合成生物学 ›› 2021, Vol. 2 ›› Issue (2): 181-193.DOI: 10.12211/2096-8280.2020-062
徐昭勇, 胡海洋, 许平, 唐鸿志
收稿日期:
2020-04-30
修回日期:
2021-01-17
出版日期:
2021-04-30
发布日期:
2021-04-30
通讯作者:
唐鸿志
作者简介:
基金资助:
Zhaoyong XU, Haiyang HU, Ping XU, Hongzhi TANG
Received:
2020-04-30
Revised:
2021-01-17
Online:
2021-04-30
Published:
2021-04-30
Contact:
Hongzhi TANG
摘要:
近年来,随着微生物组学、计算生物学、合成生物学等研究的迅猛发展,人工构建高效稳定的人工菌群逐渐成为研究热点,从而衍生出新的研究领域,被称为合成微生物组。合成微生物组的研究,是通过对不同的微生物菌株进行整合,高效、稳定、安全地处理更复杂的任务,完成单一菌株无法完成的目标,从而满足更广泛的需要。本文简述了构建合成微生物组需要遵循的基本原则、四种策略,回答如何构建微生物组的问题,介绍了“自下而上”和“自上而下”两种构建合成微生物组的方法,回顾了合成微生物组在工业生产和环境修复领域的具体应用,例如生物能源、化工产品、生物医药的合成,以及石油、石油衍生物、农药等污染物的生物修复,为微生物技术的实际应用开拓了新的方向。最后,通过综合分析表明,挖掘代谢信息明确的合成微生物组底盘菌株并加以遗传改造,使其适应更复杂的环境,将是未来的研究重点。
中图分类号:
徐昭勇, 胡海洋, 许平, 唐鸿志. 人工合成微生物组的构建与应用[J]. 合成生物学, 2021, 2(2): 181-193.
Zhaoyong XU, Haiyang HU, Ping XU, Hongzhi TANG. Development and application of synthetic microbiome[J]. Synthetic Biology Journal, 2021, 2(2): 181-193.
Field | Application | Strains | Ref. |
---|---|---|---|
Bioenergy | Hydrogen | Bacillus cereus A1 Brevundimonas naejangsanensis B1 | [ |
Clostridium butyricum CWBI1009 C. pasteurianum DSM525 C. beijerinckii DSM1820 C. felsineum DSM749 | [ | ||
Electricity | Bacillus subtilis Shewanella oneidensis | [ | |
S. oneidensis MR-1 B. subtilis RH33 | [ | ||
Methane | Neocallimastix californiae Anaeromyces robustus Methanobacterium bryantii | [ | |
Chemical products | Isopropanol | E. coli | [ |
Isobutanol | Trichoderma reesei E. coli | [ | |
Biomedicine | Oxygenated taxanes | Saccharomyces cerevisiae E. coli | [ |
2-Keto-gulonic acid | Ketogulonicigenium vulgare Bacillus megaterium | [ |
表1 合成微生物组在生物生产方面的应用
Tab. 1 Applications of synthetic microbial consortia in biosynthesis
Field | Application | Strains | Ref. |
---|---|---|---|
Bioenergy | Hydrogen | Bacillus cereus A1 Brevundimonas naejangsanensis B1 | [ |
Clostridium butyricum CWBI1009 C. pasteurianum DSM525 C. beijerinckii DSM1820 C. felsineum DSM749 | [ | ||
Electricity | Bacillus subtilis Shewanella oneidensis | [ | |
S. oneidensis MR-1 B. subtilis RH33 | [ | ||
Methane | Neocallimastix californiae Anaeromyces robustus Methanobacterium bryantii | [ | |
Chemical products | Isopropanol | E. coli | [ |
Isobutanol | Trichoderma reesei E. coli | [ | |
Biomedicine | Oxygenated taxanes | Saccharomyces cerevisiae E. coli | [ |
2-Keto-gulonic acid | Ketogulonicigenium vulgare Bacillus megaterium | [ |
Fields | Applications | Strains | Ref. |
---|---|---|---|
Petroleum and petroleum derivatives | Petroleum | Achromobacter sp. P3 Sphingobium sp. P10 Rhizobium sp. P14 | [ |
BTEX | P. putida F1 P. stutzeri OX1 | [ | |
Aniline | D. anilini T. roseopersicina | [ | |
2,4,6-Tribromophenol | Dehalobacter sp. FTH1 Clostridium sp. Ma13 Desulfatiglans parachlorophenolica DS | [ | |
Low-density polyethylene | Enterobacter spp. Pantoea spp. | [ | |
Pesticides | Linuron | Variovorax sp. WDL1 Delftia acidovorans WDL34 Pseudomonas sp. WDL5 Hyphomicrobium sulfonivorans WDL6 C. testosteroni WDL7 | [ |
Parathion | E. coli SD2 P. putida KT2440 pSB337 | [ |
表2 合成微生物组在生物修复方面的应用
Tab. 2 Applications of synthetic microbial consortia in bioremediation
Fields | Applications | Strains | Ref. |
---|---|---|---|
Petroleum and petroleum derivatives | Petroleum | Achromobacter sp. P3 Sphingobium sp. P10 Rhizobium sp. P14 | [ |
BTEX | P. putida F1 P. stutzeri OX1 | [ | |
Aniline | D. anilini T. roseopersicina | [ | |
2,4,6-Tribromophenol | Dehalobacter sp. FTH1 Clostridium sp. Ma13 Desulfatiglans parachlorophenolica DS | [ | |
Low-density polyethylene | Enterobacter spp. Pantoea spp. | [ | |
Pesticides | Linuron | Variovorax sp. WDL1 Delftia acidovorans WDL34 Pseudomonas sp. WDL5 Hyphomicrobium sulfonivorans WDL6 C. testosteroni WDL7 | [ |
Parathion | E. coli SD2 P. putida KT2440 pSB337 | [ |
1 | CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews Microbiology, 2014, 12(5): 381-390. |
2 | 王璞玥, 唐鸿志, 吴震州, 等. "合成生物学"研究前沿与发展趋势[J]. 中国科学基金, 2018, 32(5): 99-105. |
WANG P Y, TANG H Z, WU Z Z, et al. Frontiers and trends in synthetic biology[J]. Bulletin of National Natural Science Foundation of China, 2018, 32(5): 99-105. | |
3 | SHONG J, JIMENEZ DIAZ M R, COLLINS C H. Towards synthetic microbial consortia for bioprocessing[J]. Current Opinion in Biotechnology, 2012, 23(5): 798-802. |
4 | KEHE J, KULESA A, ORTIZ A, et al. Massively parallel screening of synthetic microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(26): 12804-12809. |
5 | BITTIHN P, DIN M O, TSIMRING L S, et al. Rational engineering of synthetic microbial systems: from single cells to consortia[J]. Current Opinion in Microbiology, 2018, 45: 92-99. |
6 | TSOI R, DAI Z, YOU L. Emerging strategies for engineering microbial communities[J]. Biotechnology Advances, 2019, 37(6): e107372. |
7 | VILLARREAL F, CONTRERAS-LLANO L E, CHAVEZ M, et al. Synthetic microbial consortia enable rapid assembly of pure translation machinery[J]. Nature Chemical Biology, 2018, 14(1): 29-35. |
8 | GROSSKOPF T, SOYER O S. Synthetic microbial communities[J]. Current Opinion in Microbiology, 2014, 18: 72-77. |
9 | SHETH R U, CABRAL V, CHEN S P, et al. Manipulating bacterial communities by in situ microbiome engineering[J]. Trends in Genetics, 2016, 32(4): 189-200. |
10 | TEAGUE B P, WEISS R. Synthetic communities, the sum of parts[J]. Science, 2015, 349(6251): 924-925. |
11 | PHAM H L, HO C L, WONG A, et al. Applying the design-build-test paradigm in microbiome engineering[J]. Current Opinion in Biotechnology, 2017, 48: 85-93. |
12 | LIU F, MAO J, KONG W, et al. Interaction variability shapes succession of synthetic microbial ecosystems[J]. Nature Communications, 2020, 11(1): e309. |
13 | BALAGADDE F K, SONG H, OZAKI J, et al. A synthetic Escherichia coli predator-prey ecosystem[J]. Molecular Systems Biology, 2008, 4: e187. |
14 | FOO J L, LING H, LEE Y S, et al. Microbiome engineering: current applications and its future[J]. Biotechnology Journal, 2017, 12(3): e1600099. |
15 | XAVIER J B. Social interaction in synthetic and natural microbial communities[J]. Molecular Systems Biology, 2011, 7: e483. |
16 | GUO L H, HE X S, SHI W Y. Intercellular communications in multispecies oral microbial communities[J]. Frontiers in Microbiology, 2014, 5: e00328. |
17 | ABISADO R G, BENOMAR S, KLAUS J R, et al. Bacterial quorum sensing and microbial community interactions[J]. mBio, 2018, 9(3): e02331-17. |
18 | MCCARTY N S, LEDESMA-AMARO R. Synthetic biology tools to engineer microbial communities for biotechnology[J]. Trends in Biotechnology, 2019, 37(2): 181-197. |
19 | CAVALIERE M, FENG S, SOYER O S, et al. Cooperation in microbial communities and their biotechnological applications[J]. Environmental Microbiology, 2017, 19(8): 2949-2963. |
20 | JAGMANN N, PHILIPP B. Reprint of design of synthetic microbial communities for biotechnological production processes[J]. Journal of Biotechnology, 2014, 192: 293-301. |
21 | ZENGLER K, ZARAMELA L S. The social network of microorganisms—how auxotrophies shape complex communities[J]. Nature Reviews Microbiology, 2018, 16(6): 383-390. |
22 | AMOR D R, MONTANEZ R, DURAN-NEBREDA S, et al. Spatial dynamics of synthetic microbial mutualists and their parasites[J]. PLoS Computational Biology, 2017, 13(8): e1005689. |
23 | DI S H, YANG A D. Analysis of productivity and stability of synthetic microbial communities[J]. Journal of the Royal Society Interface, 2019, 16(150): e20180859. |
24 | STENUIT B, AGATHOS S N. Deciphering microbial community robustness through synthetic ecology and molecular systems synecology[J]. Current Opinion in Biotechnology, 2015, 33: 305-317. |
25 | LIU F, MAO J W, LU T, et al. Synthetic, context-dependent microbial consortium of predator and prey[J]. ACS Synthetic Biology, 2019, 8(8): 1713-1722. |
26 | ALNAHHAS R N, WINKLE J J, HIRNING A J, et al. Spatiotemporal dynamics of synthetic microbial consortia in microfluidic devices[J]. ACS Synthetic Biology, 2019, 8(9): 2051-2058. |
27 | JIA H Y, FAN Y S, FENG X D, et al. Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: e00044. |
28 | ENG A, BORENSTEIN E. Taxa-function robustness in microbial communities[J]. Microbiome, 2018, 6: e45. |
29 | SHADE A, PETER H, ALLISON S D, et al. Fundamentals of microbial community resistance and resilience[J]. Frontiers in Microbiology, 2012, 3: e417. |
30 | ALNAHHAS R N, SADEGHPOUR M, CHEN Y, et al. Majority sensing in synthetic microbial consortia[J]. Nature Communications, 2020, 11(1): e3659. |
31 | JOHNS N I, BLAZEJEWSKI T, GOMES A L C, et al. Principles for designing synthetic microbial communities[J]. Current Opinion in Microbiology, 2016, 31: 146-153. |
32 | MIMEE M, CITORIK R J, LU T K. Microbiome therapeutics—advances and challenges[J]. Advanced Drug Delivery Reviews, 2016, 105: 44-54. |
33 | RAMACHANDRAN G, BIKARD D. Editing the microbiome the CRISPR way[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 2019, 374(1772): e20180103. |
34 | LV Y K, QIAN S, DU G C, et al. Coupling feedback genetic circuits with growth phenotype for dynamic population control and intelligent bioproduction[J]. Metabolic Engineering, 2019, 54: 109-116. |
35 | PAPENFORT K, BASSLER B L. Quorum sensing signal-response systems in Gram-negative bacteria[J]. Nature Reviews Microbiology, 2016, 14(9): 576-588. |
36 | JAGMANN N, PHILIPP B. Design of synthetic microbial communities for biotechnological production processes[J]. Journal of Biotechnology, 2014, 184: 209-218. |
37 | ENKE T N, DATTA M S, SCHWARTZMAN J, et al. Modular assembly of polysaccharide-degrading marine microbial communities[J]. Current Biology, 2019, 29(9): 1528-1535. |
38 | LOSOI P S, SANTALA V P, SANTALA S M. Enhanced population control in a synthetic bacterial consortium by interconnected carbon cross-feeding[J]. ACS Synthetic Biology, 2019, 8(12): 2642-2650. |
39 | GOLDSCHMIDT F, REGOES R R, JOHNSON D R. Metabolite toxicity slows local diversity loss during expansion of a microbial cross-feeding community[J]. The ISME Journal, 2018, 12(1): 136-144. |
40 | SCHEPENS D, CARLSON R P, HEYS J, et al. Role of resource allocation and transport in emergence of cross-feeding in microbial consortia[J]. Journal of Theoretical Biology, 2019, 467: 150-163. |
41 | KERNER A, PARK J, WILLIAMS A, et al. A programmable Escherichia coli consortium via tunable symbiosis[J]. PLoS One, 2012, 7(3): e34032. |
42 | WINTERMUTE E H, SILVER P A. Emergent cooperation in microbial metabolism[J]. Molecular Systems Biology, 2010, 6: e407. |
43 | PANDE S, MERKER H, BOHL K, et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria[J]. The ISME Journal, 2014, 8(5): 953-962. |
44 | CHAN S H J, SIMONS M N, MARANAS C D. SteadyCom: predicting microbial abundances while ensuring community stability[J]. PLoS Computational Biology, 2017, 13(5): e1005539. |
45 | MEE M T, COLLINS J J, CHURCH G M, et al. Syntrophic exchange in synthetic microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): e2149-e2156. |
46 | STUMP S M, JOHNSON E C, KLAUSMEIER C A. How leaking and overproducing resources affect the evolutionary robustness of cooperative cross-feeding[J]. Journal of Theoretical Biology, 2018, 454: 278-291. |
47 | SHOU W Y, RAM S, VILAR J M G. Synthetic cooperation in engineered yeast populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(6): 1877-1882. |
48 | WANG S J, TANG H Z, PENG F, et al. Metabolite-based mutualism enhances hydrogen production in a two-species microbial consortium[J]. Communications Biology, 2019, 2: e82. |
49 | LIU Y, DING M Z, LING W, et al. A three-species microbial consortium for power generation[J]. Energy & Environmental Science, 2017, 10(7): 1600-1609. |
50 | HONJO H, IWASAKI K, SOMA Y, et al. Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production[J]. Metabolic Engineering, 2019, 55: 268-275. |
51 | CAO X Y, HAMILTON J J, VENTURELLI O S. Understanding and engineering distributed biochemical pathways in microbial communities[J]. Biochemistry, 2019, 58(2): 94-107. |
52 | MAURI M, GOUZE J L, DE JONG H, et al. Enhanced production of heterologous proteins by a synthetic microbial community: conditions and trade-offs[J]. PLoS Computational Biology, 2020, 16(4): e1007795. |
53 | LI Z L, YOSHIDA N, WANG A J, et al. Anaerobic mineralization of 2,4,6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans [J]. Bioresource Technology, 2015, 176: 225-232. |
54 | MINTY J J, SINGER M E, SCHOLZ S A, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14592-14597. |
55 | ZHOU K, QIAO K J, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4): 377-383. |
56 | LIU T, YU Y Y, CHEN T, et al. A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity[J]. Biotechnology and Bioengineering, 2017, 114(3): 526-532. |
57 | GILBERT E S, WALKER A W, KEASLING J D. A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion[J]. Applied Microbiology and Biotechnology, 2003, 61(1): 77-81. |
58 | XIE X M, MULLER N. Enhanced aniline degradation by Desulfatiglans anilini in a synthetic microbial community with the phototrophic purple sulfur bacterium Thiocapsa roseopersicina [J]. Systematic and Applied Microbiology, 2019, 42(5): e125998. |
59 | PAWELCZYK S, ABRAHAM W R, HARMS H, et al. Community-based degradation of 4-chorosalicylate tracked on the single cell level[J]. Journal of Microbiological Methods, 2008, 75(1): 117-126. |
60 | KIM J K, CHEN Y, HIRNING A J, et al. Long-range temporal coordination of gene expression in synthetic microbial consortia[J]. Nature Chemical Biology, 2019, 15(11): 1102-1109. |
61 | SLEIGHT S C, BARTLEY B A, LIEVIANT J A, et al. Designing and engineering evolutionary robust genetic circuits[J]. Journal of Biological Engineering, 2010, 4: e12. |
62 | LAWSON C E, HARCOMBE W R, HATZENPICHLER R, et al. Common principles and best practices for engineering microbiomes[J]. Nature Reviews Microbiology, 2019, 17(12): 725-741. |
63 | CARLSTROM C I, FIELD C M, BORTFELD-MILLER M, et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere[J]. Nature Ecology & Evolution, 2019, 3(10): 1445-1454. |
64 | VRIEZE J, CHRISTIAENS M E R, VERSTRAETE W. The microbiome as engineering tool: Manufacturing and trading between microorganisms[J]. New Biotechnology, 2017, 39: 206-214. |
65 | NIKEL P I, LORENZO V D. Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene[J]. Metabolic Engineering, 2013, 15: 98-112. |
66 | DVORAK P, BIDMANOVA S, DAMBORSKY J, et al. Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane[J]. Environmental Science & Technology, 2014, 48(12): 6859-6866. |
76 | SHAHAB R L, LUTERBACHER J S, BRETHAUER S, et al. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium[J]. Biotechnology and Bioengineering, 2018, 115(5): 1207-1215. |
77 | WANG E X, DING M Z, MA Q, et al. Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation[J]. Microbial Cell Factories, 2016, 15: e21. |
78 | ILGRANDE C, DEFOIRDT T, VLAEMINCK S E, et al. Media optimization, strain compatibility, and low-shear modeled microgravity exposure of synthetic microbial communities for urine nitrification in regenerative life-support systems[J]. Astrobiology, 2019, 19(11): 1353-1362. |
79 | SCHOLZ S A, GRAVES I, MINTY J J, et al. Production of cellulosic organic acids via synthetic fungal consortia[J]. Biotechnology and Bioengineering, 2018, 115(4): 1096-1100. |
80 | MASSET J, CALUSINSKA M, HAMILTON C, et al. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp.[J]. Biotechnology for Biofuels, 2012, 5: e35. |
81 | MA Q, ZHOU J, ZHANG W W, et al. Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C[J]. PLoS One, 2011, 6(10): e26108. |
82 | LEE J Y, RAHMAN A, BEHRENS J, et al. Nutrient removal from hydroponic wastewater by a microbial consortium and a culture of Paracercomonas saepenatans [J]. New Biotechnology, 2018, 41: 15-24. |
83 | KHATUN M A, HOQUE M A, ZHANG Y, et al. Bacterial consortium-based sensing system for detecting organophosphorus pesticides[J]. Analytical Chemistry, 2018, 90(17): 10577-10584. |
84 | VARGAS-SUAREZ M, FERNANDEZ-CRUZ V, LOZA-TAVERA H. Biodegradation of polyacrylic and polyester polyurethane coatings by enriched microbial communities[J]. Applied Microbiology and Biotechnology, 2019, 103(7): 3225-3236. |
85 | MARTINEZ I, MOHAMED M E S, ROZAS D, et al. Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds[J]. Metabolic Engineering, 2016, 35: 46-54. |
86 | CUI J, HUANG L, WANG W W, et al. Maximization of the petroleum biodegradation using a synthetic bacterial consortium based on minimal value algorithm[J]. International Biodeterioration & Biodegradation, 2020, 150: e104964. |
87 | NAGARAJAN K, LOH K C. Formulation of microbial cocktails for BTEX biodegradation[J]. Biodegradation, 2015, 26(1): 51-63. |
88 | SKARIYACHAN S, MANJUNATHA V, SULTANA S, et al. Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene[J]. Environmental Science and Pollution Research, 2016, 23(18): 18307-18319. |
89 | DEJONGHE W, BERTELOOT E, GORIS J, et al. Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain[J]. Applied and Environmental Microbiology, 2003, 69(3): 1532-1541. |
67 | FESTA S, COPPOTELLI B M, MADUENO L, et al. Assigning ecological roles to the populations belonging to a phenanthrene-degrading bacterial consortium using omic approaches[J]. PLoS One, 2017, 12(9): e0184505. |
68 | GILMORE S P, LANKIEWICZ T S, WILKEN S E, et al. Top-down enrichment guides in formation of synthetic microbial consortia for biomass degradation[J]. ACS Synthetic Biology, 2019, 8(9): 2174-2185. |
69 | PATOWARY K, PATOWARY R, KALITA M C, et al. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites[J]. Frontiers in Microbiology, 2016, 7: e1092. |
70 | ENG A, BORENSTEIN E. Microbial community design: methods, applications, and opportunities[J]. Current Opinion in Biotechnology, 2019, 58: 117-128. |
71 | NOACK S, BAUMGART M. Communities of niche-optimized strains: small-genome organism consortia in bioproduction[J]. Trends in Biotechnology, 2019, 37(2): 126-139. |
72 | PUENTES-TELLEZ P E, SALLES J F. Construction of effective minimal active microbial consortia for lignocellulose degradation[J]. Microbial Ecology, 2018, 76(2): 419-429. |
73 | CHE S, MEN Y J. Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges[J]. The Journal of Industrial Microbiology and Biotechnology, 2019, 46(9/10): 1343-1358. |
74 | ROY K, MARZORATI M, ABBEELE P VAN DEN, et al. Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities[J]. Environmental Microbiology, 2014, 16(6): 1472-1481. |
75 | QIAN X J, CHEN L, SUI Y, et al. Biotechnological potential and applications of microbial consortia[J]. Biotechnology Advances, 2020, 40: e107500. |
90 | HU J J, XUE Y Y, GUO H C, et al. Design and composition of synthetic fungal-bacterial microbial consortia that improve lignocellulolytic enzyme activity[J]. Bioresource Technology, 2017, 227: 247-255. |
91 | PANDHAL J, NOIREL J. Synthetic microbial ecosystems for biotechnology[J]. Biotechnology Letters, 2014, 36(6): 1141-1151. |
92 | ROELL G W, ZHA J, CARR R R, et al. Engineering microbial consortia by division of labor[J]. Microbial Cell Factories, 2019, 18(1): e35. |
93 | LINDEMANN S R, BERNSTEIN H C, SONG H S, et al. Engineering microbial consortia for controllable outputs[J]. The ISME Journal, 2016, 10(9): 2077-2084. |
94 | VERHOEVEN M D, VALK S C, DARAN J G, et al. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains[J]. FEMS Yeast Research, 2018, 18(8): foy075. |
95 | 朱彤, 吴边. 合成微生物组:当“合成生物学”遇见“微生物组学”[J]. 科学通报, 2019, 64(17): 1791-1798. |
ZHU T, WU B. Synthetic microbiome: When “synthetic biology” meets “microbiomics”[J]. Chinese Science Bulletin, 2019, 64(17): 1791-1798. | |
96 | SONG H, DING M Z, JIA X Q, et al. Synthetic microbial consortia: from systematic analysis to construction and applications[J]. Chemical Society Reviews, 2014, 43(20): 6954-6981. |
97 | VRIEZE J, BOON N, VERSTRAETE W. Taking the technical microbiome into the next decade[J]. Environmental Microbiology, 2018, 20(6): 1991-2000. |
98 | HAYS S G, PATRICK W G, ZIESACK M, et al. Better together: engineering and application of microbial symbioses[J]. Current Opinion in Biotechnology, 2015, 36: 40-49. |
99 | SANCHEZ-GOROSTIAGA A, BAJIC D, OSBORNE M L, et al. High-order interactions distort the functional landscape of microbial consortia[J]. PLoS Biology, 2019, 17(12): e3000550. |
100 | DVORAK P, NIKEL P I, DAMBORSKY J, et al. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology[J]. Biotechnology Advances, 2017, 35(7): 845-866. |
101 | SARIGIANNIS D A, HANSEN U. Considering the cumulative risk of mixtures of chemicals—a challenge for policy makers[J]. Environmental Health, 2012, 11: eS18. |
[1] | 汤志军, 胡友财, 刘文. 酶促4+2和2+2环加成反应:区域与立体选择性的理解与应用[J]. 合成生物学, 2024, 5(3): 401-407. |
[2] | 张俊, 金诗雪, 云倩, 瞿旭东. 聚酮化合物非天然延伸单元的生物合成与结构改造应用[J]. 合成生物学, 2024, 5(3): 561-570. |
[3] | 陈锡玮, 张华然, 邹懿. 真菌源非核糖体肽类药物生物合成及代谢工程[J]. 合成生物学, 2024, 5(3): 571-592. |
[4] | 谢皇, 郑义蕾, 苏依婷, 阮静怡, 李永泉. 放线菌聚酮类化合物生物合成体系重构研究进展[J]. 合成生物学, 2024, 5(3): 612-630. |
[5] | 冯金, 潘海学, 唐功利. 近十年天然产物药物的生物合成研究进展[J]. 合成生物学, 2024, 5(3): 408-446. |
[6] | 奚萌宇, 胡逸灵, 顾玉诚, 戈惠明. 基因组挖掘指导天然药物分子的发现[J]. 合成生物学, 2024, 5(3): 447-473. |
[7] | 施鑫杰, 杜艺岭. 双嵌入家族抗肿瘤非核糖体肽的生物合成研究进展[J]. 合成生物学, 2024, 5(3): 593-611. |
[8] | 宋永相, 张秀凤, 李艳芹, 肖华, 闫岩. 自抗性基因导向的活性天然产物挖掘[J]. 合成生物学, 2024, 5(3): 474-491. |
[9] | 查文龙, 卜兰, 訾佳辰. 中药药效成分群的合成生物学研究进展[J]. 合成生物学, 2024, 5(3): 631-657. |
[10] | 惠真, 唐啸宇. CRISPR/Cas9编辑系统在微生物天然产物研究中的应用[J]. 合成生物学, 2024, 5(3): 658-671. |
[11] | 刘晓楠, 李静, 祝晓熙, 徐子硕, 齐健, 江会锋. 紫杉醇生物合成机制研究进展[J]. 合成生物学, 2024, 5(3): 527-547. |
[12] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[13] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[14] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[15] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||