Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (4): 635-650.DOI: 10.12211/2096-8280.2021-031
• Invited Review • Previous Articles Next Articles
Yu LIU1, Huiling WEI1, Jixiang LIU1, Shaojie WANG1,2, Haijia SU1
Received:
2021-03-10
Revised:
2021-05-17
Online:
2021-09-10
Published:
2021-09-10
Contact:
Shaojie WANG, Haijia SU
刘裕1, 韦惠玲1, 刘骥翔1, 王少杰1,2, 苏海佳1
通讯作者:
王少杰,苏海佳
作者简介:
基金资助:
CLC Number:
Yu LIU, Huiling WEI, Jixiang LIU, Shaojie WANG, Haijia SU. Design and progress of synthetic consortia: a new frontier in synthetic biology[J]. Synthetic Biology Journal, 2021, 2(4): 635-650.
刘裕, 韦惠玲, 刘骥翔, 王少杰, 苏海佳. 人工多菌体系的设计与构建:合成生物学研究新前沿[J]. 合成生物学, 2021, 2(4): 635-650.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-031
1 | BITTIHN P, DIN M O, TSIMRING L S, et al. Rational engineering of synthetic microbial systems: from single cells to consortia[J]. Current Opinion in Microbiology, 2018, 45: 92-99. |
2 | WU Jiwen, DONG Lili, ZHOU Chunshuang, et al. Developing a coculture for enhanced butanol production by Clostridium beijerinckii and Saccharomyces cerevisiae [J]. Bioresource Technology Reports, 2019, 6: 223-228. |
3 | LINDEMANN S R, BERNSTEIN H C, SONG H S, et al. Engineering microbial consortia for controllable outputs[J]. The ISME Journal, 2016, 10(9): 2077-2084. |
4 | DENG Yu, MA Lizhou, MAO Yin. Biological production of adipic acid from renewable substrates: current and future methods [J]. Biochemical Engineering Journal, 2016, 105: 16-26. |
5 | KHALIL A S, COLLINS J J. Synthetic biology: applications come of age [J]. Nature Reviews Genetics, 2010, 11(5): 367-379. |
6 | CHAE T U, CHOI S Y, KIM J W, et al. Recent advances in systems metabolic engineering tools and strategies [J]. Current Opinion in Biotechnology, 2017, 47: 67-82. |
7 | ZHANG H R, WANG X N. Modular co-culture engineering, a new approach for metabolic engineering [J]. Metabolic Engineering, 2016, 37: 114-121. |
8 | LEE C R, KIM C, SONG Y E, et al. Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovatavia a reducing-equivalent transfer mediator [J]. Bioresource Technology, 2018, 259: 128-135. |
9 | LIU Y Q, TU X H, XU Q, et al. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol [J]. Metabolic Engineering, 2018, 45: 189-199. |
10 | SGOBBA E, WENDISCH V F. Synthetic microbial consortia for small molecule production [J]. Current Opinion in Biotechnology, 2020, 62: 72-79. |
11 | GAO L, XU T S, HUANG G, et al. Oral microbiomes: more and more importance in oral cavity and whole body [J]. Protein & Cell, 2018, 9(5): 488-500. |
12 | LI Z H, WANG X N, ZHANG H R. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering [J]. Metabolic Engineering, 2019, 54: 1-11. |
13 | SAID S BEN, OR D. Synthetic microbial ecology: engineering habitats for modular consortia [J]. Frontiers in Microbiology, 2017, 8: 1125. |
14 | SHEN Y P, NIU F X, YAN Z B, et al. Recent advances in metabolically engineered microorganisms for the production of aromatic chemicals derived from aromatic amino acids[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 407. |
15 | ZHANG C Z, HONG K. Production of terpenoids by synthetic biology approaches [J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 347. |
16 | PONTRELLI S, CHIU T Y, LAN E I, et al. Escherichia coli as a host for metabolic engineering [J]. Metabolic Engineering, 2018, 50: 16-46. |
17 | XU P, VANSIRI A, BHAN N, et al. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli [J]. ACS Synthetic Biology, 2012, 1(7): 256-266. |
18 | WU Y F, SHEN X L, YUAN Q P, et al. Metabolic engineering strategies for co-utilization of carbon sources in microbes [J]. Bioengineering, 2016, 3(1): 10. |
19 | DHARMADI Y, MURARKA A, GONZALEZ R. Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering [J]. Biotechnology and Bioengineering, 2006, 94(5): 821-829. |
20 | ATSUMI S, CANN A F, CONNOR M R, et al. Metabolic engineering of Escherichia coli for 1-butanol production [J]. Metabolic Engineering, 2008, 10(6): 305-311. |
21 | CLOMBURG J M, GONZALEZ R. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology [J]. Applied Microbiology and Biotechnology, 2010, 86(2): 419-434. |
22 | GAO C, WANG S H, HU G P, et al. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning [J]. Biotechnology and Bioengineering, 2018, 115(3): 661-672. |
23 | CHEN T T, ZHOU Y Y, LU Y H, et al. Advances in heterologous biosynthesis of plant and fungal natural products by modular co-culture engineering [J]. Biotechnology Letters, 2019, 41(1): 27-34. |
24 | ZHANG H R, STEPHANOPOULOS G. Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli [J]. Biotechnology Journal, 2016, 11(7): 981-987. |
25 | ZHOU K, QIAO K J, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products [J]. Nature Biotechnology, 2015, 33(4): 377-383. |
26 | ROELL G W, ZHA J, CARR R R, et al. Engineering microbial consortia by division of labor [J]. Microbial Cell Factories, 2019, 18(1): 35. |
27 | NAKAGAWA A, MATSUMURA E, KOYANAGI T, et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli [J]. Nature Communications, 2016, 7: 10390. |
28 | WU G, YAN Q, JONES J A, et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications [J]. Trends in Biotechnology, 2016, 34(8): 652-664. |
29 | JONES J A, VERNACCHIO V R, COLLINS S M, et al. Complete biosynthesis of anthocyanins using E. coli polycultures [J]. mBio, 2017, 8(3): 00621-17. |
30 | JONES J A, WANG X. Use of bacterial co-cultures for the efficient production of chemicals [J]. Current Opinion in Biotechnology, 2018, 53: 33-38. |
31 | JIANG W, QIAO J B, BENTLEY G J, et al. Modular pathway engineering for the microbial production of branched-chain fatty alcohols [J]. Biotechnology for Biofuels, 2017, 10: 244. |
32 | XU P, GU Q, WANG W Y, et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli [J]. Nature Communications, 2013, 4: 1409. |
33 | WU J J, DU G C, ZHOU J W, et al. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy [J]. Metabolic Engineering, 2013, 16: 48-55. |
34 | LAYTON D S, TRINH C T. Engineering modular ester fermentative pathways in Escherichia coli [J]. Metabolic Engineering, 2014, 26: 77-88. |
35 | GUO Xiaoyun, WANG Xiaonan, CHEN Tingting, et al. Comparing E. coli mono-cultures and co-cultures for biosynthesis of protocatechuic acid and hydroquinone [J]. Biochemical Engineering Journal, 2020, 156: 107518. |
36 | SAINI M, LIN L J, CHIANG C J, et al. Synthetic consortium of Escherichia coli for n-butanol production by fermentation of the glucose-xylose mixture[J]. Journal of Agricultural and Food Chemistry, 2017, 65(46): 10040-10047. |
37 | FLORES A, AYLA E Z, NIELSEN D R, et al. Engineering a synthetic, catabolically orthogonal coculture system for enhanced conversion of lignocellulose-derived sugars to ethanol[J]. ACS Synthetic Biology, 2019, 8(5): 1089-1099. |
38 | VARDON D R, RORRER N A, SALVACHÚA D, et al. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization [J]. Green Chemistry, 2016, 18(11): 3397-3413. |
39 | TONDRO H, MUSIVAND S, ZILOUEI H, et al. Biological production of hydrogen and acetone- butanol-ethanol from sugarcane bagasse and rice straw using co-culture of Enterobacter aerogenes and Clostridium acetobutylicum [J]. Biomass and Bioenergy, 2020, 142: 105818. |
40 | WANG S J, TANG H Z, PENG F, et al. Metabolite-based mutualism enhances hydrogen production in a two-species microbial consortium [J]. Communications Biology, 2019, 2: 82. |
41 | QIAN X J, CHEN L, SUI Y, et al. Biotechnological potential and applications of microbial consortia [J]. Biotechnology Advances, 2020, 40: 107500. |
42 | JIA X Q, LIU C, SONG H, et al. Design, analysis and application of synthetic microbial consortia [J]. Synthetic and Systems Biotechnology, 2016, 1(2): 109-117. |
43 | ZHANG H R, PEREIRA B, LI Z J, et al. Engineering Escherichia coli coculture systems for the production of biochemical products [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8266-8271. |
44 | LIU Y R, YANG S Y, JIA X Q. Construction of a "nutrition supply-detoxification" coculture consortium for medium-chain-length polyhydroxyalkanoate production with a glucose-xylose mixture [J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(3): 343-354. |
45 | LU H Y, VILLADA J C, LEE P K H. Modular metabolic engineering for biobased chemical production [J]. Trends in Biotechnology, 2019, 37(2): 152-166. |
46 | FENG Y Y, YAO M D, WANG Y, et al. Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes [J]. Biotechnology Advances, 2020, 41: 107538. |
47 | CHEN Z Y, SUN X X, LI Y, et al. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols [J]. Metabolic Engineering, 2017, 39: 102-109. |
48 | ZHOU Y Y, LI Z H, WANG X N, et al. Establishing microbial co-cultures for 3-hydroxybenzoic acid biosynthesis on glycerol [J]. Engineeing in Life Sciences, 2019, 19(5): 389-395. |
49 | ZHANG H R, LI Z J, PEREIRA B, et al. Engineering E. coli — E. coli cocultures for production of muconic acid from glycerol [J]. Microbial Cell Factories, 2015, 14(1): 134. |
50 | GOERS L, FREEMONT P, POLIZZI K M. Co-culture systems and technologies: taking synthetic biology to the next level [J]. Journal of the Royal Society Interface, 2014, 11(96): 20140065. |
51 | LIU Yue, DING Mingzhu, LING Wei, et al. A three-species microbial consortium for power generation [J]. Energy & Environmental Science, 2017, 10(7): 1600-1609. |
52 | JAWED K, YAZDANI S S, KOFFAS M A. Advances in the development and application of microbial consortia for metabolic engineering[J]. Metabolic Engineering Communications, 2019, 9: e00095. |
53 | XIAO Y, BOWEN C H, LIU D, et al. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis [J]. Nature Chemical Biology, 2016, 12(5): 339-344. |
54 | WEN Z Q, LEDESMA-AMARO R, LU M R, et al. Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community [J]. Biotechnology and Bioengineering, 2020, 117(7): 2008-2022. |
55 | PARK H, PATEL A, HUNT K A, et al. Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis[J]. NPJ Biofilms and Microbiomes, 2020, 6(1): 59. |
56 | MINTY J J, SINGER M E, SCHOLZ S A, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14592-14597. |
57 | SGOBBA E, STUMPF A K, VORTMANN M, et al. Synthetic Escherichia coli-Corynebacterium glutamicum consortia for L-lysine production from starch and sucrose [J]. Bioresource Technology, 2018, 260: 302-310. |
58 | KONG W, MELDGIN D R, COLLINS J J, et al. Designing microbial consortia with defined social interactions [J]. Nature Chemical Biology, 2018, 14(8): 821-829. |
59 | ZHANG W, LIU H, LI X, et al. Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae [J]. Engineering in Life Sciences, 2017, 17(9): 1021-1029. |
60 | LIU X, LI L L, LIU J C, et al. Metabolic engineering Escherichia coli for efficient production of icariside D2 [J]. Biotechnology for Biofuels, 2019, 12(1): 1-12. |
61 | DOUGLAS A E. The microbial exometabolome: ecological resource and architect of microbial communities [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2020, 375(1798): 20190250. |
62 | LIU X, LI X B, JIANG J, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides [J]. Metabolic Engineering, 2018, 47: 243-253. |
63 | MEE M T, COLLINS J J, CHURCH G M, et al. Syntrophic exchange in synthetic microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): E2149-E2156. |
64 | SONG H, DING M Z, JIA X Q, et al. Synthetic microbial consortia: from systematic analysis to construction and applications [J]. Chemical Society Reviews, 2014, 43(20): 6954-6981. |
65 | SANGANI A A, MCCULLY A L, LASARRE B, et al. Fermentative Escherichia coli makes a substantial contribution to H2 production in coculture with phototrophic Rhodopseudomonas palustris [J]. FEMS Microbiology Letters, 2019, 366(14): fnz162. |
66 | BOURDAKOS N, MARSILI E, MAHADEVAN R. A defined co-culture of Geobacter sulfurreducens and Escherichia coli in a membrane-less microbial fuel cell [J]. Biotechnology and Bioengineering, 2014, 111(4): 709-18. |
67 | HARCOMBE W R, CHACÓN J M, ADAMOWICZ E M, et al. Evolution of bidirectional costly mutualism from byproduct consumption[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 12000-12004. |
68 | WANG Xiaonan, CABALES A, LI Zhenghong, et al. Biosensor-assisted high performing cell selection using an E. coli toxin/antitoxin system [J]. Biochemical Engineering Journal, 2019, 144: 110-118. |
69 | WANG X N, POLICARPIO L, PRAJAPATI D, et al. Developing E. coli-E. coli co-cultures to overcome barriers of heterologous tryptamine biosynthesis [J]. Metabolic Engineering Communications, 2020, 10: e00110. |
70 | ZENG J, BANERJEE A, KIM J, et al. A novel bioelectronic reporter system in living cells tested with a synthetic biological comparator [J]. Scientific Reports, 2019, 9(1): 7275. |
71 | GUO X Y, LI Z H, WANG X N, et al. De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering [J]. Biotechnology and Bioengineering, 2019, 116(12): 3349-3359. |
72 | LAGANENKA L, SOURJIK V. Autoinducer 2-dependent Escherichia coli biofilm formation is enhanced in a dual-species coculture [J]. Applied and Environmental Microbiology, 2018, 84(5). |
73 | SCOTT S R, HASTY J. Quorum sensing communication modules for microbial consortia[J]. ACS Synthetic Biology, 2016, 5(9): 969-977. |
74 | KYLILIS N, TUZA Z A, STAN G B, et al. Tools for engineering coordinated system behaviour in synthetic microbial consortia [J]. Nature Communications, 2018, 9(1): 2677. |
75 | SCOTT S R, DIN M O, BITTIHN P, et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis [J]. Nature Microbiology, 2017, 2: 17083. |
76 | STEPHENS K, BENTLEY W E. Synthetic biology for manipulating quorum sensing in microbial consortia[J]. Trends in Microbiology, 2020, 28(8): 633-643. |
77 | STEPHENS K, POZO M, TSAO C Y, et al. Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition [J]. Nature Communications, 2019, 10(1): 4129. |
78 | DINH C V, CHEN X Y, PRATHER K L J. Development of a quorum-sensing based circuit for control of coculture population composition in a naringenin production system[J]. ACS Synthetic Biology, 2020, 9(3): 590-597. |
79 | JOHNS N I, BLAZEJEWSKI T, GOMES A L, et al. Principles for designing synthetic microbial communities [J]. Current Opinion in Microbiology, 2016, 31: 146-153. |
80 | WANG Shaojie, MA Zhihong, SU Haijia. Two-step continuous hydrogen production by immobilized mixed culture on corn stalk [J]. Renewable Energy, 2018, 121: 230-235. |
81 | JOHNSTON T G, YUAN S F, WAGNER J M, et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation [J]. Nature Communications, 2020, 11(1): 563. |
82 | CHEN Y Y, GE J Y, WANG S J, et al. Insight into formation and biological characteristics of Aspergillus tubingensis-based aerobic granular sludge (AT-AGS) in wastewater treatment [J]. The Science of the Total Environment, 2020, 739: 140128. |
83 | XIONG W, WANG S J, ZHOU N, et al. Granulation enhancement and microbial community shift of tylosin-tolerant aerobic granular sludge on the treatment of tylosin wastewater [J]. Bioresource Technology, 2020, 318: 124041. |
84 | SHAHAB R L, BRETHAUER S, DAVEY M P, et al. A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose [J]. Science, 2020, 369(6507): eabb1214. |
85 | MOUTINHO T J JR, PANAGIDES J C, BIGGS M B, et al. Novel co-culture plate enables growth dynamic-based assessment of contact-independent microbial interactions[J]. PLoS One, 2017, 12(8): e0182163. |
86 | ZOMORRODI A R, SEGRÈ D. Synthetic ecology of microbes: Mathematical models and applications [J]. Journal of Molecular Biology, 2016, 428(5pt b): 837-861. |
87 | CHANDRASEKARAN S. A Protocol for the construction and curation of genome-scale integrated metabolic and regulatory network models [M]// SANTOS C N S, AJIKUMAR P K. Microbial metabolic engineering: methods and protocols. New York: Springer New York, 2019: 203-214. |
88 | GOMEZ J A, HÖFFNER K, BARTON P I. DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis [J]. BMC Bioinformatics, 2014, 15: 409. |
89 | CAI J Y, TAN T W, CHAN S H J. Bridging traditional evolutionary game theory and metabolic models for predicting Nash equilibrium of microbial metabolic interactions[EB/OL]. bioRxiv, 2019, . DOI:10.1101/623173. |
90 | JADHAV A, SHANMUGHAM B, RAJENDIRAN A, et al. Unraveling novel broad-spectrum antibacterial targets in food and waterborne pathogens using comparative genomics and protein interaction network analysis[J]. Infection, Genetics and Evolution, 2014, 27: 300-308. |
91 | JONES J A, VERNACCHIO V R, SINKOE A L, et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids [J]. Metabolic Engineering, 2016, 35: 55-63. |
92 | HARCOMBE W R, RIEHL W J, DUKOVSKI I, et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics [J]. Cell Reports, 2014, 7(4): 1104-1115. |
93 | SANTALA S, KARP M, SANTALA V. Rationally engineered synthetic coculture for improved biomass and product formation [J]. PLoS One, 2014, 9(12): e113786. |
94 | MCCARTY N S, LEDESMA-AMARO R. Synthetic biology tools to engineer microbial communities for biotechnology[J]. Trends in Biotechnology, 2019, 37(2): 181-197. |
95 | LÜ X M, GU J L, WANG F, et al. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering [J]. Biotechnology and Bioengineering, 2016, 113(12): 2661-2669. |
96 | HANLY T J, URELLO M, HENSON M A. Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures [J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2529-2541. |
97 | RODRIGUES J L, GOMES D, RODRIGUES L R. A combinatorial approach to optimize the production of curcuminoids from tyrosine in Escherichia coli [J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 59. |
98 | CHEN Ye, KIM J K, HIRNING A J, et al. Emergent genetic oscillations in a synthetic microbial consortium [J]. Science, 2015, 349(6251): 986-989. |
99 | FIORE D, SALZANO D, CRISTÒBAL-CÓPPULO E, et al. Multicellular feedback control of a genetic toggle-switch in microbial consortia[J]. IEEE Control Systems Letters, 2021, 5(1): 151-156. |
100 | XIU Y, JANG S, JONES J A, et al. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures [J]. Biotechnology and Bioengineering, 2017, 114(10): 2235-2244. |
101 | XIA Tian, ALTMAN E, EITEMAN M A. Succinate production from xylose-glucose mixtures using a consortium of engineered Escherichia coli [J]. Engineering in Life Sciences, 2015, 15(1): 65-72. |
102 | LI T Z, ZHOU W, BI H P, et al. Production of caffeoylmalic acid from glucose in engineered Escherichia coli [J]. Biotechnology Letters, 2018, 40(7): 1057-1065. |
103 | GANESAN V, LI Z H, WANG X N, et al. Heterologous biosynthesis of natural product naringenin by co-culture engineering [J]. Synthetic and Systems Biotechnology, 2017, 2(3): 236-242. |
104 | SUN J, RAZA M, SUN X X, et al. Biosynthesis of adipic acid via microaerobic hydrogenation of cis,cis-muconic acid by oxygen-sensitive enoate reductase [J]. Biotechnology Journal, 2018, 280: 49-54. |
[1] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
[2] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
[3] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[4] | Qiang ZHOU, Dawei ZHOU, Jingxiang SUN, Jingnan WANG, Wankui JIANG, Wenming ZHANG, Yujia JIANG, Fengxue XIN, Min JIANG. Research progress in synthesis of astaxanthin by microbial fermentation [J]. Synthetic Biology Journal, 2024, 5(1): 126-143. |
[5] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[6] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[7] | Yan XIAO, Yajun LIU, Yin′gang FENG, Qiu CUI. Progress in synthetic biology research of Clostridium thermocellum for biomass energy applications [J]. Synthetic Biology Journal, 2023, 4(6): 1055-1081. |
[8] | Zhenzhen CHENG, Jian ZHANG, Cong GAO, Liming LIU, Xiulai CHEN. Progress in metabolic engineering of microorganisms for the utilization of formate [J]. Synthetic Biology Journal, 2023, 4(4): 756-778. |
[9] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[10] | Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae [J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149. |
[11] | Jiayu LIU, Zhihan YANG, Lei YANG, Liying ZHU, Zhengming ZHU, Ling JIANG. Advances in the development of Clostridium tyrobutyricum cell factories driven by synthetic biotechnology [J]. Synthetic Biology Journal, 2022, 3(6): 1174-1200. |
[12] | Shiming TANG, Jiyuan HU, Suiping ZHENG, Shuangyan HAN, Ying LIN. Designing, building and rapid prototyping of biosynthesis module based on cell-free system [J]. Synthetic Biology Journal, 2022, 3(6): 1250-1261. |
[13] | Lu YANG, Xudong QU. Application of imine reductase in the synthesis of chiral amines [J]. Synthetic Biology Journal, 2022, 3(3): 516-529. |
[14] | Huibin WANG, Changli CHE, Song YOU. Recent advances of enzymatic synthesis of organohalogens catalyzed by Fe/αKG-dependent halogenases [J]. Synthetic Biology Journal, 2022, 3(3): 545-566. |
[15] | Jiaoyu JIN, Jiahai ZHOU. The mystery of Z-genome biosynthesis has been elucidated [J]. Synthetic Biology Journal, 2022, 3(1): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||