1 |
CANTON B, LABNO A, ENDY D. Refinement and standardization of synthetic biological parts and devices[J]. Nature Biotechnology, 2008, 26(7): 787-793.
|
2 |
CAMERON D E, BASHOR C J, COLLINS J J. A brief history of synthetic biology[J]. Nature Reviews: Microbiology, 2014, 12(5): 381-390.
|
3 |
GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli[J]. Nature, 2000, 403(6767): 339-342.
|
4 |
ELOWITZ M B, LEIBLER S. A synthetic oscillatory network of transcriptional regulators[J]. Nature, 2000, 403(6767): 335-338.
|
5 |
GUET C C, ELOWITZ M B, HSING W, et al. Combinatorial synthesis of genetic networks[J]. Science, 2002, 296(5572): 1466-1470.
|
6 |
ASIMOV I. A short history of chemistry[M]. New South Wales: Doubleday, 1965.
|
7 |
KOCH A,MEINHARDT H. Biological pattern formation: from basic mechanisms to complex structures[J]. Reviews of Modern Physics, 1994, 66(4): 1481.
|
8 |
LAWRENCE P A, MORATA G. Developmental biology. Lighting up Drosophila[J]. Nature, 1992, 356(6365): 107-108.
|
9 |
WATANABE M, KONDO S. Changing clothes easily: connexin41.8 regulates skin pattern variation[J]. Pigment Cell Melanoma Research, 2012, 25(3): 326-330.
|
10 |
MADERSPACHER F, NUSSLEIN-VOLHARD C. Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions[J]. Development, 2003, 130(15): 3447-3457.
|
11 |
KUMAR N M,GILULA N B. The gap junction communication channel[J]. Cell, 1996, 84(3): 381-388.
|
12 |
MALLARINO R, HENEGAR C, MIRASIERRA M, et al. Developmental mechanisms of stripe patterns in rodents[J]. Nature, 2016, 539(7630): 518-523.
|
13 |
WOLPERT L. Positional information and the spatial pattern of cellular differentiation[J]. Journal of Theoretical Biology, 1969, 25(1): 1-47.
|
14 |
STRUHL G, STRUHL K, MACDONALD P M. The gradient morphogen bicoid is a concentration-dependent transcriptional activator[J]. Cell, 1989, 57(7): 1259-1273.
|
15 |
DRIEVER W, NUSSLEIN-VOLHARD C. A gradient of bicoid protein in Drosophila embryos[J]. Cell, 1988, 54(1): 83-93.
|
16 |
GURDON J B, HARGER P, MITCHELL A, et al. Activin signalling and response to a morphogen gradient[J]. Nature, 1994, 371(6497): 487-492.
|
17 |
HEEMSKERK J, DINARDO S. Drosophila hedgehog acts as a morphogen in cellular patterning[J]. Cell, 1994, 76(3): 449-460.
|
18 |
KIECKER C, NIEHRS C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus[J]. Development, 2001, 128(21): 4189-4201.
|
19 |
WARTLICK O, KICHEVA A, GONZALEZ-GAITAN M. Morphogen gradient formation[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(3): A001255.
|
20 |
DESSAUD E, YANG L L, HILL K, et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism[J]. Nature, 2007, 450(7170): 717-720.
|
21 |
VUILLEUMIER R, SPRINGHORN A, PATTERSON L, et al. Control of Dpp morphogen signalling by a secreted feedback regulator[J]. Nature Cell Biology, 2010, 12(6): 611-617.
|
22 |
REEVES G T, STATHOPOULOS A. Graded dorsal and differential gene regulation in the Drosophila embryo[J]. Cold Spring Harbor Perspectives in Biology, 2009, 1(4): A000836.
|
23 |
IBANES M , IZPISUA BELMONTE J C. Theoretical and experimental approaches to understand morphogen gradients[J]. Molecular Systems Biology, 2008, 4: 176.
|
24 |
WATANABE M ,KONDO S. Is pigment patterning in fish skin determined by the Turing mechanism?[J]. Trends in Genetics, 2015, 31(2): 88-96.
|
25 |
YAMAGUCHI M, YOSHIMOTO E, KONDO S. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(12): 4790-4793.
|
26 |
TURING A M. The chemical basis of morphogenesis [J]. Bulletin of Mathematical Biology, 1952, 52(1/2): 153-197.
|
27 |
MEINHARDT H, GIERER A. Pattern formation by local self-activation and lateral inhibition[J]. Bioessays, 2000, 22(8): 753-760.
|
28 |
MEINHARDT H, GIERER A. Applications of a theory of biological pattern formation based on lateral inhibition[J]. Journal of Cell Science, 1974, 15(2): 321-346.
|
29 |
MAINI P K, MYERSCOUGH M R, WINTERS K H, et al. Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation[J]. Bulletin of Mathematical Biology, 1991, 53(5): 701-719.
|
30 |
SWINDALE N V. A model for the formation of ocular dominance stripes[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1980, 208(1171): 243-264.
|
31 |
KONDO S, MIURA T. Reaction-diffusion model as a framework for understanding biological pattern formation[J]. Science, 2010, 329(5999): 1616-1620.
|
32 |
ECONOMOU A D, OHAZAMA A, PORNTAVEETUS T, et al. Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate[J]. Nature Genetics, 2012, 44(3): 348.
|
33 |
BASU S, GERCHMAN Y, COLLINS C H, et al. A synthetic multicellular system for programmed pattern formation[J]. Nature, 2005, 434(7037): 1130-1134.
|
34 |
SOHKA T, HEINS R A, PHELAN R M, et al. An externally tunable bacterial band-pass filter[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(25): 10135-10140.
|
35 |
KONG W, BLANCHARD A E, LIAO C, et al. Engineering robust and tunable spatial structures with synthetic gene circuits[J]. Nucleic Acids Research, 2017, 45(2): 1005-1014.
|
36 |
SCHAERLI Y, MUNTEANU A, GILI M, et al. A unified design space of synthetic stripe-forming networks[J]. Nature Communications, 2014, 5: 4905.
|
37 |
SEKINE R, SHIBATA T, EBISUYA M. Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty[J]. Nature Communications, 2018, 9(1): 5456.
|
38 |
MULLER P, ROGERS K W, JORDAN B M, et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system[J]. Science, 2012, 336(6082): 721-724.
|
39 |
KARIG D, MARTINI K M, LU T, et al. Stochastic Turing patterns in a synthetic bacterial population[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6572-6577.
|
40 |
PAYNE S, LI B, CAO Y, et al. Temporal control of self-organized pattern formation without morphogen gradients in bacteria[J]. Molecular Systems Biology, 2013, 9: 697.
|
41 |
CAO Y, RYSER M D, PAYNE S, et al. Collective space-sensing coordinates pattern scaling in engineered bacteria[J]. Cell, 2016, 165(3): 620-630.
|
42 |
LIU C, FU X, HUANG J D. Synthetic biology: a new approach to study biological pattern formation[J]. Quantitative Biology, 2013, 1(4): 246-252.
|
43 |
LIU C, FU X, LIU L, et al. Sequential establishment of stripe patterns in an expanding cell population[J]. Science, 2011, 334(6053): 238-241.
|
44 |
GILMOUR D, REMBOLD M, LEPTIN M. From morphogen to morphogenesis and back[J]. Nature, 2017, 541(7637): 311-320.
|
45 |
ABERCROMBIE M. Contact inhibition and malignancy[J]. Nature, 1979, 281(5729): 259-262.
|
46 |
POLIAKOV A, COTRINA M, WILKINSON D G. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly[J]. Developmental Cell, 2004, 7(4): 465-480.
|
47 |
STEINBERG M S. Differential adhesion in morphogenesis: a modern view[J]. Current Opinion in Genetics & Development, 2007, 17(4): 281-286.
|
48 |
CACHAT E, LIU W, MARTIN K C, et al. 2-and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation[J]. Scientific Reports, 2016, 6: 20664.
|
49 |
TODA S, BLAUCH L R, TANG S K Y, et al. Programming self-organizing multicellular structures with synthetic cell-cell signaling[J]. Science, 2018, 361(6398): 156-162.
|
50 |
YAMANAKA H, KONDO S. In vitro analysis suggests that difference in cell movement during direct interaction can generate various pigment patterns in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 1867-1872.
|
51 |
THEVENEAU E, STEVENTON B, SCARPA E, et al. Chase-and-run between adjacent cell populations promotes directional collective migration[J]. Nature Cell Biology. 2013, 15(7): 763-772.
|
52 |
XIONG L, CAO Y, COOPER R, et al. Flower-like patterns in multi-species bacterial colonies[J]. eLife, 2020, 9.
|
53 |
CURATOLO A I,ZHOU N,ZHAO Y,et al. Cooperative pattern formation in multi-component bacterial systems through reciprocal motility regulation[J]. Nature Physics, 2020. DOI: 10.1038/s41567-020-0964-z.
DOI
|
54 |
邓子新. 合成生物学趁最好时代,建物致知,建物致用[J]. 生命科学, 2019, 31(4): 323-324
|
|
DENG Z X. Synthetic biology takes advantage of the golden age, building to know, building to use[J]. Chinese Bulletin of Life Sciences, 2019, 31(4): 323-324.
|
55 |
赵国屏. 合成生物学: 开启生命科学 “会聚” 研究新时代[J]. 中国科学院院刊, 2018, 33(11): 1135-1149
|
|
ZHAO G P. Synthetic biology: unsealing the convergence era of life science research[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1135-1149.
|
56 |
DAVIES J. Using synthetic biology to explore principles of development[J]. Development, 2017, 144(7): 1146-1158.
|
57 |
CAO Y, FENG Y, RYSER M D, et al. Programmable assembly of pressure sensors using pattern-forming bacteria[J]. Nature Biotechnology, 2017, 35(11): 1087.
|