合成生物学 ›› 2024, Vol. 5 ›› Issue (6): 1404-1418.DOI: 10.12211/2096-8280.2024-032
程峰1,2, 邹树平1,2, 徐建妙1,2, 汤恒1,2, 薛亚平1,2, 郑裕国1,2
收稿日期:
2024-04-02
修回日期:
2024-06-25
出版日期:
2024-12-31
发布日期:
2025-01-10
通讯作者:
薛亚平
作者简介:
基金资助:
Feng CHENG1,2, Shuping ZOU1,2, Jianmiao XU1,2, Heng TANG1,2, Yaping XUE1,2, Yuguo ZHENG1,2
Received:
2024-04-02
Revised:
2024-06-25
Online:
2024-12-31
Published:
2025-01-10
Contact:
Yaping XUE
摘要:
草铵膦是全球三大除草剂之一,具有广谱、高活性、非选择性等特点,市场前景被广泛看好。然而,草铵膦具有两种对映异构体(
中图分类号:
程峰, 邹树平, 徐建妙, 汤恒, 薛亚平, 郑裕国. 生物高纯精草:高光学纯L-草铵膦生物制造的创新与发展[J]. 合成生物学, 2024, 5(6): 1404-1418.
Feng CHENG, Shuping ZOU, Jianmiao XU, Heng TANG, Yaping XUE, Yuguo ZHENG. BioHPP®: a benchmark of biomanufacturing for high optically pure L-phosphinothricin[J]. Synthetic Biology Journal, 2024, 5(6): 1404-1418.
条目 | 热裂解-ACA工艺(“气相合成”) | 铝法-Strecker工艺(“铝法合成”) | 格氏-Strecker工艺(“格氏合成”) |
---|---|---|---|
连续化程度 | 完全连续化 | 半连续化 | 间歇化 |
工艺特点 | 连续化程度高 对反应器装置要求高 | 工艺简单 易燃易爆,使用剧毒氰化物,分离纯化困难 | 工艺简单 易燃易爆,使用剧毒氰化物,分离纯化困难 |
三废排放 | 固废量少,可用来制备高附加值产品 | 固废量大 | 废水量大 |
生产成本 | 5万~6万 元/吨 | 6万~7万 元/吨 | 7万~8万元/吨 |
表1 D,L-草铵膦三种生产工艺比较
Table 1 Comparison of three production processes for D,L-PPT
条目 | 热裂解-ACA工艺(“气相合成”) | 铝法-Strecker工艺(“铝法合成”) | 格氏-Strecker工艺(“格氏合成”) |
---|---|---|---|
连续化程度 | 完全连续化 | 半连续化 | 间歇化 |
工艺特点 | 连续化程度高 对反应器装置要求高 | 工艺简单 易燃易爆,使用剧毒氰化物,分离纯化困难 | 工艺简单 易燃易爆,使用剧毒氰化物,分离纯化困难 |
三废排放 | 固废量少,可用来制备高附加值产品 | 固废量大 | 废水量大 |
生产成本 | 5万~6万 元/吨 | 6万~7万 元/吨 | 7万~8万元/吨 |
图4 通用化合物氰基化再水解路线合成L-草铵膦路线图与腈水解酶工业适配
Fig. 4 Diagram of L-PPT synthesis route via cyanation and hydrolysis of general compounds and industrial adaptation of nitrilase
条目 | 通用化合物氰基化再水解路线 | 外消旋 混旋体合成-去消旋化路线 | 从常用化学品合成 | 从头合成高丝氨酸再化学合成路线 | |||
---|---|---|---|---|---|---|---|
生物拆分 | 生物有机胺胺化 | 生物无机氨胺化 | 生物无机氨胺化 | 生物有机胺胺化 | |||
生物 催化剂 | 腈水解酶等 | 酰化酶、酰胺酶等 | 氧化酶/多个转氨酶 | 脱氢酶等 | 转氨酶 | 生物发酵 | |
供体 | 无 | 无 | 3~4倍当量有机胺 | 无机氨 | 无机氨 | 2~4倍当量有机胺 | 有机膦 |
底物 | 氨基腈 | 草铵膦衍生物 | 潜手性酮 | 葡萄糖 | |||
转化率 产物e.e.值 | 86% >99% | <50% >99% | 90%~99% >99% | 100% >99% | <100% >99% | 90%~99% >99% | >99% |
分离 纯化 | 容易 | 容易 | 困难 | 容易 | 容易 | 困难 | 容易 |
(原粉、水剂) | (原粉、水剂) | (水剂) | (原粉、水剂) | (原粉、水剂) | (水剂) | (原粉、水剂) |
表2 L-草铵膦四大技术路线比较
Table 2 Comparison of four technical routes for L-PPT
条目 | 通用化合物氰基化再水解路线 | 外消旋 混旋体合成-去消旋化路线 | 从常用化学品合成 | 从头合成高丝氨酸再化学合成路线 | |||
---|---|---|---|---|---|---|---|
生物拆分 | 生物有机胺胺化 | 生物无机氨胺化 | 生物无机氨胺化 | 生物有机胺胺化 | |||
生物 催化剂 | 腈水解酶等 | 酰化酶、酰胺酶等 | 氧化酶/多个转氨酶 | 脱氢酶等 | 转氨酶 | 生物发酵 | |
供体 | 无 | 无 | 3~4倍当量有机胺 | 无机氨 | 无机氨 | 2~4倍当量有机胺 | 有机膦 |
底物 | 氨基腈 | 草铵膦衍生物 | 潜手性酮 | 葡萄糖 | |||
转化率 产物e.e.值 | 86% >99% | <50% >99% | 90%~99% >99% | 100% >99% | <100% >99% | 90%~99% >99% | >99% |
分离 纯化 | 容易 | 容易 | 困难 | 容易 | 容易 | 困难 | 容易 |
(原粉、水剂) | (原粉、水剂) | (水剂) | (原粉、水剂) | (原粉、水剂) | (水剂) | (原粉、水剂) |
酶类 | 国际酶学编号 | 辅酶再生底物 | 辅酶再生产物 | 优点 | 缺点 |
---|---|---|---|---|---|
FDH | EC 1.2.1.2 | 甲酸(铵) | CO2和水 | 副产物CO2无毒具挥发性易于分离 | 催化效率低,底物亲和力差,具NAD+特异性 |
GDH | EC 1.1.1.47 | 葡萄糖 | 葡萄糖酸 | 催化活力高,辅底物价格低廉 | 副产物易溶于水难以分离,反应pH降低需要调控 |
ADH | EC 1.1.1.1-2 | 异丙醇 | 丙酮 | 催化活力较高,副产物沸点低,易除去 | 反应可逆,副产物可能会影响酶活 |
表3 辅酶再生酶的分类及特点
Table 3 Classification and characteristics of coenzyme regeneration enzymes
酶类 | 国际酶学编号 | 辅酶再生底物 | 辅酶再生产物 | 优点 | 缺点 |
---|---|---|---|---|---|
FDH | EC 1.2.1.2 | 甲酸(铵) | CO2和水 | 副产物CO2无毒具挥发性易于分离 | 催化效率低,底物亲和力差,具NAD+特异性 |
GDH | EC 1.1.1.47 | 葡萄糖 | 葡萄糖酸 | 催化活力高,辅底物价格低廉 | 副产物易溶于水难以分离,反应pH降低需要调控 |
ADH | EC 1.1.1.1-2 | 异丙醇 | 丙酮 | 催化活力较高,副产物沸点低,易除去 | 反应可逆,副产物可能会影响酶活 |
1 | HOERLEIN G. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties[M/OL]//WARE G W. Reviews of environmental contamination and toxicology. New York: Springer New York, 1994, 138: 73-145 [2024-04-01]. . |
2 | TAKANO H K, DAYAN F E. Glufosinate-ammonium: a review of the current state of knowledge[J]. Pest Management Science, 2020, 76(12): 3911-3925. |
3 | BAYER E, GUGEL K H, HÄGELE K, et al. Metabolic products of microorganisms. 98. Phosphinothricin and phosphinothricyl-alanyl-analine[J]. Helvetica Chimica Acta, 1972, 55(1): 224-239. |
4 | ZHOU C Z, LUO X X, CHEN N Y, et al. C-P natural products as next-generation herbicides: chemistry and biology of glufosinate[J]. Journal of Agricultural and Food Chemistry, 2020, 68(11): 3344-3353. |
5 | XUE Y P, CAO C H, ZHENG Y G. Enzymatic asymmetric synthesis of chiral amino acids[J]. Chemical Society Reviews, 2018, 47(4): 1516-1561. |
6 | CHENG F, LI H, ZHANG K, et al. Tuning amino acid dehydrogenases with featured sequences for L-phosphinothricin synthesis by reductive amination[J]. Journal of Biotechnology, 2020, 312: 35-43. |
7 | 李嘉宁, 赵静喃, 孟庆伟. 草铵膦制备工艺研究进展[J]. 农药, 2020, 59(12): 859-866. |
LI J N, ZHAO J N, MENG Q W. Progress in synthesis of glufosinate[J]. Agrochemicals, 2020, 59(12): 859-866. | |
8 | 范立攀, 杨达, 史秀肖, 等. 一种连续化生产草铵膦的工艺与设备: CN111659330B[P]. 2021-05-07. |
FAN L P, YANG D, SHI X X, ET AL. PROCESS AND EQUIPMENT FOR CONTINUOUS PRODUCTION OF GLUFOSINATE: CN111659330B[P]. 2021-05-07. | |
9 | 朱凤香, 吴永刚, 沈德隆. 甲基二氯化膦的合成方法[J]. 农药, 2002, 41(5): 46-47, 45. |
ZHU F X, WU Y G, SHEN D L. Synthesis methods of CH3PCl2 [J]. Agrochemicals, 2002, 41(5): 46-47, 45. | |
10 | MAIER L, RIST G, LEA P J. Synthesis and properties of phosphinothricin derivatives[J]. Phosphorus and Sulfur and the Related Elements, 1983, 18(1/2/3): 349-352. |
11 | 周曙光, 秦龙, 姜胜宝, 等. 一种草甘膦与草铵膦的联产技术: CN113201013B[P]. 2022-03-29. |
ZHOU S H, QIN L, JIANG S B, ET AL. A CO-PRODUCTION TECHNOLOGY OF GLYPHOSATE AND GLUFOSINATE: CN113201013B[P]. 2022-03-29. | |
12 | TAKEMATSU T, KONNAL M, TACHIBANA K, et al. Herbicidal Compositions: US4265654[P]. 1981-05-05. |
13 | BERIAULT J N, HORSMAN G P, DEVINE M D. Phloem transport of D,L-glufosinate and acetyl-L-glufosinate in glufosinate-resistant and-susceptible Brassica napus [J]. Plant Physiology, 1999, 121(2): 619-628. |
14 | 范立攀, 史秀肖, 唐兴敏, 等. D-草铵膦的除草活性研究[J]. 世界农药, 2022, 44(3): 53-56. |
FAN L P, SHI X X, TANG X M, et al. The herbicidal activity of D-glufosinate[J]. World Pesticide, 2022, 44(3): 53-56. | |
15 | 董文凯, 柴洪伟, 解银萍, 等. 化学法合成精草铵膦的研究进展[J]. 现代农药, 2016, 15(5): 26-29. |
DONG W K, CHAI H W, XIE Y P, et al. Progress in chemosynthesis of glufosinate-P[J]. Modern Agrochemicals, 2016, 15(5): 26-29. | |
16 | SURESH A, SHRAVAN RAMGOPAL D, PANCHAMOORTHY GOPINATH K, et al. Recent advancements in the synthesis of novel thermostable biocatalysts and their applications in commercially important chemoenzymatic conversion processes[J]. Bioresource Technology, 2021, 323: 124558. |
17 | LIU H L, YI P H, WU J M, et al. Identification of a novel thermostable transaminase and its application in L-phosphinothricin biosynthesis[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 184. |
18 | 徐建妙, 李方龙, 郑裕国, 等. 一种手性N-苯乙酰氨基酸及其衍生物的消旋方法: CN109456220B[P]. 2021-10-08. |
XU J M, LI F L, ZHENG Y G, et al. A METHOD FOR RACEMIZING CHIRAL N-BENZOYL AMINO ACIDS AND THEIR DERIVATIVES: CN109456220B[P]. 2021-10-08. | |
19 | 薛亚平, 程峰, 曹成浩, 等. 一种生物酶法去消旋化制备L-草铵膦的方法、草铵膦脱氢酶突变体及应用: CN111363775B[P]. 2022-08-05. |
XUE Y P, CHENG F, CAO C H, et al. METHOD FOR ENANTIOSELECTIVE PREPARATION OF L-GLUFOSINATE USING BIOCATALYSIS, MUTANT OF GLUFOSINATE DEHYDROGENASE, AND APPLICATION THEREOF: CN111363775B[P]. 2022-08-05. | |
20 | 薛亚平, 程峰, 李恒, 等. 一种氨基酸脱氢酶突变体及其在合成l-草铵膦中的应用: CN109609474B[P]. 2020-07-28. |
XUE Y P, CHENG F, LI H, et al. AMINO ACID DEHYDROGENASE MUTANT AND ITS APPLICATION IN SYNTHESIZING L-GLUFOSINATE: CN109609474B[P]. 2020-07-28. | |
21 | 薛亚平, 程峰, 王柳玉, 等. 一种D-氨基酸氧化酶突变体及其应用: CN109576236B[P]. 2019-12-17. |
XUE YAPING, CHENG FENG, WANG LIUYU, et al. D-AMINO ACID OXIDASE MUTANT AND ITS APPLICATION: CN109576236B[P]. 2019-12-17. | |
22 | 薛亚平, 毛杰, 程峰, 等. L-草铵膦粉剂的制备方法: CN112028931B[P]. 2021-05-11. |
XUE Y P, MAO J, CHENG F, et al. METHOD FOR PREPARING L-GLUFOSINATE POWDER: CN112028931B[P]. 2021-05-11. | |
23 | 薛亚平, 郑裕国, 曹成浩, 等. 一种利用化学-酶法生产L-草铵膦的方法: CN108690854B[P]. 2022-03-18. |
XUE Y P, ZHENG Y G, CAO C H, et al. METHOD FOR PRODUCING L-GLUFOSINATE USING CHEMICAL-ENZYMATIC APPROACH: CN108690854B[P]. 2022-03-18. | |
24 | 张博, 姚臻豪, 柳志强, 等. 代谢工程改造大肠杆菌生产L-高丝氨酸[J]. 生物工程学报, 2021, 37(4): 1287-1297. |
ZHANG B, YAO Z H, LIU Z Q, et al. Metabolic engineering of Escherichia coli for L-homoserine production[J]. Chinese Journal of Biotechnology, 2021, 37(4): 1287-1297. | |
25 | 程峰, 张铧月, 薛亚平, 等. 天冬氨酸氧化酶突变体、工程菌及其在氧化-还原偶联制备精草铵膦中的应用: CN111909907B[P]. 2022-05-24. |
CHENG F, ZHANG H Y, XUE Y P, et al. MUTANT OF ASPARTATE OXIDASE, ENGINEERED BACTERIA, AND THEIR APPLICATION IN THE OXIDATIVE-REDUCTIVE COUPLING SYNTHESIS OF GLUFOSINATE: CN111909907B[P]. 2022-05-24. | |
26 | KANG X M, CAI X, LIU Z Q, et al. Identification and characterization of an amidase from Leclercia adecarboxylata for efficient biosynthesis of L-phosphinothricin[J]. Bioresource Technology, 2019, 289: 121658. |
27 | LIN C P, MAO Y, ZHENG R C, et al. Highly efficient chemoenzymatic synthesis of L-phosphinothricin from N-phenylacetyl-D,L-phosphinothricin by a robust immobilized amidase[J]. Journal of Agricultural and Food Chemistry, 2020, 68(49): 14549-14554. |
28 | WU Z M, XIE F, ZHENG W, et al. Structure-oriented engineering of amidase: modification of twisted access tunnel for efficient synthesis of 2-chloronicotinic acid[J]. ACS Catalysis, 2023, 13(13): 9078-9089. |
29 | WANG L Y, TANG H, ZHU H L, et al. Enhancement of the substrate specificity of D-amino acid oxidase based on tunnel-pocket engineering[J]. Biotechnology and Bioengineering, 2023, 120(12): 3557-3569. |
30 | 王华磊, 魏东芝, 吴承骏, 等. 利用生物多酶偶联法制备L-草铵膦的方法: CN112410383B[P]. 2022-07-12. |
WANG H L, WEI D Z, WU C J, et al. METHOD FOR PREPARING L-GLUFOSINATE USING BI-ENZYMATIC COUPLING: CN112410383B[P]. 2022-07-12. | |
31 | CHENG F, LI J M, ZHOU S P, et al. A single-transaminase-catalyzed biocatalytic cascade for efficient asymmetric synthesis of l-phosphinothricin[J]. ChemBioChem, 2021, 22(2): 345-348. |
32 | ZHOU H S, MENG L J, YIN X J, et al. Biocatalytic asymmetric synthesis of L-phosphinothricin using a one-pot three enzyme system and a continuous substrate fed-batch strategy[J]. Applied Catalysis A: General, 2020, 589: 117239. |
33 | XUE Y P, CHENG F, LI H, et al. Amino acid dehydrogenase mutant and application in synthesis of L-glufosinate-ammonium thereof: US11408016B2[P]. 2021-03-11. |
34 | XUE Y P, CHENG F, WU D, et al. Machine learning gene mining method and phosphinothricin dehydrogenase mutant for amino translocation: US11781117B2[P]. 2022-06-30. |
35 | CHENG F, LI Q H, ZHANG H Y, et al. Simultaneous directed evolution of coupled enzymes for efficient asymmetric synthesis of L-phosphinothricin[J]. Applied and Environmental Microbiology, 2021, 87(5): e02563-20. |
36 | 程峰, 李清华, 李恒, 等. NAD(P)H依赖型氧化还原酶不对称还原胺化制备手性胺的研究进展[J]. 生物工程学报, 2020, 36(9): 1794-1816. |
CHENG F, LI Q H, LI H, et al. NAD(P)H-dependent oxidoreductases for synthesis of chiral amines by asymmetric reductive amination of ketones[J]. Chinese Journal of Biotechnology, 2020, 36(9): 1794-1816. | |
37 | CAO C H, GONG H, DONG Y, et al. Enzyme cascade for biocatalytic deracemization of D,L-phosphinothricin[J]. Journal of Biotechnology, 2021, 325: 372-379. |
38 | 薛亚平, 郑裕国, 吕胜芝, 等. 粘质沙雷氏菌及其应用: CN107118977B[P]. 2020-02-21. |
XUE Y P, ZHENG Y G, LV S Z, et al. VISCOUS Pseudomonas aeruginosa and its application: CN107118977B[P]. 2020-02-21. | |
39 | ALBIZATI K F, KAMBOURAKIS S, GRUBBS A, et al. Process of producing phosphinothricin employing nitrilases: US09683001B2[P]. 2017-06-20. |
40 | LIU Z Q, DONG L Z, CHENG F, et al. Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10[J]. Journal of Agricultural and Food Chemistry, 2011, 59(21): 11560-11570. |
41 | YIN X J, LIU Y Y, MENG L J, et al. Rational molecular engineering of glutamate dehydrogenases for enhancing asymmetric reductive amination of bulky α-keto acids[J]. Advanced Synthesis & Catalysis, 2019, 361(4): 803-812. |
42 | CHENG F, ZHANG J M, JIANG Z T, et al. Development of an NAD(H)-driven biocatalytic system for asymmetric synthesis of chiral amino acids[J]. Advanced Synthesis & Catalysis, 2022, 364(8): 1450-1459. |
43 | 汤恒, 韩鑫, 邹树平, 等. 多酶催化体系在医药化学品合成中的应用[J]. 合成生物学, 2021, 2(4): 559-576. |
TANG H, HAN X, ZOU S P, et al. Application of multi-enzyme catalytic system in the synthesis of pharmaceutical chemicals[J]. Synthetic Biology Journal, 2021, 2(4): 559-576. | |
44 | 吴淑可, 周颐, 王文, 等. 从单酶催化到多酶级联催化——从王义翘教授在酶技术领域的贡献说开去[J]. 合成生物学, 2021, 2(4): 543-558. |
WU S K, ZHOU Y, WANG W, et al. From single-enzyme catalysis to multienzyme cascade: inspired from Professor Daniel I.C. Wang’s pioneer work in enzyme technology[J]. Synthetic Biology Journal, 2021, 2(4): 543-558. | |
45 | 牛坤, 高利平, 葛丽蓉, 等. 大肠杆菌代谢工程改造合成L-高丝氨酸及其衍生物研究进展[J]. 生物工程学报, 2022, 38(12): 4385-4402. |
NIU K, GAO L P, GE L R, et al. Advances in the biosynthesis of L-homoserine and its derivatives by metabolic engineering of Escherichia coli [J]. Chinese Journal of Biotechnology, 2022, 38(12): 4385-4402. | |
46 | MU Q X, ZHANG S S, MAO X J, et al. Highly efficient production of L-homoserine in Escherichia coli by engineering a redox balance route[J]. Metabolic Engineering, 2021, 67: 321-329. |
47 | 刘鹏. 生物合成L-高丝氨酸及其衍生物的细胞工厂构建[D]. 杭州: 浙江工业大学, 2020. |
LIU P. construction of cell factories for bioproduction of L-homoserine and its derivatives[D]. Hangzhou: Zhejiang University of Technology, 2020. | |
48 | CAO C H, CHENG F, XUE Y P, et al. Efficient synthesis of L-phosphinothricin using a novel aminoacylase mined from Stenotrophomonas maltophilia [J]. Enzyme and Microbial Technology, 2020, 135: 109493. |
49 | TONG X D, EL-ZAHAB B, ZHAO X Y, et al. Enzymatic synthesis of L-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle[J]. Biotechnology and Bioengineering, 2011, 108(2): 465-469. |
50 | KIM S, LEE S Y, ANJONG T F, et al. Artificial photocatalytic system using polydiacetylene-(-NH-phen)Ru(bpy)2 for cofactor regeneration and CO2 reduction[J]. The Journal of Physical Chemistry C, 2016, 120(50): 28407-28414. |
51 | ZHANG Z B, LI J J, JI M B, et al. Encapsulation of multiple enzymes in a metal-organic framework with enhanced electro-enzymatic reduction of CO2 to methanol[J]. Green Chemistry, 2021, 23(6): 2362-2371. |
52 | GOLDBERG K, SCHROER K, LÜTZ S, et al. Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—partⅠ: processes with isolated enzymes[J]. Applied Microbiology and Biotechnology, 2007, 76(2): 237-248. |
53 | NAGAO T, MITAMURA T, WANG X H, et al. Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030[J]. Journal of Bacteriology, 1992, 174(15): 5013-5020. |
54 | 李凌凌, 吕早生, 吴敏, 等. 重组的葡萄糖脱氢酶催化辅酶的再生性质[J]. 华中科技大学学报(自然科学版), 2010, 38(3): 112-115, 132. |
LI L L, LÜ Z S, WU M, et al. Cofactor regeneration of recombinant glucose dehydrogenase[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(3): 112-115, 132. | |
55 | VAN DER DONK W A, ZHAO H M. Recent developments in pyridine nucleotide regeneration[J]. Current Opinion in Biotechnology, 2003, 14(4): 421-426. |
56 | ALPDAĞTAŞ S, YÜCEL S, KAPKAÇ H A, et al. Discovery of an acidic, thermostable and highly NADP+ dependent formate dehydrogenase from Lactobacillus buchneri NRRL B-30929[J]. Biotechnology Letters, 2018, 40(7): 1135-1147. |
57 | ÖZGÜN G P, ORDU E B, TÜTÜNCÜ H E, et al. Site saturation mutagenesis applications on Candida methylica formate dehydrogenase[J]. Scientifica, 2016, 2016: 4902450. |
58 | CHENG F, WEI L, WANG C J, et al. Switching the cofactor preference of formate dehydrogenase to develop an NADPH-dependent biocatalytic system for synthesizing chiral amino acids[J]. Journal of Agricultural and Food Chemistry, 2023, 71(23): 9009-9019. |
59 | AN J H, NIE Y, XU Y. Structural insights into alcohol dehydrogenases catalyzing asymmetric reductions[J]. Critical Reviews in Biotechnology, 2019, 39(3): 366-379. |
60 | HOLLMANN F, OPPERMAN D J, PAUL C E. Biocatalytic reduction reactions from a chemist’s perspective[J]. Angewandte Chemie International Edition, 2021, 60(11): 5644-5665. |
61 | MATSUDA T, YAMAGISHI Y, KOGUCHI S, et al. An effective method to use ionic liquids as reaction media for asymmetric reduction by Geotrichum candidum [J]. Tetrahedron Letters, 2006, 47(27): 4619-4622. |
62 | STAMPFER W, KOSJEK B, FABER K, et al. Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM44541[J]. Journal of Organic Chemistry, 2003, 68(2): 402-406. |
63 | XU J M, WU Z S, ZHAO K J, et al. IPTG-induced high protein expression for whole-cell biosynthesis of L-phosphinothricin[J]. Biotechnology Journal, 2023, 18(9): e2300027. |
[1] | 刘宽庆, 张以恒. 木质素的生物降解和生物利用[J]. 合成生物学, 2024, 5(6): 1264-1278. |
[2] | 石婷, 宋展, 宋世怡, 张以恒. 体外生物转化(ivBT):生物制造的新前沿[J]. 合成生物学, 2024, 5(6): 1437-1460. |
[3] | 雷航彬, 何宁, 李斐煊, 董玲玲, 王世珍. 氢化酶固定化研究进展[J]. 合成生物学, 2024, 5(6): 1485-1497. |
[4] | 王子渊, 杨立荣, 吴坚平, 郑文隆. 酶促合成手性氨基酸的研究进展[J]. 合成生物学, 2024, 5(6): 1319-1349. |
[5] | 董玲玲, 李斐煊, 雷航彬, 宋启迪, 王世珍. 仿生分区室固定化多酶体系[J]. 合成生物学, 2024, 5(6): 1518-1529. |
[6] | 李庚, 申晓林, 孙新晓, 王佳, 袁其朋. 过氧化物酶的重组表达和应用研究进展[J]. 合成生物学, 2024, 5(6): 1498-1517. |
[7] | 张阿磊, 魏国光, 张弛, 陈磊, 周奚, 刘伟, 陈可泉. 几丁质资源生物降解和高值转化的研究进展[J]. 合成生物学, 2024, 5(6): 1279-1299. |
[8] | 李怡霏, 陈艾, 孙俊松, 张以恒. 体外多酶分子机器产氢应用中的氢酶研究[J]. 合成生物学, 2024, 5(6): 1461-1484. |
[9] | 付雨, 钟芳锐. 化学原理驱动的光生物不对称催化研究进展[J]. 合成生物学, 2024, 5(5): 1021-1049. |
[10] | 郑梦梦, 刘犇犇, 林芝, 瞿旭东. 重要甾体化合物的化学酶法合成研究进展[J]. 合成生物学, 2024, 5(5): 941-959. |
[11] | 程晓雷, 刘天罡, 陶慧. 萜类化合物的非常规生物合成研究进展[J]. 合成生物学, 2024, 5(5): 1050-1071. |
[12] | 杨皓然, 叶发荣, 黄平, 王平. 糖蛋白合成的研究进展[J]. 合成生物学, 2024, 5(5): 1072-1101. |
[13] | 夏孔晨, 徐维华, 吴起. 光酶催化混乱性反应的研究进展[J]. 合成生物学, 2024, 5(5): 997-1020. |
[14] | 程中玉, 李付琸. 基于P450选择性氧化的天然产物化学-酶法合成进展[J]. 合成生物学, 2024, 5(5): 960-980. |
[15] | 刘子健, 穆柏杨, 段志强, 王璇, 陆晓杰. 与核酸兼容的化学反应开发进展[J]. 合成生物学, 2024, 5(5): 1102-1124. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 470
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 638
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||