Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (2): 234-246.DOI: 10.12211/2096-8280.2020-066
• Invited Review • Previous Articles Next Articles
Ailin ZHOU1,2, Yi LIU1, Fang BA1, Chao ZHONG1,3,4
Received:
2020-06-05
Revised:
2021-02-19
Online:
2021-04-30
Published:
2021-04-29
Contact:
Chao ZHONG
周爱林1,2, 刘奕1, 巴方1, 钟超1,3,4
通讯作者:
钟超
作者简介:
基金资助:
CLC Number:
Ailin ZHOU, Yi LIU, Fang BA, Chao ZHONG. Construction and engineering application of bacterial quorum sensing elements[J]. Synthetic Biology Journal, 2021, 2(2): 234-246.
周爱林, 刘奕, 巴方, 钟超. 细菌群体感应元件构建和工程应用[J]. 合成生物学, 2021, 2(2): 234-246.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-066
项目 | 化学诱导剂 | 群体感应 |
---|---|---|
可控性 | 较好 可以人为通过加入化学诱导剂,较为精确地控制基因表达的时间 | 较好 群体感应的基因表达开启与否本来由元件内源参数决定,除了在使用前改造元件、调整内源参数,还可以将群体感应中自体诱导物的启动子替换为外源分子调控的诱导型启动子,通过外加特定的诱导物实现对群体感应行为的控制[ |
动态性 | 较差 需要实时检测细胞生长状况,并在合适的时机添加诱导剂 | 较好 群体数量实时决定群体行为 |
可逆性 | 较差 一经添加便会一直存在于介质中,只能起到单次控制的效果[ | 较差,但可以优化 Miano等[ |
经济性 | 较差 现常用的化学诱导剂如IPTG等成本较高[ | 较好 只在最初基因回路构建上存在一次性成本 |
Tab. 1 Comparison between chemical inducers and quorum sensing on their application in metabolic regulation[23-24,26,39-40]
项目 | 化学诱导剂 | 群体感应 |
---|---|---|
可控性 | 较好 可以人为通过加入化学诱导剂,较为精确地控制基因表达的时间 | 较好 群体感应的基因表达开启与否本来由元件内源参数决定,除了在使用前改造元件、调整内源参数,还可以将群体感应中自体诱导物的启动子替换为外源分子调控的诱导型启动子,通过外加特定的诱导物实现对群体感应行为的控制[ |
动态性 | 较差 需要实时检测细胞生长状况,并在合适的时机添加诱导剂 | 较好 群体数量实时决定群体行为 |
可逆性 | 较差 一经添加便会一直存在于介质中,只能起到单次控制的效果[ | 较差,但可以优化 Miano等[ |
经济性 | 较差 现常用的化学诱导剂如IPTG等成本较高[ | 较好 只在最初基因回路构建上存在一次性成本 |
Fig. 4 Three strategies for construcling multicellular oscillation systems[30, 56-57][(a), (b) and (c) refers to each of the three strategies for combining oscillation circuit with quorum sensing.(d)Forming regular pattern using QS.By using method B, autoinducer concentration periodically reaches the threshold. Since only bacteria at the edge of the colony have higher gene expression (like the expression of fluorescent protein),an AND logic gate is constructed to make the colony show rhythmic pattern.(e)Realization of the collective oscillation in a bigger range.(f)Employment of QS oscillation system in cancer treatment]
1 | TOMASZ A. Control of the competent state in pneumococcus by a hormone-like cell product: An example for a new type of regulatory mechanism in bacteria[J]. Nature, 1965, 208(5006): 155-159. |
2 | EBERHARD A, BURLINGAME A L, EBERHARD C, et al. Structural identification of autoinducer of Photobacterium fischeri luciferase[J]. Biochemistry, 1981, 20(9): 2444-2449. |
3 | ENGEBRECHT J, SILVERMAN M. Identification of genes and gene products necessary for bacterial bioluminescence[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(13): 4154-4158. |
4 | FUQUA W C, WINANS S C, GREENBERG E P. Quorum sensing in bacteria-the luxr-luxi family of cell density-responsive transcriptional regulators[J]. Journal of Bacteriology, 1994, 176(2): 269-275. |
5 | MUKHERJEE S, BOSSIER B L. Bacterial quorum sensing in complex and dynamically changing environments[J]. Nature Reviews Microbiology, 2019, 17(6): 371-382. |
6 | PAPENFORT K, BASSLER B L. Quorum sensing signal-response systems in Gram-negative bacteria[J]. Nature Reviews Microbiology, 2016, 14(9): 576-588. |
7 | POTTATHIL M, LAZAZZERA B A. The extracellular Phr peptide-rap phosphatase signaling circuit of Bacillus subtilis[J]. Frontiers in Bioscience, 2003, 8: 32-45. |
8 | GROSSMAN A D. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis[J]. Annual Review of Genetics, 1995, 29: 477-508. |
9 | JI G Y, BEAVIS R C, NOVICK R P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(26): 12055-12059. |
10 | PEARSON J P, FELDMAN M, IGLEWSKI B H, et al. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection[J]. Infection and Immunity, 2000, 68(7): 4331-4334. |
11 | PIRHONEN M, FLEGO D, HEIKINHEIMO R, et al. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora[J]. Embo Journal, 1993, 12(6): 2467-2476. |
12 | BOUAYED N, DIETRICH N, LAFFORGUE C, et al. Process-oriented review of bacterial quorum quenching for membrane biofouling mitigation in membrane bioreactors (mbrs)[J]. Membranes, 2016, 6(4):52. |
13 | POLLAK S, OMER BENDORI S, ELDAR A. A complex path for domestication of B. subtilis sociality[J]. Current Genetics, 2015, 61(4): 493-496. |
14 | OGER P, KIM K S, SACKETT R L, et al. Octopine-type Ti plasmids code for a mannopine-inducible dominant-negative allele of traR, the quorum-sensing activator that regulates Ti plasmid conjugal transfer[J]. Molecular Microbiology, 1998, 27(2): 277-288. |
15 | BAINTON N J, STEAD P, CHHABRA S R, et al. N-(3-oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora[J]. Biochemical Journal, 1992, 288: 997-1004. |
16 | YUKSEL M, POWER J J, RIBBE J, et al. Fitness trade-offs in competence differentiation of Bacillus subtilis[J]. Frontiers in Microbiology, 2016, 7:888. |
17 | JOHNSEN P J, DUBNAU D, LEVIN B R. Episodic selection and the maintenance of competence and natural transformation in Bacillus subtilis[J]. Genetics, 2009, 181(4): 1521-1533. |
18 | CONNELL J L, KIM J, SHEAR J B, et al. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): 18255-18260. |
19 | MCMILLEN D, KOPELL N, HASTY J, et al. Synchronizing genetic relaxation oscillators by intercell signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2): 679-684. |
20 | DANINO T, MONDRAGON-PALOMINO O, TSIMRING L, et al. A synchronized quorum of genetic clocks[J]. Nature, 2010, 463(7279): 326-330. |
21 | DIN M O, DANINO T, PRINDLE A, et al. Synchronized cycles of bacterinl lysis for in vivo delivery[J]. Nature, 2016, 536(7614): 81-85. |
22 | KIM M K, ZHAO A S, WANG A, et al. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development[J]. Nature Microbiology, 2017, 2(8). DOI:http://doi.org/10.1038/nmicrobiol.2017.80. |
23 | MIANO A, LIAO M J, HASTY J. Inducible cell-to-cell signaling for tunable dynamics in microbial communities[J]. Nature Communications, 2020, 11(1): 1193-1200. |
24 | LIU H W, FAN K L, LI H J, et al. Synthetic gene circuits enable Escherichia coli to use endogenous H2S as a signaling molecule for quorum sensing[J]. ACS Synthetic Biology, 2019, 8(9): 2113-2120. |
25 | CHEN M T, WEISS R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana[J]. Nature Biotechnology, 2005, 23(12): 1551-1555. |
26 | WILLIAMS T C, NIELSEN L K, VICKERS C E. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2013, 2(3): 136-149. |
27 | MINOGUE T D, WEHLAND-VON TREBRA M, BERNHARD F, et al. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function[J]. Molecular Microbiology, 2002, 44(6): 1625-1635. |
28 | SONG S Y, VUAI M S, ZHONG M T. The role of bacteria in cancer therapy - enemies in the past, but allies at present[J]. Infectious Agents and Cancer, 2018, 13(9). DOI: http://doi.org/10.1186/s13027-018-0180-y. |
29 | SHONG J, HUANG Y M, BYSTROFF C, et al. Directed evolution of the quorum-sensing regulator EsaR for increased signal sensitivity[J]. ACS Chemical Biology, 2013, 8(4): 789-795. |
30 | PRINDLE A, SAMAYOA P, RAZINKOV I, et al. A sensing array of radically coupled genetic 'biopixels'[J]. Nature, 2012, 481(7379): 39-44. |
31 | SHONG J, COLLINS C H. Engineering the esaR promoter for tunable quorum sensing-dependent gene expression[J]. ACS Synthetic Biology, 2013, 2(10): 568-575. |
32 | SOMA Y, HANAI T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production[J]. Metabolic Engineering, 2015, 30: 7-15. |
33 | TABOR J J, SALIS H M, SIMPSON Z B, et al. A synthetic genetic edge detection program[J]. Cell, 2009, 137(7): 1272-1281. |
34 | ARKIN A P, FLETCHER D A. Fast, cheap and somewhat in control[J]. Genome Biology, 2006, 7(8). DOI: https://doi.org/10.1186/gb-2006-7-8-114. |
35 | TAMSIR A, TABOR J J, VOIGT C A. Robust multicellular computing using genetically encoded NOR gates and chemical 'wires'[J]. Nature, 2011, 469(7329): 212-215. |
36 | LALWANI M A, ZHAO E M, AVALOS J L. Current and future modalities of dynamic control in metabolic engineering[J]. Current Opinion in Biotechnology, 2018, 52: 56-65. |
37 | LEE S K, CHOU H, HAM T S, et al. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels[J]. Current Opinion in Biotechnology, 2008, 19(6): 556-563. |
38 | KEASLING J D. Synthetic biology for synthetic chemistry[J]. ACS Chemical Biology, 2008, 3(1): 64-76. |
39 | KEASLING J D. Manufacturing molecules through metabolic engineering[J]. Science, 2010, 330(6009): 1355-1358. |
40 | TERPE K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems[J]. Applied Microbiology and Biotechnology, 2006, 72(2): 211-222. |
41 | GUPTA A, REIZMAN I M B, REISCH C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nature Biotechnology, 2017, 35(3): 273-279. |
42 | KIM E M, WOO H M, TIAN T, et al. Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli[J]. Metabolic Engineering, 2017, 44: 325-336. |
43 | BROCKMAN I M, PRATHER K L J. Dynamic metabolic engineering: New strategies for developing responsive cell factories[J]. Biotechnology Journal, 2015, 10(9): 1360-1369. |
44 | SHEN Y P, FONG L S, YAN Z B, et al. Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in Escherichia coli[J]. Biotechnology for Biofuels, 2019, 12. DOI:10.1186/s13068-019-1438-3. |
45 | GU F, JIANG W, MU Y L, et al. Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems[J]. ACS Synthetic Biology, 2020, 9(2): 209-217. |
46 | JIANG W, HE X, LUO Y, et al. Two completely orthogonal quorum sensing systems with self-produced autoinducers enable automatic delayed cascade control[J]. ACS Synthetic Biology, 2020, 9(9): 2588-2599. |
47 | DAHL R H, ZHANG F, ALONSO-GUTIERREZ J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31(11): 1039-1046. |
48 | HE X Y, CHEN Y, LIANG Q F, et al. Autoinduced and gate controls metabolic pathway dynamically in response to microbial communities and cell physiological state[J]. ACS Synthetic Biology, 2017, 6(3): 463-470. |
49 | STRICKER J, COOKSON S, BENNETT M R, et al. A fast, robust and tunable synthetic gene oscillator[J]. Nature, 2008, 456(7221): 516-519. |
50 | MATHER W, BENNETT M R, HASTY J, et al. Delay-induced degrade-and-fire oscillations in small genetic circuits[J]. Physical Review Letters, 2009, 102(6). DOI: 10.1103/PhysRevLett.102.068105. |
51 | BARKAI N, LEIBLER S. Biological rhythms-circadian clocks limited by noise[J]. Nature, 2000, 403(6767): 267-268. |
52 | ATKINSON M R, SAVAGEAU M A, MYERS J T, et al. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli[J]. Cell, 2003, 113(5): 597-607. |
53 | HASTY J, MCMILLEN D, ISAACS F, et al. Computational studies of gene regulatory networks: in numero molecular biology[J]. Nature Reviews Genetics, 2001, 2(4): 268-279. |
54 | ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338. |
55 | NIEDERHOLTMEYER H, SUN Z Z, HORI Y, et al. Rapid cell-free forward engineering of novel genetic ring oscillators[J]. eLife, 2015, 4: e09771. |
56 | PAYNE S, LI B C, CAO Y X L, et al. Temporal control of self-organized pattern formation without morphogen gradients in bacteria[J]. Molecular Systems Biology, 2013, 9:697. |
57 | CHOWDHURY S, CASTRO S, COKER C, et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity[J]. Nature Medicine, 2019, 25(7): 1057-1063. |
58 | BABAN C K, CRONIN M, O'HANLON D, et al. Bacteria as vectors for gene therapy of cancer[J]. Bioengineered Bugs, 2010, 1(6): 385-394. |
59 | SONG S, VUAI M S, ZHONG M. The role of bacteria in cancer therapy - enemies in the past, but allies at present[J]. Infectious Agent Cancer, 2018, 13(1):1-7. |
60 | KIM J K, CHEN Y, HIRNING A J, et al. Long-range temporal coordination of gene expression in synthetic microbial consortia[J]. Nature Chemical Biology, 2019, 15(11): 1102-1109. |
61 | HOOD L. Tackling the microbiome[J]. Science, 2012, 336(6086): 1209. |
62 | SCOTT S R, HASTY J. Quorum sensing communication modules for microbial consortia[J]. ACS Synthetic Biology, 2016, 5(9): 969-977. |
63 | CHEN Y, KIM J K, HIRNING A J, et al. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251): 986-989. |
64 | BRENNER K, KARIG D K, WEISS R, et al. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(44): 17300-17304. |
65 | DU P, ZHAO H W, ZHANG H Q, et al. De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation[J]. Nature Communications, 2020, 11(1): 4226: 4236. |
66 | SCOTT S R, DIN M O, BITTIHN P, et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis[J]. Nature Microbiology, 2017, 2: 17083. |
67 | DE ROY K, MARZORATI M, ABBEELE P VAN DEN, et al. Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities[J]. Environ Microbiol, 2014, 16(6): 1472-1481. |
68 | BALAGADDE F K, SONG H, OZAKI J, et al. A synthetic Escherichia coli predator-prey ecosystem[J]. Molecular Systems Biology, 2008, 4(1): 187-194. |
69 | KONG W T, MELDGIN D R, COLLINS J J, et al. Designing microbial consortia with defined social interactions[J]. Nature Chemical Biology, 2018, 14(8): 821-829. |
70 | KIM S, KERNS S J, ZIESACK M, et al. Quorum sensing can be repurposed to promote information transfer between bacteria in the mammalian gut[J]. ACS Synthetic Biology, 2018, 7(9): 2270-2281. |
71 | TANG T C, AN B, HUANG Y, et al. Materials design by synthetic biology[J]. Nature Reviews Materials, 2020. |
72 | AN B L, WANG Y Y, JIANG X Y, et al. Programming living glue systems to perform autonomous mechanical repairs[J]. Matter, 2020, 3(6): 2080-2092. |
73 | CARDINALE S, ARKIN A P. Contextualizing context for synthetic biology-identifying causes of failure of synthetic biological systems[J]. Biotechnology Journal, 2012, 7(7): 856-866. |
74 | MOSER F, BROERS N J, HARTMANS S, et al. Genetic circuit performance under conditions relevant for industrial bioreactors[J]. ACS Synthetic Biology, 2012, 1(11): 555-564. |
75 | RENDA B A, HAMMERLING M J, BARRICK J E. Engineering reduced evolutionary potential for synthetic biology[J]. Molecular Biosystems, 2014, 10(7): 1668-1678. |
76 | DREES B, REIGER M, JUNG K, et al. A modular view of the diversity of cell-density-encoding schemes in bacterial quorum-sensing systems[J]. Biophysical Journal, 2014, 107(1): 266-277. |
77 | MENG F K, ELLIS T. The second decade of synthetic biology: 2010-2020[J]. Nature Communications, 2020, 11(1): 5174-5177. |
78 | BASU S, GERCHMAN Y, COLLINS C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134. |
79 | HUANG J F, LIU S Y, ZHANG C, et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials[J]. Nature Chemical Biology, 2019, 15(1): 34-41. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Zibin TAN, Kang LIANG, Youhai CHEN. Applications of synthetic biology in developing microbial-vectored cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 221-238. |
[3] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[4] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[5] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[6] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[7] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[8] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[9] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[10] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[11] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[12] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[13] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[14] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[15] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||