Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (1): 126-143.DOI: 10.12211/2096-8280.2023-065
• Invited Review • Previous Articles Next Articles
Qiang ZHOU1, Dawei ZHOU1, Jingxiang SUN1, Jingnan WANG1, Wankui JIANG1, Wenming ZHANG1,2, Yujia JIANG1,2, Fengxue XIN1,2, Min JIANG1,2
Received:
2023-09-14
Revised:
2023-11-20
Online:
2024-03-20
Published:
2024-02-29
Contact:
Yujia JIANG, Fengxue XIN
周强1, 周大伟1, 孙敬翔1, 王靖楠1, 姜万奎1, 章文明1,2, 蒋羽佳1,2, 信丰学1,2, 姜岷1,2
通讯作者:
蒋羽佳,信丰学
作者简介:
基金资助:
CLC Number:
Qiang ZHOU, Dawei ZHOU, Jingxiang SUN, Jingnan WANG, Wankui JIANG, Wenming ZHANG, Yujia JIANG, Fengxue XIN, Min JIANG. Research progress in synthesis of astaxanthin by microbial fermentation[J]. Synthetic Biology Journal, 2024, 5(1): 126-143.
周强, 周大伟, 孙敬翔, 王靖楠, 姜万奎, 章文明, 蒋羽佳, 信丰学, 姜岷. 微生物发酵法合成虾青素的研究进展[J]. 合成生物学, 2024, 5(1): 126-143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-065
菌株 | 碳源 | 菌株 类型 | 浓度/产量 | 发酵模式 | 参考文献 |
---|---|---|---|---|---|
X. dendrorhous | 葡萄糖 | 野生菌 | 27.05 mg/L | 30L发酵罐 | [ |
X. dendrorhous | 葡萄糖 | 诱变菌 | 85.02 mg/L | 5L发酵罐 | [ |
X. dendrorhous | 甜高粱蔗渣 | 野生菌 | 48.9 mg/L | 分批补料发酵 | [ |
X. dendrorhous | 葡萄糖 | 诱变菌 | 9.7 mg/g | 1.3L发酵罐 | [ |
X. dendrorhous | 葡萄糖 | 野生菌 | 67.9 mg/L | 分批补料发酵 | [ |
Table 1 Progress in astaxanthin production by X. dendrorhous
菌株 | 碳源 | 菌株 类型 | 浓度/产量 | 发酵模式 | 参考文献 |
---|---|---|---|---|---|
X. dendrorhous | 葡萄糖 | 野生菌 | 27.05 mg/L | 30L发酵罐 | [ |
X. dendrorhous | 葡萄糖 | 诱变菌 | 85.02 mg/L | 5L发酵罐 | [ |
X. dendrorhous | 甜高粱蔗渣 | 野生菌 | 48.9 mg/L | 分批补料发酵 | [ |
X. dendrorhous | 葡萄糖 | 诱变菌 | 9.7 mg/g | 1.3L发酵罐 | [ |
X. dendrorhous | 葡萄糖 | 野生菌 | 67.9 mg/L | 分批补料发酵 | [ |
菌株 | 碳源 | 菌株类型 | 浓度/产量 | 发酵模式 | 参考文献 |
---|---|---|---|---|---|
S. cerevisiae | 葡萄糖 | 表达不同来源的crtW和crtZ,替换不同强度的启动子 | 81 mg/L | 5L发酵罐 | [ |
S. cerevisiae | 葡萄糖 | 定向协同进化获得关键基因的突变体,借助温度调节响应系统 | 235 mg/L | 5L发酵罐 | [ |
S. cerevisiae | 葡萄糖 | 适度调节脂质代谢的相关基因,平衡crtW和crtZ的表达 | 446.4 mg/L | 5L发酵罐 | [ |
S. cerevisiae | 葡萄糖 | 组成型启动子表达crtW,诱导型启动子表达crtZ | 464.09 mg/L | [ |
Table 2 Progress in astaxanthin production by S. cerevisiae
菌株 | 碳源 | 菌株类型 | 浓度/产量 | 发酵模式 | 参考文献 |
---|---|---|---|---|---|
S. cerevisiae | 葡萄糖 | 表达不同来源的crtW和crtZ,替换不同强度的启动子 | 81 mg/L | 5L发酵罐 | [ |
S. cerevisiae | 葡萄糖 | 定向协同进化获得关键基因的突变体,借助温度调节响应系统 | 235 mg/L | 5L发酵罐 | [ |
S. cerevisiae | 葡萄糖 | 适度调节脂质代谢的相关基因,平衡crtW和crtZ的表达 | 446.4 mg/L | 5L发酵罐 | [ |
S. cerevisiae | 葡萄糖 | 组成型启动子表达crtW,诱导型启动子表达crtZ | 464.09 mg/L | [ |
菌株 | 碳源 | 改造策略 | 浓度/产量 | 发酵模式 | 参考文献 |
---|---|---|---|---|---|
Y. lipolytica | 葡萄糖 | 表达不同来源的crtW和crtZ,增加关键基因拷贝数 | 54.6 mg/L | 96深孔板培养 | [ |
Y. lipolytica | 葡萄糖 | 定位于不同的亚细胞器 | 858 mg/L | 3L发酵罐 | [ |
Y. lipolytica | 蔗糖 | 加入外源油相,模块化工程途径融合关键基因 | 973.4 mg/L | 3L发酵罐 | [ |
Y. lipolytica | 葡萄糖 | 表达来自雨生红球藻的关键基因,通过短肽连接,增加融合酶的拷贝数 | 3.3 g/L | 分批补料发酵 | [ |
Y. lipolytica | 葡萄糖 | 表达来自夏侧金盏花的关键基因,引入crtX基因 | 3.46 mg/L | 摇瓶发酵 | [ |
Y. lipolytica | 组合表达不同来源的crtW和crtZ | 99 mg/L | 摇瓶发酵 | [ |
Table 3 Progress in astaxanthin production by Y. lipolytica
菌株 | 碳源 | 改造策略 | 浓度/产量 | 发酵模式 | 参考文献 |
---|---|---|---|---|---|
Y. lipolytica | 葡萄糖 | 表达不同来源的crtW和crtZ,增加关键基因拷贝数 | 54.6 mg/L | 96深孔板培养 | [ |
Y. lipolytica | 葡萄糖 | 定位于不同的亚细胞器 | 858 mg/L | 3L发酵罐 | [ |
Y. lipolytica | 蔗糖 | 加入外源油相,模块化工程途径融合关键基因 | 973.4 mg/L | 3L发酵罐 | [ |
Y. lipolytica | 葡萄糖 | 表达来自雨生红球藻的关键基因,通过短肽连接,增加融合酶的拷贝数 | 3.3 g/L | 分批补料发酵 | [ |
Y. lipolytica | 葡萄糖 | 表达来自夏侧金盏花的关键基因,引入crtX基因 | 3.46 mg/L | 摇瓶发酵 | [ |
Y. lipolytica | 组合表达不同来源的crtW和crtZ | 99 mg/L | 摇瓶发酵 | [ |
菌株 | 碳源 | 改造策略 | 浓度/产量 | 发酵模式 | 参考文献 |
---|---|---|---|---|---|
E. coli | 酵母粉 | 表达伴侣基因ApcpnA和ApcpnB | 890 μg/g | 摇瓶发酵 | [ |
E. coli | 酵母粉 | 表达MEP途径关键基因与MVA途径共表达 | 1100 μg/g | 摇瓶发酵 | [ |
E. coli | 酵母粉 | 表达类异戊二烯途径关键基因与MVA途径共表达 | 1200 μg/g | 摇瓶发酵 | [ |
E. coli | 葡萄糖 | 通过γ-Red重组技术将虾青素合成途径的基因整合到大肠杆菌染色体中 | 1.4 mg/g | 摇瓶发酵 | [ |
E. coli | 蔗糖 | 表达不同来源的crtW和crtZ,平衡相关基因的活性 | 7.4 mg/g | 摇瓶发酵 | [ |
E. coli | 葡萄糖 | 表达不同来源的crtW和crtZ,通过短肽连接关键基因 | 5.18 mg/g | 摇瓶发酵 | [ |
E. coli | 葡萄糖 | 表达不同来源的crtW和crtZ,表达不同强度的启动子 | 4.3 mg/g | 摇瓶发酵 | [ |
E. coli | 酵母粉 | 删除形态、膜、氧化应激相关基因,建立温度敏感质粒互补表达系统 | 11.92 mg/g | 摇瓶发酵 | [ |
E. coli | 甘油 | 对crtW进行随机突变,通过Cre-loxP平衡增加基因拷贝数 | 5.88 mg/g | 7L发酵罐 | [ |
E. coli | 甘油 | 增加crtYB的拷贝数,调节操纵子的表达水平 | 6.17 mg/g | 5L发酵罐 | [ |
E. coli | 甘油 | 筛选不同来源的crtZ并对这些不同底物偏好的酶进行联合利用 | 11.5 mg/g | 5L发酵罐 | [ |
Table 4 Progress in astaxanthin production by E. coli
菌株 | 碳源 | 改造策略 | 浓度/产量 | 发酵模式 | 参考文献 |
---|---|---|---|---|---|
E. coli | 酵母粉 | 表达伴侣基因ApcpnA和ApcpnB | 890 μg/g | 摇瓶发酵 | [ |
E. coli | 酵母粉 | 表达MEP途径关键基因与MVA途径共表达 | 1100 μg/g | 摇瓶发酵 | [ |
E. coli | 酵母粉 | 表达类异戊二烯途径关键基因与MVA途径共表达 | 1200 μg/g | 摇瓶发酵 | [ |
E. coli | 葡萄糖 | 通过γ-Red重组技术将虾青素合成途径的基因整合到大肠杆菌染色体中 | 1.4 mg/g | 摇瓶发酵 | [ |
E. coli | 蔗糖 | 表达不同来源的crtW和crtZ,平衡相关基因的活性 | 7.4 mg/g | 摇瓶发酵 | [ |
E. coli | 葡萄糖 | 表达不同来源的crtW和crtZ,通过短肽连接关键基因 | 5.18 mg/g | 摇瓶发酵 | [ |
E. coli | 葡萄糖 | 表达不同来源的crtW和crtZ,表达不同强度的启动子 | 4.3 mg/g | 摇瓶发酵 | [ |
E. coli | 酵母粉 | 删除形态、膜、氧化应激相关基因,建立温度敏感质粒互补表达系统 | 11.92 mg/g | 摇瓶发酵 | [ |
E. coli | 甘油 | 对crtW进行随机突变,通过Cre-loxP平衡增加基因拷贝数 | 5.88 mg/g | 7L发酵罐 | [ |
E. coli | 甘油 | 增加crtYB的拷贝数,调节操纵子的表达水平 | 6.17 mg/g | 5L发酵罐 | [ |
E. coli | 甘油 | 筛选不同来源的crtZ并对这些不同底物偏好的酶进行联合利用 | 11.5 mg/g | 5L发酵罐 | [ |
1 | RIZZARDI N, PEZZOLESI L, SAMORÌ C, et al. Natural astaxanthin is a green antioxidant able to counteract lipid peroxidation and ferroptotic cell death[J]. International Journal of Molecular Sciences, 2022, 23(23): 15137. |
2 | TURUJMAN S A, WAMER W G, WEI R R, et al. Rapid liquid chromatographic method to distinguish wild salmon from aquacultured salmon fed synthetic astaxanthin[J]. Journal of AOAC INTERNATIONAL, 1997, 80(3): 622-632. |
3 | 蔡俊, 游智能. 发酵法生产虾青素的研究进展[J]. 食品科学, 2015, 36(23): 358-366. |
CAI J, YOU Z N. Current status of fermentative production of astaxanthin[J]. Food Science, 2015, 36(23): 358-366. | |
4 | 姜思, 佟少明. 雨生红球藻虾青素合成研究进展[J]. 生物工程学报, 2019, 35(6): 988-997. |
JIANG S, TONG S M. Advances in astaxanthin biosynthesis in Haematococcus pluvialis [J]. Chinese Journal of Biotechnology, 2019, 35(6): 988-997. | |
5 | YUAN J P, CHEN F. Chromatographic separation and purification of trans-astaxanthin from the extracts of Haematococcus pluvialis [J]. Journal of Agricultural and Food Chemistry, 1998, 46(8): 3371-3375. |
6 | 王军, 张晴龙, 李曦月, 等. 高产虾青素红法夫酵母的代谢工程育种研究进展[J]. 化学与生物工程, 2022, 39(10): 1-5. |
WANG J, ZHANG Q L, LI X Y, et al. Research progress in metabolic engineering breeding of high-yield astaxanthin-producing Xanthophyllomyces dendrorhous [J]. Chemistry & Bioengineering, 2022, 39(10): 1-5. | |
7 | KOHANDEL Z, FARKHONDEH T, ASCHNER M, et al. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases[J]. Biomedicine & Pharmacotherapy, 2022, 145: 112179. |
8 | JING Y W, WANG Y X, ZHOU D W, et al. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin[J]. Biotechnology Advances, 2022, 61: 108033. |
9 | SCHMIDT I, SCHEWE H, GASSEL S, et al. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous [J]. Applied Microbiology and Biotechnology, 2011, 89(3): 555-571. |
10 | 苗丽青, 马旭辉, 李素贞, 等. 虾青素的生物合成与产业化应用[J]. 中国农业科技导报, 2023, 25(3): 21-29. |
MIAO L Q, MA X H, LI S Z, et al. Biosynthesis and industrial application of astaxanthin[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 21-29. | |
11 | LIGNELL A. Medicament for improvement of duration of muscle function or treatment of muscle disorders or diseases: US6245818[P].2001-06-12. |
12 | 李新杰, 朱伟, 姜威, 等. 天然虾青素对鸭肉品质和脂质氧化稳定性的影响[J]. 粮食与饲料工业, 2012(6): 43-45. |
LI X J, ZHU W, JIANG W, et al. Effects of natural astaxanthin on duck meat quality and lipid oxidative stability[J]. Cereal & Feed Industry, 2012(6): 43-45. | |
13 | MUSSAGY C U, PEREIRA J F B, DUFOSSÉ L, et al. Advances and trends in biotechnological production of natural astaxanthin by Phaffia rhodozyma yeast[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(13): 1862-1876. |
14 | HUSSEIN G, SANKAWA U, GOTO H, et al. Astaxanthin, a carotenoid with potential in human health and nutrition[J]. Journal of Natural Products, 2006, 69(3): 443-449. |
15 | CICHOŃSKI J, CHRZANOWSKI G. Microalgae as a source of valuable phenolic compounds and carotenoids[J]. Molecules, 2022, 27(24): 8852. |
16 | PARK S Y, BINKLEY R M, KIM W J, et al. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity[J]. Metabolic Engineering, 2018, 49: 105-115. |
17 | KITAHARA T. Carotenoids in the Pacific salmon during the marine period[J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1984, 78(4): 859-862. |
18 | ZHANG C Q, CHEN X X, TOO H P. Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook[J]. Applied Microbiology and Biotechnology, 2020, 104(13): 5725-5737. |
19 | LI J, ZHU D L, NIU J F, et al. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis [J]. Biotechnology Advances, 2011, 29(6): 568-574. |
20 | GONG Z K, WANG H L, TANG J L, et al. Coordinated expression of astaxanthin biosynthesis genes for improved astaxanthin production in Escherichia coli [J]. Journal of Agricultural and Food Chemistry, 2020, 68(50): 14917-14927. |
21 | RANI A, SAINI K, BAST F, et al. Microorganisms: a potential source of bioactive molecules for antioxidant applications[J]. Molecules, 2021, 26(4): 1142. |
22 | SAINI R K, KEUM Y S. Progress in microbial carotenoids production[J]. Indian Journal of Microbiology, 2017, 57(1): 129-130. |
23 | YE V M, BHATIA S K. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts[J]. Biotechnology Letters, 2012, 34(8): 1405-1414. |
24 | ZHU X Y, MENG C X, SUN F J, et al. Sustainable production of astaxanthin in microorganisms: the past, present, and future[J]. Critical Reviews in Food Science and Nutrition, 2022: 1-17. |
25 | ZHOU D W, YANG X Y, WANG H X, et al. Biosynthesis of astaxanthin by using industrial yeast[J]. Biofuels, Bioproducts & Biorefining, 2023, 17(3): 602-615. |
26 | 张辰, 徐慧, 朱坤福, 等. 微生物法生产虾青素的研究进展[J]. 中国酿造, 2021, 40(10): 29-35. |
ZHANG C, XU H, ZHU K F, et al. Research progress in the production of astaxanthin by microbial method[J]. China Brewing, 2021, 40(10): 29-35. | |
27 | GUERIN M, HUNTLEY M E, OLAIZOLA M. Haematococcus astaxanthin: applications for human health and nutrition[J]. Trends in Biotechnology, 2003, 21(5): 210-216. |
28 | CHENG X, RIORDON J, NGUYEN B, et al. Hydrothermal disruption of algae cells for astaxanthin extraction[J]. Green Chemistry, 2017, 19(1): 106-111. |
29 | RANJBAR R, INOUE R, KATSUDA T, et al. High efficiency production of astaxanthin in an airlift photobioreactor[J]. Journal of Bioscience and Bioengineering, 2008, 106(2): 204-207. |
30 | WANG X, MOU J H, QIN Z H, et al. Supplementation with rac-GR24 facilitates the accumulation of biomass and astaxanthin in two successive stages of Haematococcus pluvialis cultivation[J]. Journal of Agricultural and Food Chemistry, 2022, 70(15): 4677-4689. |
31 | HUANG W C, LIU H, SUN W W, et al. Effective astaxanthin extraction from wet Haematococcus pluvialis using switchable hydrophilicity solvents[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1560-1563. |
32 | REN Y Y, DENG J Q, HUANG J C, et al. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: advances and outlook[J]. Bioresource Technology, 2021, 340: 125736. |
33 | GASSEL S, BREITENBACH J, SANDMANN G. Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 345-350. |
34 | CHI S, HE Y F, REN J, et al. Overexpression of a bifunctional enzyme, CrtS, enhances astaxanthin synthesis through two pathways in Phaffia rhodozyma [J]. Microbial Cell Factories, 2015, 14: 90. |
35 | GERVASI T, SANTINI A, DALIU P, et al. Astaxanthin production by Xanthophyllomyces dendrorhous growing on a low cost substrate[J]. Agroforestry Systems, 2020, 94(4): 1229-1234. |
36 | STOKLOSA R J, JOHNSTON D B, NGHIEM N P. Utilization of sweet sorghum juice for the production of astaxanthin as a biorefinery co-product by Phaffia rhodozyma [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3124-3134. |
37 | HU Z C, ZHENG Y G, WANG Z, et al. pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous [J]. Enzyme and Microbial Technology, 2006, 39(4): 586-590. |
38 | ZHUANG Y, JIANG G L, ZHU M J. Atmospheric and room temperature plasma mutagenesis and astaxanthin production from sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1[J]. Process Biochemistry, 2020, 91: 330-338. |
39 | STOKLOSA R J, JOHNSTON D B, NGHIEM N P. Phaffia rhodozyma cultivation on structural and non-structural sugars from sweet sorghum for astaxanthin generation[J]. Process Biochemistry, 2019, 83: 9-17. |
40 | GASSEL S, SCHEWE H, SCHMIDT I, et al. Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering[J]. Biotechnology Letters, 2013, 35(4): 565-569. |
41 | 茹毅, 沈宁燕, 倪辉, 等. 乙醇促进法夫酵母虾青素合成的机理及其代谢调控[J]. 中国食品学报, 2019, 19(8): 41-48. |
RU Y, SHEN N Y, NI H, et al. Mechanism of ethanol promoting the synthesis of astaxanthin and its metabolic regulation by Phaffia rhodozyma [J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(8): 41-48. | |
42 | YANG H Y, YANG L, DU X P, et al. Metabolomics of astaxanthin biosynthesis and corresponding regulation strategies in Phaffia rhodozyma [J]. Yeast, 2023, 40(7): 254-264. |
43 | YAMAMOTO K, HARA K Y, MORITA T, et al. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes[J]. Microbial Cell Factories, 2016, 15(1): 155. |
44 | HONG K K, NIELSEN J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries[J]. Cellular and Molecular Life Sciences, 2012, 69(16): 2671-2690. |
45 | WANG R Z, GU X L, YAO M D, et al. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae [J]. Frontiers of Chemical Science and Engineering, 2017, 11(1): 89-99. |
46 | ZHOU P P, LI M, SHEN B, et al. Directed coevolution of β-carotene ketolase and hydroxylase and its application in temperature-regulated biosynthesis of astaxanthin[J]. Journal of Agricultural and Food Chemistry, 2019, 67(4): 1072-1080. |
47 | LI M, ZHOU P P, CHEN M K, et al. Spatiotemporal regulation of astaxanthin synthesis in S. cerevisiae [J]. ACS Synthetic Biology, 2022, 11(8): 2636-2649. |
48 | 杨祖明, 王竞辉, 张雅萍, 等. 一株生产虾青素的重组酿酒酵母及其应用: CN113699052B[P]. 2023-08-11. |
YANG Z M, WANG J H, ZHANG Y P, et al. Recombinant Saccharomyces cerevisiae for producing astaxanthin and its application: CN113699052B[P]. 2023-08-11. | |
49 | DING Y W, LU C Z, ZHENG Y, et al. Directed evolution of the fusion enzyme for improving astaxanthin biosynthesis in Saccharomyces cerevisiae [J]. Synthetic and Systems Biotechnology, 2023, 8(1): 46-53. |
50 | CHEN X Y, ZARO J L, SHEN W C. Fusion protein linkers: property, design and functionality[J]. Advanced Drug Delivery Reviews, 2013, 65(10): 1357-1369. |
51 | ZHOU P P, XIE W P, YAO Z, et al. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch[J]. Biotechnology and Bioengineering, 2018, 115(5): 1321-1330. |
52 | CHEN G Q, WANG B B, HAN D X, et al. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae)[J]. The Plant Journal: for Cell and Molecular Biology, 2015, 81(1): 95-107. |
53 | LIAN J Z, HAMEDIRAD M, HU S M, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nature Communications, 2017, 8: 1688. |
54 | RODRIGUEZ-OCASIO E, KHALID A, TRUKA C J, et al. Survey of nonconventional yeasts for lipid and hydrocarbon biotechnology[J]. Journal of Industrial Microbiology and Biotechnology, 2022, 49(4): kuac010. |
55 | FRIEDLANDER J, TSAKRAKLIDES V, KAMINENI A, et al. Engineering of a high lipid producing Yarrowia lipolytica strain[J]. Biotechnology for Biofuels, 2016, 9(1): 77. |
56 | PARK Y K, DULERMO T, LEDESMA-AMARO R, et al. Optimization of odd chain fatty acid production by Yarrowia lipolytica [J]. Biotechnology for Biofuels, 2018, 11: 158. |
57 | WANG J P, LEDESMA-AMARO R, WEI Y J, et al. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica-a review[J]. Bioresource Technology, 2020, 313: 123707. |
58 | 赵禹, 刘士琦, 李建, 等. 解脂耶氏酵母作为微生物细胞工厂的应用研究进展[J]. 食品科学, 2021, 42(19): 388-400. |
ZHAO Y, LIU S Q, LI J, et al. Advances in the application of Yarrowia lipolytica as a microbial cell factory[J]. Food Science, 2021, 42(19): 388-400. | |
59 | KILDEGAARD K R, ADIEGO-PÉREZ B, DOMÉNECH BELDA D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synthetic and Systems Biotechnology, 2017, 2(4): 287-294. |
60 | MA Y S, LI J B, HUANG S W, et al. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica [J]. Metabolic Engineering, 2021, 68: 152-161. |
61 | YUZBASHEVA E Y, TARATYNOVA M O, FEDYAEVA I M, et al. Large-scale bioproduction of natural astaxanthin in Yarrowia lipolytica [J]. Bioresource Technology Reports, 2023, 21: 101289. |
62 | KANG W, MA T, LIU M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10: 4248. |
63 | CHEN J, ZHANG R L, ZHANG G L, et al. Heterologous expression of the plant-derived astaxanthin biosynthesis pathway in Yarrowia lipolytica for glycosylated astaxanthin production[J]. Journal of Agricultural and Food Chemistry, 2023, 71(6): 2943-2951. |
64 | 花强, 汪丹妮, 韦柳静, 等. 一种生产虾青素的解脂耶氏酵母基因工程菌的构建方法: CN116497052A[P]. 2023-07-28. |
HUA Q, WANG D N, WEI L J, et al. A method for construction of genetic engineering strain of Yersinia lipolis for astaxanthin production: CN116497052A[P]. 2023-07-28. | |
65 | ZHU H Z, JIANG S, WU J J, et al. Production of high levels of 3S,3′S-astaxanthin in Yarrowia lipolytica via iterative metabolic engineering[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2673-2683. |
66 | HAMMER S K, AVALOS J L. Harnessing yeast organelles for metabolic engineering[J]. Nature Chemical Biology, 2017, 13(8): 823-832. |
67 | YOKOYAMA A, ADACHI K, SHIZURI Y. New carotenoid glucosides, astaxanthin glucoside and adonixanthin glucoside, isolated from the astaxanthin-producing marine bacterium, Agrobacterium aurantiacum [J]. Journal of Natural Products, 1995, 58(12): 1929-1933. |
68 | KIM J H, KIM S H, KIM K H, et al. Sphingomonas lacus sp. nov., an astaxanthin-dideoxyglycoside-producing species isolated from soil near a pond[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt_9): 2824-2830. |
69 | CHANG J J, HO C Y, MAO C T, et al. A thermo- and toxin-tolerant kefir yeast for biorefinery and biofuel production[J]. Applied Energy, 2014, 132: 465-474. |
70 | BANAT I M, NIGAM P, MARCHANT R. Isolation of thermotolerant, fermentative yeasts growing at 52 ℃ and producing ethanol at 45 ℃ and 50 ℃[J]. World Journal of Microbiology and Biotechnology, 1992, 8(3): 259-263. |
71 | RAIMONDI S, ZANNI E, AMARETTI A, et al. Thermal adaptability of Kluyveromyces marxianus in recombinant protein production[J]. Microbial Cell Factories, 2013, 12: 34. |
72 | LIN Y J, CHANG J J, LIN H Y, et al. Metabolic engineering a yeast to produce astaxanthin[J]. Bioresource Technology, 2017, 245: 899-905. |
73 | YANG X X, WANG D M, HONG J. Carotenoid production from nondetoxified xylose mother liquid or corncob hydrolysate with engineered Kluyveromyces marxianus [J]. Bioresource Technology, 2022, 364: 128080. |
74 | 서용배, 이종규, 정태혁, 등. 대장균에서 고세균 샤페론을 이용한 아스타잔틴 생산능 향상을 위한 연구[J/OL]. 생명과학회지, 2015, 25(12): 1339-1346[2023-09-01]. . |
SEO Y B, LEE J K, JEONG T H, et al. Enhanced production of astaxanthin by Archaea chaperonin in Escherichia coli [J/OL]. Journal of Life Science, 2015, 25(12): 1339-1346[2023-09-01]. . | |
75 | JEONG T H, CHO Y S, CHOI S S, et al. Enhanced production of astaxanthin by metabolically engineered non-mevalonate pathway in Escherichia coli [J/OL]. Microbiology and Biotechnology Letters, 2018, 46(2): 114-119[2023-09-01]. . |
76 | 이재형, 서용배, 김영태. 대장균에서 이소프레노이드 생합성 경로의 대사공학적 개량에 의한 아스타잔틴의 생산성 향상[J/OL]. 생명과학회지, 2008, 18(12): 1764-1770[2023-09-01]. . |
LEE J H, SEO Y B, KIM Y T. Enhanced production of astaxanthin by metabolic engineered isoprenoid pathway in Escherichia coli [J]. Journal of Life Science, 2008, 18(12): 1764-1770[2023-09-01]. . | |
77 | LEMUTH K, STEUER K, ALBERMANN C. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin[J]. Microbial Cell Factories, 2011, 10: 29. |
78 | LU Q, BU Y F, LIU J Z. Metabolic engineering of Escherichia coli for producing astaxanthin as the predominant carotenoid[J]. Marine Drugs, 2017, 15(10): 296. |
79 | WU Y Q, YAN P P, LIU X W, et al. Combinatorial expression of different β-carotene hydroxylases and ketolases in Escherichia coli for increased astaxanthin production[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(11): 1505-1516. |
80 | LI S, HUANG J C. Assessment of expression cassettes and culture media for different Escherichia coli strains to produce astaxanthin[J]. Natural Products and Bioprospecting, 2018, 8(5): 397-403. |
81 | LU Q, LIU J Z. Enhanced astaxanthin production in Escherichia coli via morphology and oxidative stress engineering[J]. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11703-11709. |
82 | LI D, LI Y, XU J Y, et al. Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli [J]. Chinese Journal of Natural Medicines, 2020, 18(9): 666-676. |
83 | ZHANG M, GONG Z K, TANG J L, et al. Improving astaxanthin production in Escherichia coli by co-utilizing CrtZ enzymes with different substrate preference[J]. Microbial Cell Factories, 2022, 21(1): 71. |
84 | LV Y K, EDWARDS H, ZHOU J W, et al. Combining 26S rDNA and the cre-IoxP system for iterative gene integration and efficient marker curation in yarrowia lipolytica[J]. ACS Synthetic Biology, 2019, 8(3): 568-576. |
85 | DATSENKO K A, WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645. |
86 | YE L J, ZHU X N, WU T, et al. Optimizing the localization of astaxanthin enzymes for improved productivity[J]. Biotechnology for Biofuels, 2018, 11: 278. |
87 | FU D X, LIBSON A, MIERCKE L J W, et al. Structure of a glycerol-conducting channel and the basis for its selectivity[J]. Science, 2000, 290(5491): 481-486. |
88 | NEOPHYTOU I, HARVEY R, LAWRENCE J, et al. Eukaryotic integral membrane protein expression utilizing the Escherichia coli glycerol-conducting channel protein (GlpF)[J]. Applied Microbiology and Biotechnology, 2007, 77(2): 375-381. |
89 | KATSUMATA T, ISHIBASHI T, KYLE D. A sub-chronic toxicity evaluation of a natural astaxanthin-rich carotenoid extract of Paracoccus carotinifaciens in rats[J]. Toxicology Reports, 2014, 1: 582-588. |
90 | HONDA M, KAGEYAMA H, HIBINO T, et al. Efficient and environmentally friendly method for carotenoid extraction from Paracoccus carotinifaciens utilizing naturally occurring Z-isomerization-accelerating catalysts[J]. Process Biochemistry, 2020, 89: 146-154. |
91 | HONDA M, KAGEYAMA H, HIBINO T, et al. Improved carotenoid processing with sustainable solvents utilizing Z-isomerization-induced alteration in physicochemical properties: a review and future directions[J]. Molecules, 2019, 24(11): 2149. |
92 | YANG S, ZHOU Q X, YANG L, et al. Effect of thermal processing on astaxanthin and astaxanthin esters in Pacific white shrimp Litopenaeus vannamei [J]. Journal of Oleo Science, 2015, 64(3): 243-253. |
93 | YUAN J P, CHEN F. Isomerization of trans-astaxanthin to cis-isomers in organic solvents[J]. Journal of Agricultural and Food Chemistry, 1999, 47(9): 3656-3660. |
94 | HONDA M, KAGEYAMA H, MURAKAMI K, et al. Isomerization of Paracoccus carotinifaciens-derived carotenoids (astaxanthin, adonirubin, and adonixanthin) under subcritical water conditions[J]. ACS Food Science & Technology, 2021, 1(10): 1861-1868. |
95 | CHOUGLE J A, SINGHAL R S. Metabolic precursors and cofactors stimulate astaxanthin production in Paracoccus MBIC 01143[J]. Food Science and Biotechnology, 2012, 21(6): 1695-1700. |
96 | 蹇华丽, 朱明军, 吴振强, 等. 环状芽孢杆菌胞壁溶解酶用于红发夫酵母虾青素提取的研究[J]. 高校化学工程学报, 2006, 20(1): 147-151. |
JIAN H L, ZHU M J, WU Z Q, et al. Extracting astaxanthin of Phaffia rhodozyma with lytic enzyme produced by Bacillus circulans A 1.383[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(1): 147-151. | |
97 | NI H, CHEN Q H, HE G Q, et al. Optimization of acidic extraction of astaxanthin from Phaffia rhodozyma [J]. Journal of Zhejiang University Science B (Biomedicine & Biotechnology), 2008, 9(1): 51-59. |
98 | 欧阳琴, 陈兴才, 黄亚治. 雨生红球藻提取虾青素不同机械破壁方法的研究[J]. 福州大学学报(自然科学版), 2005, 33(1): 111-115. |
OUYANG Q, CHEN X C, HUANG Y Z. Study on extracting astaxanthin from Haematococcus pluvialis by various mechanical methods[J]. Journal of Fuzhou University (Natural Sciences Edtion), 2005, 33(1): 111-115. | |
99 | 邢涛, 张慧, 祁琳琳, 等. 从雨生球藻中提取虾青素的工艺研究[J]. 中国食品添加剂, 2018(11): 169-174. |
XING T, ZHANG H, QI L L, et al. Study on the extraction of astaxanthin from Haematcoccus pluvialis [J]. China Food Additives, 2018(11): 169-174. | |
100 | 高岩, 邢丽红, 孙伟红, 等. 不同来源虾青素提取、纯化及定量检测方法的研究进展[J]. 食品安全质量检测学报, 2020, 11(5): 1414-1423. |
GAO Y, XING L H, SUN W H, et al. Research progress on extraction, purification and quantitative detection methods of astaxanthin from different sources[J]. Journal of Food Safety & Quality, 2020, 11(5): 1414-1423. | |
101 | ANG F S, KHAW S Y, FEW L L, et al. Isolation of a stable astaxanthin-hyperproducing mutant of Xanthophyllomyces dendrorhous through random mutagenesis[J]. Applied Biochemistry and Microbiology, 2019, 55(3): 255-263. |
102 | 周锦珂, 李金华, 葛发欢, 等. 酶法提取雨生红球藻中虾青素的新工艺研究[J]. 中药材, 2008, 31(9): 1423-1425. |
ZHOU J K, LI J H, GE F H, et al. Study on the new technology of enzymatic extraction of astaxanthin from Haematococcus pluvialis [J]. Journal of Chinese Medicinal Materials, 2008, 31(9): 1423-1425. | |
103 | LARROUDE M, CELINSKA E, BACK A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2): 464-472. |
104 | GAO S L, TONG Y Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metabolic Engineering, 2017, 41: 192-201. |
[1] | Zhijun TANG, Youcai HU, Wen LIU. Enzymatic (4+2)- and (2+2)-cycloaddition reactions: fundamentals and applications of regio- and stereoselectivity [J]. Synthetic Biology Journal, 2024, 5(3): 401-407. |
[2] | Jun ZHANG, Shixue JIN, Qian YUN, Xudong QU. Biosynthesis of the unnatural extender units with polyketides and their structural modifications for applications in medicines [J]. Synthetic Biology Journal, 2024, 5(3): 561-570. |
[3] | Xiwei CHEN, Huaran ZHANG, Yi ZOU. Biosynthesis and metabolic engineering of fungal non-ribosomal peptides [J]. Synthetic Biology Journal, 2024, 5(3): 571-592. |
[4] | Jin FENG, Haixue PAN, Gongli TANG. Research advances in biosynthesis of natural product drugs within the past decade [J]. Synthetic Biology Journal, 2024, 5(3): 408-446. |
[5] | Mengyu XI, Yiling HU, Yucheng GU, Huiming GE. Genome mining-directed discovery for natural medicinal products [J]. Synthetic Biology Journal, 2024, 5(3): 447-473. |
[6] | Xinjie SHI, Yiling DU. Research advances in the biosynthesis of nonribosomal peptides within the bisintercalator family as anticancer drugs [J]. Synthetic Biology Journal, 2024, 5(3): 593-611. |
[7] | Yongxiang SONG, Xiufeng ZHANG, Yanqin LI, Hua XIAO, Yan YAN. Resistance-gene directed discovery of bioactive natural products [J]. Synthetic Biology Journal, 2024, 5(3): 474-491. |
[8] | Zhen HUI, Xiaoyu TANG. Applications of the CRISPR/Cas9 editing system in the study of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 658-671. |
[9] | Huiyang TU, Weidong HAN, Bin ZHANG. Strategies for the design and optimization of tumor neoantigen vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 254-266. |
[10] | Chao FANG, Weiren HUANG. Progress with the application of synthetic biology in designing of cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 239-253. |
[11] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[12] | Yaru CHEN, Yingxiu CAO, Hao SONG. Advances and applications of gene editing and transcriptional regulation in electroactive microorganisms [J]. Synthetic Biology Journal, 2023, 4(6): 1281-1299. |
[13] | Zhenzhen CHENG, Jian ZHANG, Cong GAO, Liming LIU, Xiulai CHEN. Progress in metabolic engineering of microorganisms for the utilization of formate [J]. Synthetic Biology Journal, 2023, 4(4): 756-778. |
[14] | Tao ZENG, Ruibo WU. Data-driven prediction and design for enzymatic reactions [J]. Synthetic Biology Journal, 2023, 4(3): 535-550. |
[15] | Jiayu DONG, Min LI, Zonghua XIAO, Ming HU, Yudai MATSUDA, Weiguang WANG. Recent advances in heterologous production of natural products using Aspergillus oryzae [J]. Synthetic Biology Journal, 2022, 3(6): 1126-1149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||