合成生物学 ›› 2021, Vol. 2 ›› Issue (6): 876-885.DOI: 10.12211/2096-8280.2020-053
李向来, 申晓林, 王佳, 袁其朋, 孙新晓
收稿日期:
2020-04-18
修回日期:
2021-01-15
出版日期:
2021-12-31
发布日期:
2022-01-21
通讯作者:
孙新晓
作者简介:
基金资助:
Xianglai LI, Xiaolin SHEN, Jia WANG, Qipeng YUAN, Xinxiao SUN
Received:
2020-04-18
Revised:
2021-01-15
Online:
2021-12-31
Published:
2022-01-21
Contact:
Xinxiao SUN
摘要:
生物合成已成为化学品绿色制造的重要方式。传统上,微生物合成化学品以单菌株培养为主。然而,单培养经常存在引入复杂途径造成沉重代谢负担、细胞微环境无法满足所有酶的功能性表达以及不同途径模块之间相互干扰等问题。借鉴自然界中普遍存在的共生现象,研究者开发了共培养技术,通过在同一体系中培养两种或多种细胞,以充分模拟自然共生环境,实现不同物种之间能量、物质及信号的交流,达到劳动分工以及代谢分区的目的。该技术在减轻宿主代谢负担、提供适宜的酶催化环境以及底物共利用方面表现出突出优势。不过作为一种新兴技术,微生物共培养技术在菌群稳定性、物种兼容性以及菌群比例调控等方面还存在一些挑战。本文列举了近年来微生物共培养划分长途径减轻代谢负担以及利用复杂、混合、非常规底物生产化学品和扩大化学品多样性的成功案例,总结了通过群体感应调控菌群比例以及通过计算机模拟工具预测菌群动态变化的研究进展,并对设计复杂稳定可控的共培养体系在高效生产化学品方面的应用前景和挑战进行了讨论。共培养技术有望成为合成复杂化学品的重要策略,并推动合成生物学的发展。
中图分类号:
李向来, 申晓林, 王佳, 袁其朋, 孙新晓. 微生物共培养生产化学品的研究进展[J]. 合成生物学, 2021, 2(6): 876-885.
Xianglai LI, Xiaolin SHEN, Jia WANG, Qipeng YUAN, Xinxiao SUN. Recent advances in biosynthesis of chemicals by microbial co-culture[J]. Synthetic Biology Journal, 2021, 2(6): 876-885.
共培养体系 | 产物 | 产量/(mg/L) | 较单培养提高 | 参考文献 |
---|---|---|---|---|
大肠杆菌/酿酒酵母 | 氧化紫杉烷 | 33 | 单培养无产物 | [ |
大肠杆菌 | 黄烷醇 | 40.7 | 970倍 | [ |
大肠杆菌 | 迷迭香酸 | 172 | 38倍 | [ |
大肠杆菌 | 红景天苷 | 6030(罐) | 20倍 | [ |
大肠杆菌 | 咖啡醇 | 401 | 12倍 | [ |
大肠杆菌 | 黏糠酸 | 682 | 19倍 | [ |
大肠杆菌 | 苯酚 | 210 | 3.9倍 | [ |
大肠杆菌 | 柚皮素 | 24 | 35% | [ |
表1 共培养生产化学品的代表性研究进展汇总
Tab. 1 Summary of representative research progresses on microbial co-culture to produce chemicals
共培养体系 | 产物 | 产量/(mg/L) | 较单培养提高 | 参考文献 |
---|---|---|---|---|
大肠杆菌/酿酒酵母 | 氧化紫杉烷 | 33 | 单培养无产物 | [ |
大肠杆菌 | 黄烷醇 | 40.7 | 970倍 | [ |
大肠杆菌 | 迷迭香酸 | 172 | 38倍 | [ |
大肠杆菌 | 红景天苷 | 6030(罐) | 20倍 | [ |
大肠杆菌 | 咖啡醇 | 401 | 12倍 | [ |
大肠杆菌 | 黏糠酸 | 682 | 19倍 | [ |
大肠杆菌 | 苯酚 | 210 | 3.9倍 | [ |
大肠杆菌 | 柚皮素 | 24 | 35% | [ |
1 | SUN X X, SHEN X L, JAIN R, et al. Synthesis of chemicals by metabolic engineering of microbes[J]. Chemical Society Reviews, 2015, 44(11): 3760-3785. |
2 | DE LIMA BROSSI M J, JIMÉNEZ D J, CORTES-TOLALPA L, et al. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation[J]. Microbial Ecology, 2016, 71(3): 616-627. |
3 | BILIOURIS K, BABSON D, SCHMIDT-DANNERT C, et al. Stochastic simulations of a synthetic bacteria-yeast ecosystem[J]. BMC Systems Biology, 2012, 6: 58. |
4 | ZHOU K, QIAO K J, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4): 377-383. |
5 | HANLY T J, HENSON M A. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures[J]. Biotechnology and Bioengineering, 2011, 108(2): 376-385. |
6 | WANG Z Y, CAO G L, ZHENG J, et al. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess[J]. Biotechnology for Biofuels, 2015, 8(1):84. |
7 | SCHOLZ S A, GRAVES I, MINTY J J, et al. Production of cellulosic organic acids via synthetic fungal consortia[J]. Biotechnology and Bioengineering, 2018, 115(4): 1096-1100. |
8 | JIANG Y J, ZHANG T, LU J S, et al. Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing[J]. Applied Microbiology and Biotechnology, 2018, 102(13): 5419-5425. |
9 | JIANG Y J, GUO D, LU J S, et al. Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5[J]. Biotechnology for Biofuels, 2018, 11: 89. |
10 | ROELL G W, ZHA J, CARR R R, et al. Engineering microbial consortia by division of labor[J]. Microbial Cell Factories, 2019, 18(1): 1-11. |
11 | ZHANG H R, WANG X N. Modular co-culture engineering, a new approach for metabolic engineering[J]. Metabolic Engineering, 2016, 37: 114-121. |
12 | JONES J A, VERNACCHIO V R, SINKOE A L, et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids[J]. Metabolic Engineering, 2016, 35: 55-63. |
13 | LI Z H, WANG X N, ZHANG H R. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering[J]. Metabolic Engineering, 2019, 54: 1-11. |
14 | LIU X, LI X B, JIANG J, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides[J]. Metabolic Engineering, 2018, 47: 243-253. |
15 | CHEN Z Y, SUN X X, LI Y, et al. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols[J]. Metabolic Engineering, 2017, 39: 102-109. |
16 | ZHANG H R, PEREIRA B, LI Z J, et al. Engineering Escherichia coli coculture systems for the production of biochemical products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8266-8271. |
17 | GUO X Y, LI Z H, WANG X N, et al. De novo phenol bioproduction from glucose using biosensor-assisted microbial coculture engineering[J]. Biotechnology and Bioengineering, 2019, 116(12): 3349-3359. |
18 | GANESAN V, LI Z H, WANG X N, et al. Heterologous biosynthesis of natural product naringenin by co-culture engineering[J]. Synthetic and Systems Biotechnology, 2017, 2(3): 236-242. |
19 | THUAN N H, TRUNG N T, CUONG N X, et al. Escherichia coli modular coculture system for resveratrol glucosides production[J]. World Journal of Microbiology and Biotechnology, 2018, 34(6): 1-13. |
20 | THUAN N H, CHAUDHARY A K, CUONG D V, et al. Engineering co-culture system for production of apigetrin in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2018, 45(3): 175-185. |
21 | CAMACHO-ZARAGOZA J M, HERNÁNDEZ-CHÁVEZ G, MORENO-AVITIA F, et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol[J]. Microbial Cell Factories, 2016, 15(1): 1-11. |
22 | AKDEMIR H, SILVA A, ZHA J, et al. Production of pyranoanthocyanins using Escherichia coli co-cultures[J]. Metabolic Engineering, 2019, 55: 290-298. |
23 | SUN J, RAZA M, SUN X X, et al. Biosynthesis of adipic acid via microaerobic hydrogenation of cis,cis-muconic acid by oxygen-sensitive enoate reductase[J]. Journal of Biotechnology, 2018, 280: 49-54. |
24 | FAN L H, ZHANG Z J, YU X Y, et al. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13260-13265. |
25 | HE Q, HEMME C L, JIANG H L, et al. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp.[J]. Bioresource Technology, 2011, 102(20):9586-9592. |
26 | NAKAYAMA S, KIYOSHI K, KADOKURA T, et al. Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4[J]. Applied and Environmental Microbiology, 2011, 77(18): 6470-6475. |
27 | MINTY J J, SINGER M E, SCHOLZ S A, et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14592-14597. |
28 | WANG M, YU C Z, ZHAO H M. Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization[J]. Biotechnology and Bioengineering, 2016, 113(3): 484-491. |
29 | SEDLAK M, HO N W. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast[J]. Yeast, 2004, 21(8):671-684. |
30 | LI H B, SCHMITZ O, ALPER H S. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter[J]. Applied Microbiology and Biotechnology, 2016, 100(23): 10215-10223. |
31 | VERHOEVEN M D, DE VALK S C, DARAN J M G, et al. Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains[J]. FEMS Yeast Research, 2018, 18(8): foy075. |
32 | HILL E A, CHRISLER W B, BELIAEV A S, et al. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks[J]. Bioresource Technology, 2017, 228: 250-256. |
33 | LEE C R, KIM C, SONG Y E, et al. Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovatavia a reducing-equivalent transfer mediator[J]. Bioresource Technology, 2018, 259: 128-135. |
34 | WEISS T L, YOUNG E J, DUCAT D C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production[J]. Metabolic Engineering, 2017, 44: 236-245. |
35 | DUCAT D C, AVELAR-RIVAS J A, WAY J C, et al. Rerouting carbon flux to enhance photosynthetic productivity[J]. Applied and Environmental Microbiology, 2012, 78(8): 2660-2668. |
36 | SMITH M J, FRANCIS M B. A designed A. vinelandii-S. elongatus coculture for chemical photoproduction from air, water, phosphate, and trace metals[J]. ACS Synthetic Biology, 2016, 5(9): 955-961. |
37 | HAYS S G, YAN L L W, SILVER P A, et al. Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction[J]. Journal of Biological Engineering, 2017, 11: 4. |
38 | LI T, LI C-T, BUTLER K, et al. Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform[J]. Biotechnology for Biofuels, 2017, 10(1):55. |
39 | LI T T, JIANG L Q, HU Y F, et al. Creating a synthetic lichen: mutualistic co-culture of fungi and extracellular polysaccharide-secreting cyanobacterium Nostoc PCC 7413[J]. Algal Research, 2020, 45:101755. |
40 | GOODWIN C R, COVINGTON B C, DEREWACZ D K, et al. Structuring microbial metabolic responses to multiplexed stimuli via self-organizing metabolomics maps[J]. Chemistry & Biology, 2015, 22(5): 661-670. |
41 | PONOMAROVA O, PATIL K R. Metabolic interactions in microbial communities: untangling the Gordian knot[J]. Current Opinion in Microbiology, 2015, 27: 37-44. |
42 | BERTRAND S, BOHNI N, SCHNEE S, et al. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery[J]. Biotechnology Advances, 2014, 32(6): 1180-1204. |
43 | HARWANI D, BEGANI J, LAKHANI J. Co-cultivation strategies to induce de novo synthesis of novel chemical scaffolds from cryptic secondary metabolite gene clusters [M]// GEHLOT P, SINGH J. Fungi and their role in sustainable development: current perspectives. Springer, 2018: 617-631. |
44 | TAN Z Q, LEOW H Y, LEE D C W, et al. Co-culture systems for the production of secondary metabolites: current and future prospects[J]. The Open Biotechnology Journal, 2019, 13(1): 18-26. |
45 | MOUSSA M, EBRAHIM W, BONUS M, et al. Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers[J]. RSC Advances, 2019, 9(3): 1491-1500. |
46 | MA Y J, ZHENG L P, WANG J W. Inducing perylenequinone production from a bambusicolous fungus Shiraia sp. S9 through co-culture with a fruiting body-associated bacterium Pseudomonas fulva SB1[J]. Microbial Cell Factories, 2019, 18(1): 121. |
47 | HOSHINO S, WONG C P, OZEKI M, et al. Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium[J]. The Journal of Antibiotics, 2018, 71(7):653-657. |
48 | KHALIL Z G, CRUZ-MORALES P, LICONA-CASSANI C, et al. Inter-Kingdom beach warfare: microbial chemical communication activates natural chemical defences[J]. The ISME Journal, 2019, 13(1): 147-158. |
49 | ARORA D, CHASHOO G, SINGAMANENI V, et al. Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris[J]. Journal of Applied Microbiology, 2018, 124(3):730-739. |
50 | ZHOU Q Y, YANG X Q, ZHANG Z X, et al. New azaphilones and tremulane sesquiterpene from endophytic Nigrospora oryzae cocultured with Irpex lacteus[J]. Fitoterapia, 2018, 130: 26-30. |
51 | NG W L, BASSLER B L. Bacterial quorum-sensing network architectures[J]. Annual Review of Genetics, 2009, 43: 197-222. |
52 | DAVIS R M, MULLER R Y, HAYNES K A. Can the natural diversity of quorum-sensing advance synthetic biology?[J]. Frontiers in Bioengineering and Biotechnology, 2015, 3: 30. |
53 | KYLILIS N, TUZA Z A, STAN G B, et al. Tools for engineering coordinated system behaviour in synthetic microbial consortia[J]. Nature Communications, 2018, 9(1): 2677. |
54 | SCOTT S R, HASTY J. Quorum sensing communication modules for microbial consortia[J]. ACS Synthetic Biology, 2016, 5(9): 969-977. |
55 | CHEN Y, KIM J K, HIRNING A J, et al. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251):986-989. |
56 | SCOTT S R, DIN M O, BITTIHN P, et al. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis[J]. Nature Microbiology, 2017, 2: 17083. |
57 | MCCARDELL R D, HUANG S, GREEN L N, et al. Control of bacterial population density with population feedback and molecular sequestration[EB/OL]. bioRxiv, 2017, DOI:10.1101/225045. |
58 | THOMPSON J A, OLIVEIRA R A, DJUKOVIC A, et al. Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota[J]. Cell Reports, 2015, 10(11):1861-1871. |
59 | STEPHENS K, POZO M, TSAO C Y, et al. Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition[J]. Nature Communications, 2019, 10(1): 4129. |
60 | AUTEBERT J, COUDERT B, F-C BIDARD, et al. Microfluidic: an innovative tool for efficient cell sorting[J]. Methods, 2012, 57(3):297-307. |
61 | KOCH S, BENNDORF D, FRONK K, et al. Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process[J]. Biotechnology for Biofuels, 2016, 9(1):17. |
62 | MILNE C B, KIM P J, EDDY J A, et al. Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology[J]. Biotechnology Journal, 2009, 4(12): 1653-1670. |
63 | MILLER I J, VANEE N, FONG S S, et al. Lack of overt genome reduction in the bryostatin-producing bryozoan symbiont ''candidatus endobugula sertula''[J]. Applied and Environmental Microbiology, 2016, 82(22): 6573-6583. |
64 | STOLYAR S, DIEN S VAN, HILLESLAND K L, et al. Metabolic modeling of a mutualistic microbial community[J]. Molecular System Biology, 2007, 3(1): 92. |
65 | SALIMI F, ZHUANG K, MAHADEVAN R. Genome‐scale metabolic modeling of a clostridial co‐culture for consolidated bioprocessing[J]. Biotechnology Journal, 2010, 5(7):726-738. |
66 | KONG W, MELDGIN D R, COLLINS J J, et al. Designing microbial consortia with defined social interactions[J]. Nature Chemical Biology, 2018, 14(8): 821-829. |
67 | MCCULLY A L, LASARRE B, MCKINLAY J B. Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism[J]. Environmental Microbiology, 2017, 19(9): 3538-3550. |
68 | TSOI R, WU F L, ZHANG C, et al. Metabolic division of labor in microbial systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2526-2531. |
69 | GUERRA-BUBB J, CROTEAU R, WILLIAMS R M. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites[J]. Natural Product Reports, 2012, 29(6): 683-696. |
70 | NITSCHKE M, PASTORE G M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater[J]. Bioresource Technology, 2006, 97(2): 336-341. |
71 | TAO K Y, LIU X Y, CHEN X P, et al. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis[J]. Bioresource Technology, 2017, 224:327-332. |
[1] | 周强, 周大伟, 孙敬翔, 王靖楠, 姜万奎, 章文明, 蒋羽佳, 信丰学, 姜岷. 微生物发酵法合成虾青素的研究进展[J]. 合成生物学, 2024, 5(1): 126-143. |
[2] | 张凡忠, 相长君, 张骊駻. 进化与大数据导向生物信息学在天然产物研究中的发展及应用[J]. 合成生物学, 2023, 4(4): 629-650. |
[3] | 曾涛, 巫瑞波. 数据驱动的酶反应预测与设计[J]. 合成生物学, 2023, 4(3): 535-550. |
[4] | 赖奇龙, 姚帅, 查毓国, 白虹, 宁康. 微生物组生物合成基因簇发掘方法及应用前景[J]. 合成生物学, 2023, 4(3): 611-627. |
[5] | 董佳钰, 李敏, 肖宗华, 胡明, 松田侑大, 汪伟光. 米曲霉异源表达天然产物研究进展[J]. 合成生物学, 2022, 3(6): 1126-1149. |
[6] | 唐士茗, 胡纪元, 郑穗平, 韩双艳, 林影. 基于无细胞体系的生物合成代谢模块设计、构建与快速途径原型[J]. 合成生物学, 2022, 3(6): 1250-1261. |
[7] | 杨璐, 瞿旭东. 亚胺还原酶在手性胺合成中的应用[J]. 合成生物学, 2022, 3(3): 516-529. |
[8] | 王汇滨, 车昌丽, 游松. Fe/α-酮戊二酸依赖型卤化酶在绿色卤化反应中的研究进展[J]. 合成生物学, 2022, 3(3): 545-566. |
[9] | 金交羽, 周佳海. Z-基因组的生物合成奥秘被揭示[J]. 合成生物学, 2022, 3(1): 1-5. |
[10] | 严伟, 高豪, 蒋羽佳, 钱秀娟, 周杰, 董维亮, 章文明, 信丰学, 姜岷. 2-苯乙醇生物合成的研究进展[J]. 合成生物学, 2021, 2(6): 1030-1045. |
[11] | 陈久洲, 王钰, 蒲伟, 郑平, 孙际宾. 5-氨基乙酰丙酸生物合成技术的发展及展望[J]. 合成生物学, 2021, 2(6): 1000-1016. |
[12] | 郭树奇, 焦子悦, 费强. 基于化学品生物合成的嗜甲烷菌人工细胞构建及应用进展[J]. 合成生物学, 2021, 2(6): 1017-1029. |
[13] | 万逸尘, 许孔亮, 郑仁朝, 郑裕国. 化学品体外生物合成途径设计、元件组装和应用[J]. 合成生物学, 2021, 2(6): 886-901. |
[14] | 熊亮斌, 宋璐, 赵云秋, 刘坤, 刘勇军, 王风清, 魏东芝. 甾体化合物绿色生物制造:从生物转化到微生物从头合成[J]. 合成生物学, 2021, 2(6): 942-963. |
[15] | 张礼文, MOLNÁR István, 徐玉泉. 虫生真菌非核糖体多肽活性产物生物合成潜力预测[J]. 合成生物学, 2021, 2(5): 815-825. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||