合成生物学 ›› 2020, Vol. 1 ›› Issue (1): 71-83.DOI: 10.12211/2096-8280.2020-054

• 特约评述 • 上一篇    下一篇

合成生物技术制备脂肪族二元胺的研究进展

王昕, 王静, 陈可泉, 欧阳平凯   

  1. 南京工业大学生物与制药工程学院,材料化学工程国家重点实验室,江苏省国家先进材料协同创新中心,江苏 南京 211816
  • 收稿日期:2020-04-20 修回日期:2020-05-06 出版日期:2020-02-25 发布日期:2020-07-07
  • 通讯作者: 欧阳平凯
  • 作者简介:王昕(1988—),女,博士,副教授。研究方向为生物催化。E-mail:xinwang1988@njtech.edu.cn|欧阳平凯(1945—),男,教授,中国工程院院士。研究方向为生物催化。E-mail:ouyangpk@njtech.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFA0901500)

Research progress in bioproduction of aliphatic diamines by synthetic biotechnology

Xin WANG, Jing WANG, Kequan CHEN, Pingkai OUYANG   

  1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advance Material, Nanjing 211816, Jiangsu, China
  • Received:2020-04-20 Revised:2020-05-06 Online:2020-02-25 Published:2020-07-07
  • Contact: Pingkai OUYANG

摘要:

合成生物学作为发展迅速的一门交叉学科,为构建高效的微生物细胞工厂、促进生物基产品的产业化制备提供了强有力的工具。二元胺作为一种重要的聚合单体,广泛应用于聚酯、聚氨酯、聚酰胺等高分子材料的合成中。本文针对C3~C5脂肪族二元胺(1,5-戊二胺、1,3-丙二胺、1,4-丁二胺)的生物合成,从途径设计与构建、关键结构元件的设计和改造、调控元件的挖掘与优化、辅因子合成和转运调控等模块的优化和系统集成等方面,综述了利用合成生物学策略改造大肠杆菌和谷氨酸棒状杆菌合成二元胺的现状,并从非粮生物质的利用和生物合成过程中CO2的再循环利用两个方面阐述了提高二元胺合成过程中原子经济性的研究概况,展望了如何利用合成生物技术进一步优化二元胺合成细胞的性能,以促进生物基二元胺的产业化生产。

关键词: 合成生物学, 脂肪族二元胺, 材料单体, 细胞工厂, 非粮生物质, 过程经济性

Abstract:

As a rapidly developing interdiscipline, synthetic biology has provided powerful tools for the development of the efficient microbial cell factories to promote the industrial preparation of bio-based products. As important monomers, diamines have been widely used in the synthesis of polymeric materials such as polyester, polyurethane, polyamide, etc. The aliphatic diamines with 3—5 carbon atoms, including 1,3-propanediamine, 1,4-butanediamine, and 1,5-pentanediamine are considered to be promising alternatives to traditional fossil-fuel-based diamines. In this review, the current status of the art of the biosynthesis of the aliphatic diamines with 3—5 carbon atoms by engineered Escherichia?coli or Corynebacterium glutamicum are discussed. Several synthetic biology strategies, such as the design and construction of biosynthetic pathways, the design and reconstruction of key structural elements, the mining and optimization of regulatory elements, the optimization of cofactor regulation modules or mass transport modules, and their system integration were focused on due to their application in the improvement of cell production capacity. Furthermore, the utilization of non-food biomass and the recycling of CO2 generated during the diamine production process to improve the atom economy of diamine synthesis are also reviewed. Finally, the optimization of diamine producers by using synthetic biotechnology to promote the industrial production of bio-based diamines is prospected.

Key words: synthetic biology, aliphatic diamines, material monomer, cell factories, non-food feedstock, process economy

中图分类号: