Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (5): 833-846.DOI: 10.12211/2096-8280.2022-042
• Invited Review • Previous Articles Next Articles
Lu XIAO1,2, Yin LI1
Received:
2022-08-03
Revised:
2022-09-19
Online:
2022-11-16
Published:
2022-10-31
Contact:
Yin LI
肖璐1,2, 李寅1
通讯作者:
李寅
作者简介:
基金资助:
CLC Number:
Lu XIAO, Yin LI. Biological carbon fixation: from natural to synthetic[J]. Synthetic Biology Journal, 2022, 3(5): 833-846.
肖璐, 李寅. 生物固碳:从自然生物到人工合成[J]. 合成生物学, 2022, 3(5): 833-846.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-042
途径 | 厌氧/ 好氧 | 反应数 | 产物 | 固碳酶 | ATP/CO2/(mol/mol) | NAD(P)H/CO2/(mol/mol) |
---|---|---|---|---|---|---|
卡尔文循环[ | 好氧 | 11 | 3-PGA | Rubisco | 3 | 2 |
还原性TCA 循环[ | 厌氧 | 9 | 乙酰辅酶A | 2-oxoglutarate synthase and isocitrate dehydrogenase | 1 | 2 |
WL途径[ | 厌氧 | 8 | 乙酰辅酶A | Formate dehydrogenase and CO dehydrogenate/ Acetyl-CoA synthase | 0.5 | 2 |
3-羟基丙酸双循环[ | 好氧 | 16 | 丙酮酸 | Acetyl-CoA carboxylase and propionyl-CoA carboxylase | 1.67 | 1.67 |
3-羟基丙酸/4-羟基丁酸循环[ | 好氧 | 16 | 乙酰辅酶A | Acetyl-CoA carboxylase and propionyl-CoA carboxylase | 2 | 2 |
二羧酸/4-羟基丁酸循环[ | 厌氧 | 14 | 乙酰辅酶A | Pyruvate synthase and Phosphoenolpyruvate carboxylase | 1.5 | 2 |
Tab. 1 Comparison of six natural carbon fixation pathways
途径 | 厌氧/ 好氧 | 反应数 | 产物 | 固碳酶 | ATP/CO2/(mol/mol) | NAD(P)H/CO2/(mol/mol) |
---|---|---|---|---|---|---|
卡尔文循环[ | 好氧 | 11 | 3-PGA | Rubisco | 3 | 2 |
还原性TCA 循环[ | 厌氧 | 9 | 乙酰辅酶A | 2-oxoglutarate synthase and isocitrate dehydrogenase | 1 | 2 |
WL途径[ | 厌氧 | 8 | 乙酰辅酶A | Formate dehydrogenase and CO dehydrogenate/ Acetyl-CoA synthase | 0.5 | 2 |
3-羟基丙酸双循环[ | 好氧 | 16 | 丙酮酸 | Acetyl-CoA carboxylase and propionyl-CoA carboxylase | 1.67 | 1.67 |
3-羟基丙酸/4-羟基丁酸循环[ | 好氧 | 16 | 乙酰辅酶A | Acetyl-CoA carboxylase and propionyl-CoA carboxylase | 2 | 2 |
二羧酸/4-羟基丁酸循环[ | 厌氧 | 14 | 乙酰辅酶A | Pyruvate synthase and Phosphoenolpyruvate carboxylase | 1.5 | 2 |
Strain | Fermentation time | Fermentation mode | Product | Titer or productivity | Ref |
---|---|---|---|---|---|
Clostridium ljungdahlii | 560 h | Cell recycle in the CSTR | Ethanol | 48 g/L | [ |
Acetobacterium woodii | 11 d | A batch-operated stirred-tank bioreactor | Acetate | 44 g/L | [ |
Acetobacterium woodii | - | Continuous fermentation | Acetone | 26.4 mg/(L·h) | [ |
Clostridium sp. MTButOH365 | 6 d | Single-stage continuous fermentation | Butanol | 21.98 g/L | [ |
Clostridium sp. MAceT113 | 5 d | Single-stage continuous fermentation | Acetone | 104 g/L | [ |
Clostridium sp. MT1802 | 25 d | Single-stage continuous fermentation | 2,3-butanediol | 9.18 g/L | [ |
Clostridium sp. MT1424 | 25 d | Single-stage continuous fermentation | Methanol | 70.4 g/L | [ |
Clostridium sp. MT1424 | 25 d | Single-stage continuous fermentation | Formate | 4.3 g/L | [ |
Clostridium sp. MT1243 | 25 d | Single-stage continuous fermentation | Mevalonate | 97 mmol/L | [ |
Tab. 2 Production of chemicals from syngas fermentation using microorganisms equipped with the WL pathway
Strain | Fermentation time | Fermentation mode | Product | Titer or productivity | Ref |
---|---|---|---|---|---|
Clostridium ljungdahlii | 560 h | Cell recycle in the CSTR | Ethanol | 48 g/L | [ |
Acetobacterium woodii | 11 d | A batch-operated stirred-tank bioreactor | Acetate | 44 g/L | [ |
Acetobacterium woodii | - | Continuous fermentation | Acetone | 26.4 mg/(L·h) | [ |
Clostridium sp. MTButOH365 | 6 d | Single-stage continuous fermentation | Butanol | 21.98 g/L | [ |
Clostridium sp. MAceT113 | 5 d | Single-stage continuous fermentation | Acetone | 104 g/L | [ |
Clostridium sp. MT1802 | 25 d | Single-stage continuous fermentation | 2,3-butanediol | 9.18 g/L | [ |
Clostridium sp. MT1424 | 25 d | Single-stage continuous fermentation | Methanol | 70.4 g/L | [ |
Clostridium sp. MT1424 | 25 d | Single-stage continuous fermentation | Formate | 4.3 g/L | [ |
Clostridium sp. MT1243 | 25 d | Single-stage continuous fermentation | Mevalonate | 97 mmol/L | [ |
途径 | 体内/体外 | 反应 数 | 底物 | 产物 | 固碳酶 | 固碳速率 /[nmol C/(min·mg总酶量)] | ATP/CO2/(mol/mol) | NAD(P)H /CO2/(mol/mol) |
---|---|---|---|---|---|---|---|---|
MCG途径 | 体内 | 8 | CO2、PEP | 乙酰辅酶A | Phosphoenolpyruvate carboxylase | — | 3 | 3 |
CETCH循环 | 体外 | 12 | CO2 | 乙醛酸 | Enoyl-CoA carboxylases/ reductases | 3.87 [5 nmol C/(min·mg核心酶)] | 1 | 1 |
SACA途径 | 体外 | 3 | 甲醛 | 乙酰辅酶A | — | — | — | — |
POAP循环 | 体外 | 4 | CO2 | 草酸 | Pyruvate synthase and pyruvate carboxylase | 6.8 | 1 | 0.5 |
ASAP途径 | 体外 | 11 | CO2 | 淀粉 | Formolase | 17.2 | 0.5 | 2 |
Tab. 3 Comparison of artificial carbon fixation pathways
途径 | 体内/体外 | 反应 数 | 底物 | 产物 | 固碳酶 | 固碳速率 /[nmol C/(min·mg总酶量)] | ATP/CO2/(mol/mol) | NAD(P)H /CO2/(mol/mol) |
---|---|---|---|---|---|---|---|---|
MCG途径 | 体内 | 8 | CO2、PEP | 乙酰辅酶A | Phosphoenolpyruvate carboxylase | — | 3 | 3 |
CETCH循环 | 体外 | 12 | CO2 | 乙醛酸 | Enoyl-CoA carboxylases/ reductases | 3.87 [5 nmol C/(min·mg核心酶)] | 1 | 1 |
SACA途径 | 体外 | 3 | 甲醛 | 乙酰辅酶A | — | — | — | — |
POAP循环 | 体外 | 4 | CO2 | 草酸 | Pyruvate synthase and pyruvate carboxylase | 6.8 | 1 | 0.5 |
ASAP途径 | 体外 | 11 | CO2 | 淀粉 | Formolase | 17.2 | 0.5 | 2 |
1 | BERG I A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J]. Applied and Environmental Microbiology, 2011, 77(6): 1925-1936. |
2 | GAO Z X, ZHAO H, LI Z M, et al. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria[J]. Energy & Environmental Science, 2012, 5: 9857-9865. |
3 | VARMAN A M, YU Y, YOU L, et al. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium[J]. Microbial Cell Factories, 2013, 12: 117. |
4 | GAO X Y, SUN T, PEI G S, et al. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3401-3413. |
5 | GONG F Y, CAI Z, LI Y. Synthetic biology for CO2 fixation[J]. Science China Life Sciences, 2016, 59: 1106-1114. |
6 | GONG F Y, ZHU H W, ZHANG Y P, et al. Biological carbon fixation: From natural to synthetic[J]. Journal of CO2 Utilization, 2018, 28: 221-227. |
7 | SANTOS CORREA S, SCHULTZ J, LAUERSEN K J, et al. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways[J]. Journal of Advanced Research, 2022. |
8 | CALVIN M, BENSON A A. The path of carbon in photosynthesis[J]. Science, 1948, 107(2784): 476-480. |
9 | EVANS M C, BUCHANAN B B, ARNON D I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium[J]. Proceedings of the National Academy of Sciences of the United States of America, 1966, 55(4): 928-934. |
10 | RAGSDALE S W. The Eastern and Western branches of the Wood/Ljungdahl pathway: How the East and West were won[J]. BioFactors, 1997, 6(1): 3-11. |
11 | STRAUSS G, FUCHS G. Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle[J]. European Journal of Biochemistry, 1993, 215(3): 633-643. |
12 | BERG I A, KOCKELKORN D, BUCKEL W, et al. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea[J]. Science, 2007, 318(5857): 1782-1786. |
13 | HUBER H, GALLENBERGER M, JAHN U, et al. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(22): 7851-7856. |
14 | FUCHS G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?[J]. Annual Review of Microbiology, 2011, 65: 631-658. |
15 | ANTONOVSKY N, GLEIZER S, NOOR E, et al. Sugar synthesis from CO2 in Escherichia coli [J]. Cell, 2016, 166(1): 115-125. |
16 | ZHUANG Z Y, LI S Y. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling[J]. Bioresource Technology, 2013, 150: 79-88. |
17 | GUADALUPE-MEDINA V, WISSELINK H W, LUTTIK M A, et al. Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast[J]. Biotechnolology Biofuels, 2013, 6(1): 125. |
18 | WHITNEY S M, HOUTZ R L, ALONSO H. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, rubisco[J]. Plant Physiology, 2011, 155(1): 27-35. |
19 | TCHERKEZ G G B, FARQUHAR G D, ANDREWS T J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(19): 7246-7251. |
20 | ANDERSSON I. Catalysis and regulation in rubisco[J]. Journal of Experimental Botany, 2008, 59(7): 1555-1568. |
21 | CAI Z, LIU G X, ZHANG J L, et al. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco[J]. Protein & Cell, 2014, 5(7): 552-562. |
22 | GENKOV T, MEYER M, GRIFFITHS H, et al. Functional hybrid rubisco enzymes with plant small subunits and algal large subunits: engineered rbcS cDNA for expression in chlamydomonas [J]. Journal of Biological Chemistry, 2010, 285(26): 19833-19841. |
23 | ISHIKAWA C, HATANAKA T, MISOO S, et al. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice[J]. Plant Physiology, 2011, 156(3): 1603-1611. |
24 | DUCAT D C, SILVER P A. Improving carbon fixation pathways[J]. Current Opinion in Chemical Biology, 2012, 16(3/4): 337-344. |
25 | LIANG F Y, ENGLUND E, LINDBERG P, et al. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio[J]. Metabolic Engineering, 2018, 46: 51-59. |
26 | ROSENTHAL D M, LOCKE A M, KHOZAEI M, et al. Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE)[J]. BMC Plant Biology, 2011, 11: 123. |
27 | KÖPKE M, HELD C, HUJER S, et al. Clostridium ljungdahlii represents a microbial production platform based on syngas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 13087-13092. |
28 | MUNASINGHE P C, KHANAL S K. Biomass-derived syngas fermentation into biofuels: opportunities and challenges[J]. Bioresource Technology, 2010, 101(13): 5013-5022. |
29 | BENGELSDORF F R, STRAUB M, DÜRRE P. Bacterial synthesis gas (syngas) fermentation[J]. Environmental Technology, 2013, 34(13/14): 1639-1651. |
30 | MUNASINGHE P C, KHANAL S K. Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations[J]. Biotechnology Progress, 2010, 26(6): 1616-1621. |
31 | LIU K, ATIYEH H K, STEVENSON B S, et al. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols[J]. Bioresource Technology, 2014, 152: 337-346. |
32 | BERZIN V, KIRIUKHIN M, TYURIN M. Selective production of acetone during continuous synthesis gas fermentation by engineered biocatalyst Clostridium sp. MAceT113[J]. Letters in Applied Microbiology, 2012, 55(2): 149-154. |
33 | KLASSON K T, ACKERSON M D, CLAUSEN E C, et al. Biological conversion of coal and coal-derived synthesis gas[J]. Fuel, 1993, 72(12): 1673-1678. |
34 | DEMLER M, WEUSTER-BOTZ D. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii [J]. Biotechnology and Bioengineering, 2011, 108(2): 470-474. |
35 | HOFFMEISTER S, GERDOM M, BENGELSDORF F R, et al. Acetone production with metabolically engineered strains of Acetobacterium woodii [J]. Metabolic Engineering, 2016, 36: 37-47. |
36 | BERZIN V, TYURIN M, KIRIUKHIN M. Selective n-butanol production by Clostridium sp. MTButOH1365 during continuous synthesis gas fermentation due to expression of synthetic thiolase, 3-hydroxy butyryl-CoA dehydrogenase, crotonase, butyryl-CoA dehydrogenase, butyraldehyde dehydrogenase, and NAD-dependent butanol dehydrogenase[J]. Applied Biochemistry and Biotechnology, 2013, 169(3): 950-959. |
37 | TYURIN M, KIRIUKHIN M. Synthetic 2,3-butanediol pathway integrated using Tn7-tool and powered via elimination of sporulation and acetate production in acetogen biocatalyst[J]. Applied Biochemistry and Biotechnology, 2013, 170(6): 1503-1524. |
38 | TYURIN M, KIRIUKHIN M. Selective methanol or formate production during continuous CO₂ fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool[J]. World Journal of Microbiology & Biotechnology, 2013, 29(9): 1611-1623. |
39 | KIRIUKHIN M, TYURIN M. Mevalonate production by engineered acetogen biocatalyst during continuous fermentation of syngas or CO₂/H₂ blend[J]. Bioprocess and Biosystems Engineering, 2014, 37(2): 245-260. |
40 | ALBER B, OLINGER M, RIEDER A, et al. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp.[J]. Journal of Bacteriology, 2006, 188(24): 8551-8559. |
41 | FAST A G, PAPOUTSAKIS E T. Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals[J]. Current Opinion in Chemical Engineering, 2012, 1(4): 380-395. |
42 | LIU Y W, JIANG H F. Directed evolution of propionyl-CoA carboxylase for succinate biosynthesis[J]. Trends in Biotechnology, 2021, 39(4): 330-331. |
43 | BAR-EVEN A. Does acetogenesis really require especially low reduction potential?[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1827(3): 395-400. |
44 | LI B, ELLIOTT S J The Catalytic Bias of 2 -Oxoacid:Ferredoxin Oxidoreductase in CO2: evolution and reduction through a ferredoxin-mediated electrocatalytic assay[J]. Electrochimica Acta, 2016, 199: 349-356. |
45 | FURDUI C, RAGSDALE S W. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway[J]. Journal of Biological Chemistry, 2000, 275(37): 28494-28499. |
46 | WITT A, POZZI R, DIESCH S, et al. New light on ancient enzymes-in vitro CO2 Fixation by Pyruvate Synthase of Desulfovibrio africanus and Sulfolobus acidocaldarius [J]. The FEBS Journal, 2019, 286(22): 4494-4508. |
47 | XIAO L, LIU G X, GONG F Y, et al. The reductive carboxylation activity of heterotetrameric pyruvate synthases from hyperthermophilic Archaea[J]. Biochemical and Biophysical Research Communications, 2021, 572: 151-156. |
48 | BAR-EVEN A, NOOR E, LEWIS N E, et al. Design and analysis of synthetic carbon fixation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8889-8894. |
49 | YU H, LI X Q, DUCHOUD F, et al. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway[J]. Nature Communications, 2018, 9: 2008. |
50 | XIAO L, LIU G X, GONG F Y, et al. A minimized synthetic carbon fixation cycle[J]. ACS Catalysis, 2022, 12(1): 799-808. |
51 | FURDUI C, RAGSDALE S W. The roles of coenzyme A in the pyruvate: ferredoxin oxidoreductase reaction mechanism: rate enhancement of electron transfer from a radical intermediate to an iron-sulfur cluster[J]. Biochemistry, 2002, 41(31): 9921-9937. |
52 | RAGSDALE S W. Pyruvate ferredoxin oxidoreductase and its radical intermediate[J]. Chemical Reviews, 2003, 103(6): 2333-2346. |
53 | SCHWANDER T, VON BORZYSKOWSKI L S, BURGENER S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro [J]. Science, 2016, 354(6314): 900-904. |
54 | CAI T, SUN H B, QIAO J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
55 | LU X Y, LIU Y W, YANG Y Q, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design[J]. Nature Communications, 2019, 10: 1378. |
56 | SIEGEL J B, SMITH A L, POUST S, et al. Computational protein design enables a novel one-carbon assimilation pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3704-3709. |
57 | ERB T J, BERG I A, BRECHT V, et al. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10631-10636. |
58 | ERB T J, BRECHT V, FUCHS G, et al. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(22): 8871-8876. |
59 | GONG F Y, LI Y. Fixing carbon, unnaturally[J]. Science, 2016, 354(6314): 830-831. |
60 | KIM S, LINDNER S N, ASLAN S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway[J]. Nature Chemical Biology, 2020, 16(5): 538-545. |
61 | SHERWIN E D. Electrofuel synthesis from variable renewable electricity: an optimization-based techno-economic analysis[J]. Environmental Science & Technology, 2021, 55(11): 7583-7594. |
62 | SZIMA S, C-C CORMOS. Improving methanol synthesis from carbon-free H2 and captured CO2: a techno-economic and environmental evaluation[J]. Journal of CO2 Utilization, 2018, 24: 555-563. |
63 | GLEIZER S, BEN-NISSAN R, BAR-ON Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2 [J]. Cell, 2019, 179(6): 1255-1263.e12. |
64 | CHEN C T, CHEN F Y H, BOGORAD I W, et al. Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production[J]. Metabolic Engineering, 2018, 49: 257-266. |
65 | CHEN F Y H, JUNG H W, TSUEI C Y, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol[J]. Cell, 2020, 182(4): 933-946.e14. |
66 | REYSENBACH A L, SHOCK E. Merging genomes with geochemistry in hydrothermal ecosystems[J]. Science, 2002, 296(5570): 1077-1082. |
67 | NAKAGAWA S, TAKAI K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance[J]. FEMS Microbiology Ecology, 2008, 65(1): 1-14. |
68 | CAMPBELL D, HURRY V, CLARKE A K, et al. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3): 667-683. |
69 | STANIER R Y, COHEN-BAZIRE G. Phototrophic prokaryotes: the cyanobacteria[J]. Annual Review of Microbiology, 1977, 31: 225-274. |
70 | YAMAMOTO M, TAKAI K. Sulfur metabolisms in epsilon- and gamma-proteobacteria in deep-sea hydrothermal fields[J]. Frontiers in Microbiology, 2011, 2: 192. |
71 | SCHUCHMANN K, MÜLLER V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria[J]. Nature Reviews Microbiology, 2014, 12(12): 809-821. |
72 | WANG S N, HUANG H Y, MOLL J, et al. NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri [J]. Journal of Bacteriology, 2010, 192(19): 5115-5123. |
73 | HUANG H Y, WANG S N, MOLL J, et al. Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2 [J]. Journal of Bacteriology, 2012, 194(14): 3689-3699. |
74 | KLETZIN A, URICH T, MüLLER F, et al. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea[J]. Journal of Bioenergetics and Biomembranes, 2004, 36(1): 77-91. |
75 | NAKAGAWA S, TAKAKI Y, SHIMAMURA S, et al. Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(29): 12146-12150. |
76 | MENG H K, ZHANG W, ZHU H W, et al. Over-expression of an electron transport protein OmcS provides sufficient NADH for D-lactate production in cyanobacterium[J]. Biotechnology for Biofuels, 2021, 14(1): 109. |
77 | WANG M M, HU L, FAN L H, et al. Enhanced 1-butanol production in engineered Klebsiella pneumoniae by NADH regeneration[J]. Energy & Fuels, 2015, 29: 1823-1829. |
78 | XU Z N, JING K J, LIU Y, et al. High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration[J]. Journal of Industrial Microbiology and Biotechnology, 2007, 34(1): 83-90. |
79 | MÜLLER V, CHOWDHURY N P, BASEN M. Electron bifurcation: a long-hidden energy-coupling mechanism[J]. Annual Review of Microbiology, 2018, 72: 331-353. |
80 | THAUER R K, KASTER A K, SEEDORF H, et al. Methanogenic Archaea: ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology, 2008, 6(8): 579-591. |
81 | KASTER A K, MOLL J, PAREY K, et al. Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 2981-2986. |
82 | BUCKEL W, THAUER R K. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1827(2): 94-113. |
83 | ATKINSON J T, CAMPBELL I, BENNETT G N, et al. Cellular assays for ferredoxins: a strategy for understanding electron flow through protein carriers that link metabolic pathways[J]. Biochemistry, 2016, 55(51): 7047-7064. |
84 | IKEDA T, NAKAMURA M, ARAI H, et al. Ferredoxin-NADP+ reductase from the thermophilic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6[J]. FEMS Microbiology Letters, 2009, 297(1): 124-130. |
85 | AGAPAKIS C M, SILVER P A. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway[J]. Bioengineered Bugs, 2010, 1(6): 413-418. |
86 | BAR-EVEN A, FLAMHOLZ A, NOOR E, et al. Thermodynamic constraints shape the structure of carbon fixation pathways[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2012, 1817(9): 1646-1659. |
87 | ZHAO T X, LI Y, ZHANG Y P. Biological carbon fixation: a thermodynamic perspective[J]. Green Chemistry, 2021, 23(20): 7852-7864. |
88 | MAN Z W, GUO J, ZHANG Y Y, et al. Regulation of intracellular ATP supply and its application in industrial biotechnology[J]. Critical Reviews in Biotechnology, 2020, 40(8): 1151-1162. |
89 | ZHANG X L, JANTAMA K, MOORE J C, et al. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(48): 20180-20185. |
90 | YAMANAKA K, KITO N, IMOKAWA Y, et al. Mechanism of epsilon-poly-L-lysine production and accumulation revealed by identification and analysis of an epsilon-poly-L-lysine-degrading enzyme[J]. Applied and Environmental Microbiology, 2010, 76(17): 5669-5675. |
91 | WANG D, YU X, WEI G Y. Pullulan production and physiological characteristics of Aureobasidium pullulans under acid stress[J]. Applied Microbiology and Biotechnology, 2013, 97(18): 8069-8077. |
92 | XU R Y, WANG D D, WANG C L, et al. Improved S-adenosylmethionine and glutathione biosynthesis by heterologous expression of an ATP6 gene in Candida utilis [J]. Journal of Basic Microbiology, 2018, 58(10): 875-882. |
93 | ZHANG X X, LIU S K, TAKANO T. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana [J]. Biotechnology Letters, 2008, 30(7): 1289-1294. |
94 | TAN X Y, NIELSEN J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide[J]. Chemical Society Reviews, 2022, 51(11): 4763-4785. |
95 | CESTELLOS-BLANCO S, ZHANG H, KIM J M, et al. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis[J]. Nature Catalysis, 2020, 3(3): 245-255. |
96 | SAKIMOTO K K, WONG A B, YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
97 | ZHANG H, LIU H, TIAN Z Q, et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production[J]. Nature Nanotechnology, 2018, 13(10): 900-905. |
98 | WANG B, JIANG Z F, YU J C, et al. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system[J]. Nanoscale, 2019, 11(19): 9296-9301. |
99 | YUAN M W, KUMMER M J, MINTEER S D. Strategies for boelectrochemical CO2 reduction[J]. Chemistry-A European Journal, 2019, 25(63): 14258-14266. |
100 | MILLER M, ROBINSON W E, OLIVEIRA A R, et al. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar-driven reduction of carbon dioxide[J]. Angewandte Chemie International Edition, 2019, 58(14): 4601-4605. |
101 | SCHLAGER S, HABERBAUER M, FUCHSBAUER A, et al. Bio-electrocatalytic application of microorganisms for carbon dioxide reduction to methane[J]. ChemSusChem, 2017, 10(1): 226-233. |
102 | LIU C M, YOUNG A L, STARLING-WINDHOF A, et al. Coupled chaperone action in folding and assembly of hexadecameric Rubisco[J]. Nature, 2010, 463(7278): 197-202. |
[1] | Yan XIAO, Yajun LIU, Yin′gang FENG, Qiu CUI. Progress in synthetic biology research of Clostridium thermocellum for biomass energy applications [J]. Synthetic Biology Journal, 2023, 4(6): 1055-1081. |
[2] | Zhiqiong WEN, Yuzhen LI, Jin′gang ZHANG, Feifei Wang, Xiaoqing MA, Fuli LI. Progress on bio-fixation and utilization of CO2 in acetogens driven by chemical energy [J]. Synthetic Biology Journal, 2023, 4(6): 1178-1190. |
[3] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[4] | Zhenzhen CHENG, Jian ZHANG, Cong GAO, Liming LIU, Xiulai CHEN. Progress in metabolic engineering of microorganisms for the utilization of formate [J]. Synthetic Biology Journal, 2023, 4(4): 756-778. |
[5] | Zhongliang SUN, Hui CHEN, Qiang WANG. From CO2 to value-added products—carbon neutral microalgal green biomanufacturing [J]. Synthetic Biology Journal, 2022, 3(5): 953-965. |
[6] | Jie REN, Anping ZENG. CO2 based biomanufacturing: from basic research to industrial application [J]. Synthetic Biology Journal, 2021, 2(6): 854-862. |
[7] | Yu LIU, Huiling WEI, Jixiang LIU, Shaojie WANG, Haijia SU. Design and progress of synthetic consortia: a new frontier in synthetic biology [J]. Synthetic Biology Journal, 2021, 2(4): 635-650. |
[8] | Kai WANG, Zihe LIU, Biqiang CHEN, Meng WANG, Yang ZHANG, Haoran BI, Yali ZHOU, Yiying HUO, Tianwei TAN. Microbial utilization of carbon dioxide to synthesize fuels and chemicals——third-generation biorefineries [J]. Synthetic Biology Journal, 2020, 1(1): 60-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||