合成生物学 ›› 2020, Vol. 1 ›› Issue (6): 697-708.DOI: 10.12211/2096-8280.2020-034
彭凯1,2, 逯晓云1, 程健1, 刘莹1, 江会锋1, 郭晓贤1
收稿日期:
2020-03-23
修回日期:
2020-10-22
出版日期:
2020-12-31
发布日期:
2021-01-15
通讯作者:
江会锋,郭晓贤
作者简介:
彭凯(1995—),男,硕士研究生。主要研究方向为DNA纠错。E-mail: 基金资助:
Kai PENG1,2, Xiaoyun LU1, Jian CHENG1, Ying LIU1, Huifeng JIANG1, Xiaoxian GUO1
Received:
2020-03-23
Revised:
2020-10-22
Online:
2020-12-31
Published:
2021-01-15
Contact:
Huifeng JIANG,Xiaoxian GUO
摘要:
DNA设计合成是推动生命科学及其相关领域发展的关键共性底层技术。常规的遗传操作技术仅能对已有的DNA序列进行有限的改造,而DNA合成技术则可从头“书写”生命信息,从另一高度提升我们对生命体理解、预测和操控的能力。DNA合成技术包括寡核苷酸合成技术、DNA组装技术以及DNA纠错技术。本文总结了以上关键技术的特点和发展趋势,经历超过60年的发展后,化学合成法仍然是当前寡核苷酸合成的主流方法,它被广泛应用于柱式及芯片DNA合成仪,酶法DNA合成技术则有望颠覆传统的DNA化学合成方法;现有DNA合成技术在合成能力和准确性上存在局限,难以直接准确合成基因长度的DNA片段,分级的体外与体内组装技术的合理搭配,可将分段合成的寡核苷酸片段装配成长片段DNA,达到基因长度甚至基因组长度DNA序列的合成,它也因此成为长片段DNA合成的关键;寡核苷酸的合成与组装过程都不可避免地引入错误,基于错配结合或错配切除的纠错技术在DNA合成过程不同阶段的应用,不仅能提高DNA合成的准确性,还可有效降低长片段DNA合成的质控成本。近年来合成生物学等相关领域的迅猛发展,对DNA合成相关技术提出了新的要求,正推动DNA合成、组装与纠错相关技术向着高通量、自动化和集成化的方向不断改进和创新。
中图分类号:
彭凯, 逯晓云, 程健, 刘莹, 江会锋, 郭晓贤. DNA合成、组装与纠错技术研究进展[J]. 合成生物学, 2020, 1(6): 697-708.
Kai PENG, Xiaoyun LU, Jian CHENG, Ying LIU, Huifeng JIANG, Xiaoxian GUO. Advances in technologies for de novo DNA synthesis, assembly and error correction[J]. Synthetic Biology Journal, 2020, 1(6): 697-708.
1 | GIBSON D G. Programming biological operating systems: genome design, assembly and activation[J]. Nature Methods, 2014, 11(5): 521-526. |
2 | CARROLL D. Genome engineering with targetable nucleases[J]. Annual Review Biochemistry, 2014, 83: 409-439. |
3 | GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science, 2010, 329(5987): 52-56. |
4 | KHALIL A S, COLLINS J J. Synthetic biology: applications come of age[J]. Nature Reviews Genetics, 2010, 11(5): 367-379. |
5 | ENDY D. Foundations for engineering biology[J]. Nature, 2005, 438(7067): 449-453. |
6 | MA S, TANG N, TIAN J. DNA synthesis, assembly and applications in synthetic biology[J]. Current Opinion in Chemical Biology, 2012, 16(3/4): 260-267. |
7 | CARUTHERS M H. The chemical synthesis of DNA/RNA: our gift to science[J]. Journal of Biological Chemistry, 2013, 288(2): 1420-1427. |
8 | PALLUK S, ARLOW D H, DE ROND T, et al. De novo DNA synthesis using polymerase-nucleotide conjugates[J]. Nature Biotechnology, 2018, 36(7): 645-650. |
9 | CZAR M J, ANDERSON J C, BADER J S, et al. Gene synthesis demystified[J]. Trends in Biotechnology, 2009, 27(2): 63-72. |
10 | MA S, SAAEM I, TIAN J. Error correction in gene synthesis technology[J]. Trends in Biotechnology, 2012, 30(3): 147-154. |
11 | BEAUCAGE S L, CARUTHERS M H. Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis[J]. Tetrahedron Letters, 1981, 22(20): 1859-1862. |
12 | TIAN J, MA K, SAAEM I. Advancing high-throughput gene synthesis technology[J]. Molecular Biosystems, 2009, 5(7): 714-722. |
13 | KOSURI S, CHURCH G M. Large-scale de novo DNA synthesis: technologies and applications[J]. Nature Methods, 2014, 11(5): 499-507. |
14 | LEPROUST E M, PECK B J, SPIRIN K, et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process[J]. Nucleic Acids Research, 2010, 38(8): 2522-2540. |
15 | JENSEN Michael, ROBERTS Lester, JOHNSON Andrew, et al. Next generation 1536-well oligonucleotide synthesizer with on-the-fly dispense[J]. Journal of biotechnology, 2014, 171: 76-81. |
16 | FODOR S P, READ J L, PIRRUNG M C,et al. Light-directed, spatially addressable parallel chemical synthesis[J]. Science, 1991, 251(4995): 767-773. |
17 | BARONE A D, BEECHER J E, BURY P A, et al. Photolithographic synthesis of high-density oligonucleotide probe arrays[J]. Nucleosides Nucleic Acids, 2001, 20(4-7): 525-531. |
18 | SINGH-GASSON S, GREEN R D, YUE Y, et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array[J]. Nature Biotechnology, 1999, 17(10): 974-978. |
19 | GAO X, LEPROUST E, ZHANG H, et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids[J]. Nucleic Acids Research, 2001, 29(22): 4744-4750. |
20 | AGBAVWE C, KIM C, HONG D, et al. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays[J]. Journal of Nanobiotechnology, 2011, 9: 57. |
21 | ROTH Kristian M, PEYVAN Kia, SCHWARZKOPF Kevin R, et al. Electrochemical detection of short DNA oligomer hybridization using the CombiMatrix ElectraSense microarray reader[J]. Electroanalysis, 2006, 18(19‐20): 1982-1988. |
22 | HUGHES T R, MAO M, JONES A R, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer[J]. Nature Biotechnology, 2001, 19(4): 342-347. |
23 | LIPSHUTZ R J, FODOR S P, GINGERAS T R, et al. High density synthetic oligonucleotide arrays[J]. Nature Genetics, 1999, 21(S1): 20-24. |
24 | MINHAZ UD-DEAN S M. A theoretical model for template-free synthesis of long DNA sequence[J]. Systems and Synthetic Biology, 2008, 2(3/4): 67-73. |
25 | MACKEY J K, GILHAM P T. New approach to the synthesis of polyribonucleotides of defined sequence[J]. Nature, 1971, 233(5321): 551-553. |
26 | GILLAM S, WATERMAN K, DOEL M, et al. Enzymatic synthesis of deoxyribo-oligonucleotides of defined sequence. Deoxyribo-oligonucleotide synthesis[J]. Nucleic Acids Research, 1974, 1(12): 1649-1664. |
27 | ENGLAND T E, UHLENBECK O C. Enzymatic oligoribonucleotide synthesis with T4 RNA ligase[J]. Biochemistry, 1978, 17(11): 2069-2076. |
28 | SCHMITZ Carole, REETZ Manfred T. Solid-phase enzymatic synthesis of oligonucleotides[J]. Organic Letters, 1999, 1(11): 1729-1731. |
29 | JENSEN M A, DAVIS R W. Template-independent enzymatic oligonucleotide synthesis (TiEOS): its history, prospects, and challenges[J]. Biochemistry, 2018, 57(12): 1821-1832. |
30 | BOLLUM F J. Thermal conversion of nonpriming deoxyribonucleic acid to primer [J]. The Journal of Biological Chemistry, 1959, 234(10): 2733-2734. |
31 | BOLLUM F J. Oligodeoxyribonucleotide-primed reactions catalyzed by calf thymus polymerase[J]. Journal of Biological Chemistry, 1962, 237: 1945-1949. |
32 | SCHOTT H, SCHRADE H. Single-step elongation of oligodeoxynucleotides using terminal deoxynucleotidyl transferase[J]. European Journal of Biochemistry, 1984, 143(3): 613-620. |
33 | TJONG V, YU H, HUCKNALL A, et al. Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization[J]. Analytical Chemistry, 2011, 83(13): 5153-5159. |
34 | MOTEA E A, BERDIS A J. Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase[J]. Biochimica et Biophysica Acta(BBA) - Proteins and Proteomics, 2010, 1804(5): 1151-1166. |
35 | WU J, ZHANG S, MENG Q, et al. 3'-O-modified nucleotides as reversible terminators for pyrosequencing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(42): 16462-16467. |
36 | KONG D S, CARR P A, CHEN L, et al. Parallel gene synthesis in a microfluidic device[J]. Nucleic Acids Research, 2007, 35(8): e61. |
37 | TIAN J, GONG H, SHENG N, et al. Accurate multiplex gene synthesis from programmable DNA microchips[J]. Nature, 2004, 432(7020): 1050-1054. |
38 | QUAN J, SAAEM I, TANG N, et al. Parallel on-chip gene synthesis and application to optimization of protein expression[J]. Nature Biotechnology, 2011, 29(5): 449-452. |
39 | ENGLER C, KANDZIA R, MARILLONNET S. A one pot, one step, precision cloning method with high throughput capability[J]. PLoS One, 2008, 3(11): e3647. |
40 | LI M Z, ELLEDGE S J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC[J]. Nature Methods, 2007, 4(3): 251-256. |
41 | ZHANG Y, WERLING U, EDELMANN W. SLiCE: a novel bacterial cell extract-based DNA cloning method[J]. Nucleic Acids Research, 2012, 40(8): e55. |
42 | Stefan de KOK, STANTON Leslie H, SLABY Todd, et al. Rapid and reliable DNA assembly via ligase cycling reaction[J]. ACS Synthetic Biology, 2014, 3(2): 97-106. |
43 | QUAN J, TIAN J. Circular polymerase extension cloning of complex gene libraries and pathways[J]. PLoS One, 2009, 4(7): e6441. |
44 | GIBSON D G, YOUNG L, CHUANG R Y, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343-345. |
45 | JUHAS M, AJIOKA J W. High molecular weight DNA assembly in vivo for synthetic biology applications[J]. Critical Reviews in Biotechnology, 2017, 37(3): 277-286. |
46 | SHIZUYA H, BIRREN B, KIM U J, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(18): 8794-8797. |
47 | KANEKO S, TSUGE K, TAKEUCHI T, et al. Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector[J]. Nucleic Acids Research, 2003, 31(18): e112. |
48 | BURKE D T, CARLE G F, OLSON M V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors[J]. Science, 1987, 236(4803): 806-812. |
49 | OGAWA T, IWATA T, KANEKO S, et al. An inducible recA expression Bacillus subtilis genome vector for stable manipulation of large DNA fragments[J]. Biotechnology & Applied Microbiology Genomics, 2015, 16(1): 209. |
50 | GIBSON D G. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides[J]. Nucleic Acids Research, 2009, 37(20): 6984-6990. |
51 | LIN Q, JIA B, MITCHELL L A, et al. RADOM, an efficient in vivo method for assembling designed DNA fragments up to 10 kb long in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2015, 4(3): 213-220. |
52 | JAKOCIUNAS T, RAJKUMAR A S, ZHANG J, et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomycescerevisiae[J]. ACS Synthetic Biology, 2015, 4(11): 1226-1234. |
53 | GIBSON D G, BENDERS G A, AXELROD K C, et al. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20404-20409. |
54 | SHAO Y, LU N, WU Z, et al. Creating a functional single-chromosome yeast[J]. Nature, 2018, 560(7718): 331-335. |
55 | LUBOCK N B, ZHANG D, SIDORE A M, et al. A systematic comparison of error correction enzymes by next-generation sequencing[J]. Nucleic Acids Research, 2017, 45(15): 9206-9217. |
56 |
SINHA N D, JUNG K E. Analysis and purification of synthetic nucleic acids using HPLC[J]. Current Protocols in Nucleic Acid Chemistry, 2015. DOI: 10.1002/0471142700.nc1005s61.
DOI URL |
57 |
ELLINGTON A, POLLARD J D, Jr. Introduction to the synthesis and purification of oligonucleotides[J]. Current Protocols in Nucleic Acid Chemistry, 2000. DOI: 10.1002/0471142700. nca03cs00.
DOI URL |
58 | BOROVKOV A Y, LOSKUTOV A V, ROBIDA M D, et al. High-quality gene assembly directly from unpurified mixtures of microarray-synthesized oligonucleotides[J]. Nucleic Acids Research, 2010, 38(19): e180. |
59 | MATZAS M, STAHLER P F, KEFER N, et al. High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing[J]. Nature Biotechnology, 2010, 28(12): 1291-1294. |
60 | SANCAR A, LINDSEY-BOLTZ L A, UNSAL-KACMAZ K, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints[J]. Annual Review of Biochemistry, 2004, 73: 39-85. |
61 | JIRICNY J. The multifaceted mismatch-repair system[J]. Nature Reviews Molecular Cell Biology, 2006, 7(5): 335-346. |
62 | LEE J B, CHO W K, PARK J, et al. Single-molecule views of MutS on mismatched DNA[J]. DNA Repair (Amst), 2014, 20: 82-93. |
63 | KUNKEL T A, ERIE D A. DNA mismatch repair[J]. Annual Review of Biochemistry, 2005, 74: 681-710. |
64 | CARR P A, PARK J S, LEE Y J, et al. Protein-mediated error correction for de novo DNA synthesis[J]. Nucleic Acids Research, 2004, 32(20): e162. |
65 | WAN W, LI L, XU Q, et al. Error removal in microchip-synthesized DNA using immobilized MutS[J]. Nucleic Acids Research, 2014, 42(12): e102. |
66 | ZHANG J, WANG Y, CHAI B, et al. Efficient and low-cost error removal in DNA synthesis by a high-durability MutS[J]. ACS Synthetic Biology, 2020, 9(4): 940-952. |
67 | BINKOWSKI B F, RICHMOND K E, KAYSEN J, et al. Correcting errors in synthetic DNA through consensus shuffling[J]. Nucleic Acids Research, 2005, 33(6): e55. |
68 | TILL B J, BURTNER C, COMAI L, et al. Mismatch cleavage by single-strand specific nucleases[J]. Nucleic Acids Research, 2004, 32(8): 2632-2641. |
69 | FUHRMANN M. Removal of mismatched bases from synthetic genes by enzymatic mismatch cleavage[J]. Nucleic Acids Research, 2005, 33(6): e58. |
70 | DESAI N A, SHANKAR V. Single-strand-specific nucleases[J]. FEMS Microbiology Reviews, 2003, 26(5): 457-491. |
71 | SEQUEIRA A F, GUERREIRO C I, VINCENTELLI R, et al. T7 Endonuclease I mediates error correction in artificial gene synthesis[J]. Molecular Biotechnology, 2016, 58(8-9): 573-584. |
72 | BANG D, CHURCH G M. Gene synthesis by circular assembly amplification[J]. Nature Methods, 2008, 5(1): 37-39. |
73 | BABON J J, MCKENZIE M, COTTON R G. Mutation detection using fluorescent enzyme mismatch cleavage with T4 endonuclease Ⅶ[J]. Electrophoresis, 1999, 20(6): 1162-1170. |
74 | YEUNG A T, HATTANGADI D, BLAKESLEY L, et al. Enzymatic mutation detection technologies[J]. Biotechniques, 2005, 38(5): 749-758. |
75 | OLEYKOWSKI C A, BRONSON MULLINS C R, GODWIN A K, et al. Mutation detection using a novel plant endonuclease[J]. Nucleic Acids Research, 1998, 26(20): 4597-4602. |
76 | YANG B, WEN X, KODALI N S, et al. Purification, cloning, and characterization of the CEL I nuclease[J]. Biochemistry, 2000, 39(13): 3533-3541. |
77 | SAAEM I, MA S, QUAN J, et al. Error correction of microchip synthesized genes using Surveyor nuclease[J]. Nucleic Acids Research, 2012, 40(3): e23. |
78 | SHEN Y, WANG Y, CHEN T, et al. Deep functional analysis of synⅡ, a 770-kilobase synthetic yeast chromosome[J]. Science, 2017, 355(6329) : eaaf4791. |
79 | WU Y, LI B Z, ZHAO M,et al. Bug mapping and fitness testing of chemically synthesized chromosome Ⅹ[J]. Science, 2017, 355(6329) : eaaf4706. |
80 | XIE Z X, LI B Z, MITCHELL L A, et al. ‘Perfect’ designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6329) : eaaf4704. |
81 | ZHANG W, ZHAO G, LUO Z, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome[J]. Science, 2017, 355(6329) : eaaf3981. |
82 | RICHARDSON S M, MITCHELL L A, STRACQUADANIO G., et al. Design of a synthetic yeast genome[J]. Science, 2017, 355(6329): 1040-1044. |
83 | SEEMAN Nadrian C, SLEIMAN Hanadi F. DNA nanotechnology[J]. Nature Reviews Materials, 2017, 3(1) :17068. |
84 | GOLDMAN N, BERTONE P, CHEN S, et al. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA[J]. Nature, 2013, 494(7435): 77-80. |
[1] | 刁志钿, 王喜先, 孙晴, 徐健, 马波. 单细胞拉曼光谱测试分选装备研制及应用进展[J]. 合成生物学, 2023, 4(5): 1020-1035. |
[2] | 卢挥, 张芳丽, 黄磊. 合成生物学自动化装置iBioFoundry的构建与应用[J]. 合成生物学, 2023, 4(5): 877-891. |
[3] | 白仲虎, 任和, 聂简琪, 孙杨. 高通量平行发酵技术的发展与应用[J]. 合成生物学, 2023, 4(5): 904-915. |
[4] | 吴玉洁, 刘欣欣, 刘健慧, 杨开广, 随志刚, 张丽华, 张玉奎. 基于高通量液相色谱质谱技术的菌株筛选与关键分子定量分析研究进展[J]. 合成生物学, 2023, 4(5): 1000-1019. |
[5] | 胡哲辉, 徐娟, 卞光凯. 自动化高通量技术在天然产物生物合成中的应用[J]. 合成生物学, 2023, 4(5): 932-946. |
[6] | 刘欢, 崔球. 原位电离质谱技术在微生物菌株筛选中的应用进展[J]. 合成生物学, 2023, 4(5): 980-999. |
[7] | 陈永灿, 司同, 张建志. 自动化合成生物技术在DNA组装与微生物底盘操作中的应用[J]. 合成生物学, 2023, 4(5): 857-876. |
[8] | 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023, 4(4): 720-737. |
[9] | 刘晚秋, 季向阳, 许慧玲, 卢屹聪, 李健. 限制性内切酶的无细胞快速制备研究[J]. 合成生物学, 2023, 4(4): 840-851. |
[10] | 孙美莉, 王凯峰, 陆然, 纪晓俊. 解脂耶氏酵母底盘细胞的工程改造及应用[J]. 合成生物学, 2023, 4(4): 779-807. |
[11] | 孙智, 杨宁, 娄春波, 汤超, 杨晓静. 功能拓扑的理性设计及其在合成生物学中的应用[J]. 合成生物学, 2023, 4(3): 444-463. |
[12] | 赖奇龙, 姚帅, 查毓国, 白虹, 宁康. 微生物组生物合成基因簇发掘方法及应用前景[J]. 合成生物学, 2023, 4(3): 611-627. |
[13] | 孟巧珍, 郭菲. “可折叠性”在酶智能设计改造中的应用研究——以AlphaFold2为例[J]. 合成生物学, 2023, 4(3): 571-589. |
[14] | 王晟, 王泽琛, 陈威华, 陈珂, 彭向达, 欧发芬, 郑良振, 孙瑨原, 沈涛, 赵国屏. 基于人工智能和计算生物学的合成生物学元件设计[J]. 合成生物学, 2023, 4(3): 422-443. |
[15] | 吕海龙, 王建, 吕浩, 王金, 徐勇, 顾大勇. 合成生物学在下一代基因诊断技术中的应用进展[J]. 合成生物学, 2023, 4(2): 318-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||