1 |
NEWMAN David J, CRAGG Gordon M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. Journal of Natural Product, 2020, 83 (3): 770-803.
|
2 |
BERDY J. Thoughts and facts about antibiotics: where we are now and where we are heading[J]. Journal of Antibiotics, 2012, 65(8): 385-395.
|
3 |
KELWICK R, MACDONALD J T, WEBB A J, et al. Developments in the tools and methodologies of synthetic biology[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 60.
|
4 |
MUKHERJEE S, STAMATIS D, BERTSCH J, et al. Genomes OnLine database (GOLD) v.7: updates and new features[J]. Nucleic Acids Research, 2019, 47 (D1): 649-659.
|
5 |
SMANSKI M J, ZHOU H, CLAESEN J, et al. Synthetic biology to access and expand nature’s chemical diversity[J]. Nature Reviews Microbiology, 2016,14 (3):135-149.
|
6 |
BLIN Kai, PASCAL ANDREU Victòria, DE LOS SANTOS Emmanuel L C, et al. The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters[J]. Nucleic Acids Research, 2018, 47 (D1): 625-630.
|
7 |
NAVARRO MU OZ Jorge C, SELEM MOJICA Nelly, MULLOWNEY Michael W, et al. A computational framework for systematic exploration of biosynthetic diversity from large-scale genomic data[J]. bioRxiv., 2018: 445270.DOI: 10.110/445270
doi: 10.110/445270
|
8 |
Gökcen ERASLAN, Žiga AVSEC, GAGNEUR Julien, et al. Deep learning: new computational modelling techniques for genomics[J]. Nature Reviews Genetics, 2019, 20 (7): 389-403.
|
9 |
TIETZ Jonathan I, SCHWALEN Christopher J, PATEL Parth S, et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape[J]. Nature Chemical Biology, 2017, 13 (5): 470-478.
|
10 |
HU Qiannan, DENG Zhe, HU Huanan, et al. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity[J]. Bioinformatics, 2011, 27 (17): 2465-2467.
|
11 |
CHENG Xingxiang, SUN Dandan, ZHANG Dachuan, et al. RxnBLAST: molecular scaffold and reactive chemical environment feature extractor for biochemical reactions[J]. Bioinformatics, 2020,36(9): 2946-2947.
|
12 |
ZHANG Tong, TIAN Yu, YUAN Le, et al. Bio2Rxn: sequence-based enzymatic reaction predictions by a consensus strategy[J]. Bioinformatics, 2020. DOI: 10.1093/bio in formatics/baa135.
doi: 10.1093/bio in formatics/baa135
|
13 |
TU Weizhong, ZHANG Haoran, LIU Juan, et al. BioSynther: a customized biosynthetic potential explorer[J]. Bioinformatics, 2015, 32 (3): 472-473.
|
14 |
DING Shaozhen, LIAO Xiaoping, TU Weizhong, et al. EcoSynther: a customized platform to explore biosynthetic potential in E. coli[J]. ACS Chemical Biology, 2017, 12 (11), 2823-2829.
|
15 |
HAMEDIRAD Mohammad, CHAO Ran, WEISBERG Scott, et al. Towards a fully automated algorithm driven platform for biosystems design[J]. Nature Communications, 2019, 10 (1): 5150.
|
16 |
HERRMANN S, SIEGL T, LUZHETSKA M, et al. Site-specific recombination strategies for engineering actinomycete genomes[J]. Applied and Environmental Microbiology, 2012, 78 (6): 1804-1812.
|
17 |
JIANG W, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31 (3): 233-239.
|
18 |
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337 (6096): 816-821.
|
19 |
COBB Ryan E, WANG Yajie, ZHAO Huimin. High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4 (6): 723-728.
|
20 |
ZHANG M M, WONG F T, WANG Y, et al. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nature Chemical Biology, 2017, 13: 607-609.
|
21 |
WANG Hailong, LI Zhen, JIA Ruonan, et al. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression[J]. Nature Protocols, 2016, 11 (7): 1175-1190.
|
22 |
BU Qingting, YU Pin, WANG Jue, et al. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches[J]. Microbial Cell Factories, 2019, 18 (1): 16.
|
23 |
KALLIFIDAS Dimitris, JIANG Guangde, DING Yousong, et al. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters[J]. Microbial Cell Factories, 2018, 17 (1): 25.
|
24 |
LUO X, REITER M A, D'ESPAUX L,et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567 (7746): 123-126.
|
25 |
JUNG W S, LEE S K, HONG J S, et al. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae[J]. Applied Microbiology and Biotechnology, 2006, 72 (4): 763-769.
|
26 |
PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496 (7446): 528-532.
|
27 |
LI Sicong, GUO Junhong, REVA Anna, et al. Methyltransferases of gentamicin biosynthesis[J]. PNAS, 2018, 115 (6): 1340.
|
28 |
BURY Priscila dos Santos, HUANG Fanglu, LI Sicong, et al. Structural basis of the selectivity of GenN, an aminoglycoside N-methyltransferase involved in gentamicin biosynthesis[J]. ACS Chemical Biology, 2017, 12 (11): 2779-2787.
|
29 |
TAO Weixin, CHEN Li, ZHAO Chunhua, et al. In vitro packaging mediated one-step targeted cloning of natural product pathway[J]. ACS Synthetic Biology, 2019, 8 (9): 1991-1997.
|
30 |
CUI Li, ZHU Ying, GUAN Xiaoqing, et al. De novo biosynthesis of β-valienamine in engineered Streptomyces hygroscopicus 5008[J]. ACS Synthetic Biology, 2016, 5 (1): 15-20.
|
31 |
CUI Li, WEI Xiaodong, WANG Xinran, et al. A validamycin shunt pathway for valienamine synthesis in engineered Streptomyces hygroscopicus 5008[J]. ACS Synthetic Biology, 2020, 9(2), 294-303.
|
32 |
ZHAO Q, LUO Y, ZHANG X, et al. A severe leakage of intermediates to shunt products in acarbose biosynthesis[J]. Nature Communications, 2020, 11 (1): 1468.
|
33 |
CHEN Wenqing, QI Jianzhao, WU Pan, et al. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43 (2): 401-417.
|
34 |
QI Jianzhao, WAN Dan, MA Hongmin, et al. Deciphering carbamoylpolyoxamic acid biosynthesis reveals unusual acetylation cycle associated with tandem reduction and sequential hydroxylation[J]. Cell Chemical Biology, 2016, 23 (8): 935-944.
|
35 |
CHEN Wenqing, LI Yan, LI Jie, et al. An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis[J]. Protein & Cell, 2016, 7 (9): 673-683.
|
36 |
WU Pan, WAN Dan, XU Gudan, et al. An unusual Protector-Protégé strategy for the biosynthesis of purine nucleoside antibiotics[J]. Cell Chemical Biology, 2017, 24 (2): 171-181.
|
37 |
ZHANG Meng, ZHANG Peichao, XU Gudan, et al. Comparative investigation into formycin A and pyrazofurin A biosynthesis reveals branch pathways for the construction of C-nucleoside scaffolds[J]. Applied and Environmental Microbiology, 2019. DOI:10.1128/AEM.01971-19.
doi: 10.1128/AEM.01971-19
|
38 |
LIU Yan, GONG Rong, LIU Xiaoqin, et al. Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090[J]. Microbial Cell Factories, 2018, 17 (1): 131.
|
39 |
XU Gudan, KONG Liyuan, GONG Rong, et al. Coordinated biosynthesis of the purine nucleoside antibiotics aristeromycin and coformycin in actinomycetes[J]. Applied and Environmental Microbiology, 2018, 84 (22).DOI: 10.1128/AEM.01860-18.
doi: 10.1128/AEM.01860-18
|
40 |
ZHANG Yi, CHEN Manyun, BRUNER Steven D, et al. Heterologous production of microbial ribosomally synthesized and post-translationally modified peptides[J]. Frontiers in Microbiology, 2018, 9: 1801.
|
41 |
ZHENG Qingfei, FANG Hui, LIU Wen. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics[J]. Organic & Biomolecular Chemistry, 2017, 15 (16): 3376-3390.
|
42 |
QIU Yanping, DU Yanan, WANG Shoufeng, et al. Radical S-adenosylmethionine protein NosN forms the side ring system of nosiheptide by functionalizing the polythiazolyl peptide S-conjugated indolic moiety[J]. Organic Letters, 2019, 21 (5): 1502-1505.
|
43 |
LIU Jingyu, LIN Zhi, CHEN Hua, et al. Biosynthesis of the central piperidine nitrogen heterocycle in series a thiopeptides[J]. Chinese Journal of Chemistry, 2019, 37 (1): 35-41.
|
44 |
WANG Jian, LIN Zhi, BAI Xuebing, et al. Optimal design of thiostrepton-derived thiopeptide antibiotics and their potential application against oral pathogens[J]. Organic Chemistry Frontiers, 2019, 6 (8): 1194-1199.
|
45 |
MO Tianlu, LIU Wanqiu, JI Wenjuan, et al. Biosynthetic insights into Linaridin natural products from genome mining and Precursor peptide mutagenesis[J]. ACS Chemical Biology, 2017, 12 (6): 1484-1488.
|
46 |
BIAN Guangkai, HAN Yichao, HOU Anwei, et al. Releasing the potential power of terpene synthases by a robust precursor supply platform[J]. Metabolic Engineering, 2017, 42: 1-8.
|
47 |
BIAN Guangkai, HOU Anwei, YUAN Yujie, et al. Metabolic engineering-based rapid characterization of a sesquiterpene cyclase and the skeletons of Fusariumdiene and Fusagramineol from Fusarium graminearum[J]. Organic Letters, 2018, 20 (6): 1626-1629.
|
48 |
CHENG S, LIU X, JIANG G, et al. Orthogonal engineering of biosynthetic pathway for efficient production of Limonene in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2019, 8 (5): 968-975.
|
49 |
KANG Wei, MA Tian, LIU Min, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10 (1): 1-11.
|
50 |
WANG Weishan, LI Shanshan, LI Zilong, et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces[J]. Nature Biotechnology, 2020, 38 (1): 76-83.
|
51 |
YOU Di, WANG Miaomiao, YIN Bincheng, et al. Precursor supply for Erythromycin biosynthesis: Engineering of propionate assimilation pathway based on propionylation modification[J]. ACS Synthetic Biology, 2019, 8 (2): 371-380.
|
52 |
PALAZZOTTO E, TONG Y, LEE S Y, et al. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery[J]. Biotechnology Advances, 2019, 37 (6): 107366.
|