1 |
WU Y, LI B Z, ZHAO M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science, 2017, 355(6329): aaf4706.
|
2 |
XIE Z X, LI B Z, MITCHELL L A, et al. “Perfect” designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6329): eaaf4704.
|
3 |
QIN Z, STOILOV P, ZHANG X, et al. SEASTAR: systematic evaluation of alternative transcription start sites in RNA[J].Nucleic Acids Research, 2018, 46(8): e45.
|
4 |
CUI J, CUI H, YANG M, et al. Tongue coating microbiome as a potential biomarker for gastritis including precancerous cascade[J]. Protein Cell, 2019, 10(7): 496-509.
|
5 |
MIAO Z, DENG K, WANG X, et al. DEsingle for detecting three types of differential expression in single-cell RNA-seq data[J]. Bioinformatics, 2018, 34(18): 3223-3224.
|
6 |
CHEN W H, QIN Z J, WANG J, et al. The MASTER (methylation-assisted tailorable ends rational) ligation method for seamless DNA assembly[J]. Nucleic Acids Research, 2013, 41(8): e93.
|
7 |
LU AN G, LU X. Tailoring cyanobacterial cell factory for improved industrial properties[J]. Biotechnology Advances, 2018, 36(2): 430-442.
|
8 |
LUAN G, ZHANG S, LU X. Engineering Cyanobacteria chassis cells toward more efficient photosynthesis[J]. Current Opinion in Biotechnology, 2020, 62: 1-6.
|
9 |
ZHANG L, LIANG Y, WU W, et al. Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase[J]. Biotechnology for Biofuels, 2016, 9(1): 80.
|
10 |
LIU W, LUO Z, WANG Y, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods[J]. Nature Communications, 2018, 9(1): 1936.
|
11 |
LIN Y, ZOU X, ZHENG Y, et al. Improving chromosome synthesis with a semiquantitative phenotypic assay and refined assembly strategy[J]. ACS Synthetic Biology, 2019, 8(10): 2203-2211.
|
12 |
JIAO Z, FENGHUI QIAN, FENG D, et al. De novo engineering of Corynebacterium glutamicum for l-proline production[J]. ACS Synthetic Biology, 2020, DOI: https://doi.org/10.1021/acssynbio.0c00249.
DOI
|
13 |
SHAO J, WANG M, YU G, et al. Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation[J]. Proceedings of The National Academy of Sciences of The United States of America, 2018, 115(29): 6722-6730.
|
14 |
XIE M, YE H, WANG H, et al. beta-cell-mimetic designer cells provide closed-loop glycemic control[J]. Science, 2016, 354(6317): 1296-1301.
|
15 |
ZHANG Z B, WANG Q Y, KE Y X, et al. Design of tunable oscillatory dynamics in a synthetic NF-kappaB signaling circuit[J]. Cell Systems, 2017, 5(5): 460-470.
|
16 |
LIU R, ZHU F, LU L, et al. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli [J]. Metabolic Engineering, 2014, 22: 10-21.
|
17 |
GUO D, ZHU J, DENG Z, et al. Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways[J]. Metabolic Engineering, 2014, 22: 69-75.
|
18 |
WU T, YE L, ZHAO D, et al. Membrane engineering-A novel strategy to enhance the production and accumulation of beta-carotene in Escherichia coli [J]. Metabolic Engineering, 2017, 43(Pt A): 85-91.
|
19 |
LI Q, FAN F, GAO X, et al. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli [J]. Metabolic Engineering, 2017, 44: 13-21.
|
20 |
ZHU X, ZHAO D, QIU H, et al. The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway[J]. Metabolic Engineering, 2017, 43(Pt A): 37-45.
|
21 |
GU Y, XU X, WU Y, et al. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications[J]. Metabolic Engineering, 2018, 50: 109-121.
|
22 |
WU Y, CHEN T, LIU Y, et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis[J]. Nucleic Acids Research, 2020, 48(2):996-1009.
|
23 |
NIU T, LIU Y, LI J, et al. Engineering a glucosamine-6-phosphate responsive glmS ribozyme switch enables dynamic control of metabolic flux in Bacillus subtilis for overproduction of N-acetylglucosamine[J]. ACS Synthetic Biology2018, 7(10): 2423-2435.
|
24 |
SHAO Y, LU N, XUE X, et al. Creating functional chromosome fusions in yeast with CRISPR-Cas9[J]. Nature Protocols, 2019, 14(8): 2521-2545.
|
25 |
ZHANG Y,WEN W H,PU J Y,et al. Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(44): 11232-11237.
|
26 |
LI W N, MA L,SHEN X L,et al. Targeting metabolic driving and intermediate influx in lysine catabolism for high-level glutarate production[J]. Nature Communications, 2019, 10(1): 3337.
|
27 |
XU J Y, XU Y, XU Z, et al. Protein acylation is a general regulatory mechanism in biosynthetic pathway of acyl-CoA-derived natural products[J]. Cell Chemical Biology, 2018, 25(8): 984-995.
|
28 |
LUO Y Z, LI B Z, LIU D, et al. Engineered biosynthesis of natural products in heterologous hosts[J]. Chemical Society Reviews, 2015, 44(15): 5265-5290.
|
29 |
TAN Z T, ZHU C J, FU J W, et al. Regulating cofactor balance in vivo with a synthetic flavin analogue[J]. Angewandte Chemie-International Edition, 2018, 57(50): 16464-16468.
|
30 |
CAO W, MA W, WANG X, et al. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.[J]. Scientific Reports, 2016, 6(1): 32640.
|
31 |
LIU Z, LI X, ZHANG J T, et al. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2[J]. Nature, 2016, 530(7588): 98-102.
|
32 |
YU X, QIU W, YANG L, et al. Defining multistep cell fate decision pathways during pancreatic development at single‐cell resolution[J]. The EMBO Journal, 2019, 38(8): e100164.
|
33 |
LU Y L,ZHOU Y P, TIAN W D. Combining Hi-C data with phylogenetic correlation to predict the target genes of distal regulatory elements in human genome[J]. Nucleic Acids Research, 2013, 41(22).
|
34 |
ZHENG X, CHENG Q, YAO F, et al. Biosynthesis of the pyrrolidine protein synthesis inhibitor anisomycin involves novel gene ensemble and cryptic biosynthetic steps[J]. Proceedings of The National Academy of Sciences of The United States of America, 2017, 114(16):4 135-4140.
|
35 |
ZHANG Y, ZOU Y, BROCK N L, et al. Characterization of 2-oxindole forming heme enzyme MarE, expanding the functional diversity of the tryptophan dioxygenase superfamily[J]. Journal of The American Chemical Society, 2017, 139(34): 11887-11894.
|
36 |
HUANG T, DUAN Y, ZOU Y, et al. NRPS protein MarQ catalyzes flexible adenylation and specific S-methylation[J].ACS Chemical Biology, 2018, 13(9): 2387-2391.
|
37 |
YANG J, JIANG S, LIU X, et al. Aptamer-binding directed DNA origami pattern for logic gates[J]. ACS Applied Materials & Interfaces, 2016, 8(49): 34054-34060.
|
38 |
YIN L, GUO X, LIU L, et al. Self-assembled multimeric-enzyme nanoreactor for robust and efficient biocatalysis[J]. ACS Biomaterials Science & Engineering, 2018, 4(6): 2095-2099.
|
39 |
HUANG C, YANG C, FANG Z, et al. Discovery of stealthin derivatives and implication of the amidotransferase FlsN3 in the biosynthesis of nitrogen-containing fluostatins[J]. Marine Drugs, 2019, 17(3): 150.
|
40 |
ZHANG D, ZHANG F, LIU W, et al. A KAS-III heterodimer in lipstatin biosynthesis nondecarboxylatively condenses C8 and C14 fatty acyl-CoA substrates by a variable mechanism during the establishment of a C22 aliphatic skeleton.[J]. Journal of the American Chemical Society, 2019, 141(9): 3993-4001.
|
41 |
WANG J, LIU Y, LIU Y, et al. Time-resolved protein activation by proximal decaging in living systems[J]. Nature, 2019, 569(7757): 509-513.
|
42 |
JI Z, NIE Q, YIN Y, et al. Activation and characterization of a cryptic gene cluster reveal two series of aromatic polyketides biosynthesized by divergent tic tailoring pathways[J]. Angewandte Chemie-International Edition,2019, 58: 18046-18054.
|
43 |
MA W, CAO W, ZHANG B, et al. Engineering a pyridoxal 5'-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis[J]. Scientific Reports, 2015, 5(1): 15630-15630.
|
44 |
钱万强, 江海燕, 朱庆平, 等. 国内外合成生物学资助体系及产业投入分析[J].中国基础科学, 2014(1): 49-52.
|
|
QIAN W Q, JIANG H Y, ZHU Q P, et al. Analysis of the funding systems and industry investment of synthetic biology in China and main developed countries[J]. China Basic Science, 2014(1): 49-52.
|
45 |
杜瑾, 刘夺, 赵广荣, 等. 合成生物学学科发展概况[J].中国科学基金, 2011, 25(3): 143-147.
|
|
DU J, LIU D, ZHAO G R, et al. General situation on the disciplinary development in synthetic biology[J]. Science Foundation in China, 2011, 25(3): 143-147.
|
46 |
赵国屏. 合成生物学——生物工程产业化发展的新时期[J].生物产业技术, 2019(1): 2.
|
|
Zhao G P. Synthetic biology——The new era of industrial development of bioengineering[J]. Biotechnology & Business, 2019(1): 2.
|
47 |
SLEATOR R D. JCVI-syn3.0-A synthetic genome stripped bare![J]. Bioengineered, 2016, 7(2): 53-56.
|
48 |
马延和, 江会锋, 娄春波, 等. 合成生物与生物安全[J].中国科学院院刊, 2016, 31(4): 432-438.
|
|
MA Y H, JIANG H F, LOU C B, et al. Synthetic life and biosecurity[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(4): 432-438.
|
49 |
肖尧. 美国国家科学院发布《合成生物学时代的生物防御》报告[J].科技中国, 2018(7): 106-106.
|
|
XIAO R. Biodefense in the age of synthetic biology[J]. China Scitechnology Business, 2018(7): 106.
|
50 |
刘晓, 曾艳, 王力为, 等. 创新政策体系保障合成生物学科技与产业发展[J].中国科学院院刊, 2018, 33(11): 1260-1268.
|
|
LIU X, ZENG Y, WANG L W, et al. Innovative policy system to ensure the development of synthetic biology[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1260-1268.
|
51 |
周光明, 陈大明, 熊燕, 等. 英国合成生物学规划及其影响与启示[J].中国细胞生物学学报, 2019, 41(11): 2091-2100.
|
|
ZHOU G M, CHEN D M, XIONG Y, et al. UK synthetic biology strategic planning and its enlightenment[J]. Chinese Journal of Cell Biology, 2019, 41(11): 2091-2100.
|
52 |
王璞玥, 唐鸿志, 吴震州, 等. “合成生物学”研究前沿与发展趋势[J].中国科学基金, 2018, 32(5): 545-551.
|
|
WANG P Y, TANG H Z, WU Z Z, et al. Frontiers and trends in synthetic biology[J]. Science Foundation in China, 2018, 32(5): 545-551.
|