合成生物学 ›› 2020, Vol. 1 ›› Issue (6): 697-708.DOI: 10.12211/2096-8280.2020-034

• 特约评述 • 上一篇    下一篇

DNA合成、组装与纠错技术研究进展

彭凯1,2, 逯晓云1, 程健1, 刘莹1, 江会锋1, 郭晓贤1   

  1. 1.中国科学院天津工业生物技术研究所系统微生物工程重点实验室,天津 300308
    2.天津科技大学生物工程学院,天津 300457
  • 收稿日期:2020-03-23 修回日期:2020-10-22 出版日期:2020-12-31 发布日期:2021-01-15
  • 通讯作者: 江会锋,郭晓贤
  • 作者简介:彭凯(1995—),男,硕士研究生。主要研究方向为DNA纠错。E-mail: pengk@tib.cas.cn|江会锋(1981—),男,博士,研究员。主要研究方向为代谢合成生物学。E-mail: jiang_hf@tib.cas.cn|郭晓贤(1982—),男,博士,副研究员。主要研究方向为酶法DNA合成。E-mail: guoxx@tib.cas.cn
  • 基金资助:
    国家重点研发计划(2020YFC1316400);天津市合成生物技术创新能力提升行动(TSBICIP-KJGG-007-01)

Advances in technologies for de novo DNA synthesis, assembly and error correction

Kai PENG1,2, Xiaoyun LU1, Jian CHENG1, Ying LIU1, Huifeng JIANG1, Xiaoxian GUO1   

  1. 1.Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences,Tianjin 300308,China
    2.School of Biological Engineering,Tianjin University of Science and Technology,Tianjin 300457,China
  • Received:2020-03-23 Revised:2020-10-22 Online:2020-12-31 Published:2021-01-15
  • Contact: Huifeng JIANG,Xiaoxian GUO

摘要:

DNA设计合成是推动生命科学及其相关领域发展的关键共性底层技术。常规的遗传操作技术仅能对已有的DNA序列进行有限的改造,而DNA合成技术则可从头“书写”生命信息,从另一高度提升我们对生命体理解、预测和操控的能力。DNA合成技术包括寡核苷酸合成技术、DNA组装技术以及DNA纠错技术。本文总结了以上关键技术的特点和发展趋势,经历超过60年的发展后,化学合成法仍然是当前寡核苷酸合成的主流方法,它被广泛应用于柱式及芯片DNA合成仪,酶法DNA合成技术则有望颠覆传统的DNA化学合成方法;现有DNA合成技术在合成能力和准确性上存在局限,难以直接准确合成基因长度的DNA片段,分级的体外与体内组装技术的合理搭配,可将分段合成的寡核苷酸片段装配成长片段DNA,达到基因长度甚至基因组长度DNA序列的合成,它也因此成为长片段DNA合成的关键;寡核苷酸的合成与组装过程都不可避免地引入错误,基于错配结合或错配切除的纠错技术在DNA合成过程不同阶段的应用,不仅能提高DNA合成的准确性,还可有效降低长片段DNA合成的质控成本。近年来合成生物学等相关领域的迅猛发展,对DNA合成相关技术提出了新的要求,正推动DNA合成、组装与纠错相关技术向着高通量、自动化和集成化的方向不断改进和创新。

关键词: DNA合成, DNA组装, 纠错, 合成生物学, 关键共性技术

Abstract:

DNA is the primary carrier of genetic information in various types of life forms. DNA synthesis is a technology that enables the de novo generation of a blueprint for biological functions. It is one of the key generic technologies in many areas of life sciences and the fundamental tool of biotechnology revolution. Distinct from conventional genetic engineering technologies that can only modify natural DNA, DNA synthesis technologies allow limitless creativity for build of designed nucleotide sequence, rewriting of the organism's genetic information as well as creation of synthetic genomes. Advancements in DNA synthesis have led to remarkable improvements in our ability to understand and engineer biological systems. The process of synthetic creation of DNA involves synthesis of oligonucleotide, assembly of multiple constructs together into longer DNA pieces and the associated error-correction procedures to reduce errors produced during oligo synthesis and subsequent assembly. Here, we review current advancements as well as some of the challenges in the technologies of de novo DNA synthesis, assembly, and error correction. For over six decades, DNA synthesis technologies mainly rely on phosphoramidite chemical synthesis methods which was first invented in the 80s. It has been adopted by both column-based and microarray-based oligo synthesizers. New enzymatic DNA synthesis strategy is poised to revolutionize the field. Despite great potential and recent groundbreaking developments, technical hurdles in enzymatic DNA synthesis methods including blocking technology and protein engineering remain challenging. Due to the limits on length and error rates of the synthesis processes, effective assembly and error correction technologies are required for production of long stretch of DNA. With the rapid development of synthetic biology, there is an urgent and high demand for additional DNA synthesis technologies to produce longer DNA constructs and even complete genomes. Advances in high-throughput, automated, and integrated DNA synthesis technologies will create exponential rates of change in a wide range of fields.

Key words: DNA synthesis, DNA assembly, error correction, synthetic biology, key generic technology

中图分类号: