in Biotechnology, 2016, 42: 84-91. |
57 | CHEN N H, DJOKO K Y, VEYRIER F J, et al. Formaldehyde stress responses in bacterial pathogens[J]. Frontiers in Microbiology, 2016, 7: 257. |
58 | CUI L Y, WANG S S, GUAN C G, et al. Breeding of methanol-tolerant Methylobacterium extorquens AM1 by atmospheric and room temperature plasma mutagenesis combined with adaptive laboratory evolution[J]. Biotechnology Journal, 2018, 13(6): e1700679. |
59 | HU B, YANG Y M, BECK D A, et al. Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance[J]. Biotechnology for Biofuels, 2016, 9: 84. |
60 | HU B, LIDSTROM M E. Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production[J]. Biotechnology for Biofuels, 2014, 7(1): 1-10. |
61 | WANG T M, GUAN C G, GUO J H, et al. Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance[J]. Nature Communications, 2018, 9(1): 2475. |
62 | MO X H, ZHANG H, WANG T M, et al. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis[J]. Applied Microbiology and Biotechnology, 2020, 104(10): 4515-4532. |
63 | GLEIZER S, BEN-NISSAN R, BAR-ON Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2[J]. Cell, 2019, 179(6): 1255-1263. |
64 | FABARIUS J T, WEGAT V, ROTH A, SIEBER V. Synthetic methylotrophy in yeasts: towards a circular bioeconomy[J]. Trends in Biotechnology, 2020, 39(4):348-358. |
65 | DONG C, FONTANA J, PATEL A, et al. Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria[J]. Nature Communications, 2018, 9(1): 2489. |
66 | GARST A D, BASSALO M C, PINES G, et al. Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering[J]. Nature Biotechnology, 2017, 35(1): 48-55. |
67 | WONG B G, MANCUSO C P, KIRIAKOV S, et al. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER[J]. Nature Biotechnology, 2018, 36(7): 614-623. |
68 | JIAN X J, GUO X J, WANG J, et al. Microbial microdroplet culture system (MMC): An integrated platform for automated, high-throughput microbial cultivation and adaptive evolution[J]. Biotechnology and Bioengineering, 2020, 117(6): 1724-1737. |
[1] | Quanyu ZHAO. Research progress in carbon neutrality oriented adaptive laboratory evolution of microalgae [J]. Synthetic Biology Journal, 2022, 3(5): 901-914. |
[2] | Junting WANG, Xiaojia GUO, Qing LI, Li WAN, Zongbao ZHAO. Creation of non-natural cofactor-dependent methanol dehydrogenase [J]. Synthetic Biology Journal, 2021, 2(4): 651-661. |
[3] | Jiaoqi GAO, Yongjin ZHOU. Advances in methanol bio-transformation [J]. Synthetic Biology Journal, 2020, 1(2): 158-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||