合成生物学 ›› 2021, Vol. 2 ›› Issue (1): 106-120.DOI: 10.12211/2096-8280.2020-039

• 特约评述 • 上一篇    下一篇

CRISPR基因编辑技术在微生物合成生物学领域的研究进展

李洋1, 申晓林1, 孙新晓1, 袁其朋1, 闫亚军2, 王佳1   

  1. 1.北京化工大学化工资源有效利用国家重点实验室,北京 100029,中国
    2.美国佐治亚大学工程学院,佐治亚州,阿森斯 30602
  • 收稿日期:2020-04-05 修回日期:2020-10-22 出版日期:2021-02-28 发布日期:2021-03-12
  • 通讯作者: 王佳
  • 作者简介:李洋(1997—),男,硕士研究生,研究方向为光合蓝细菌合成生物学和代谢工程。 E-mail:liy97@tju.edu.cn|王佳(1989—),女,博士,副教授,研究方向为代谢工程及微生物合成生物学。 E-mail:wangjia@mail.buct.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFA0903000);国家自然科学基金(21908003)

Advances of CRISPR gene editing in microbial synthetic biology

Yang LI1, Xiaolin SHEN1, Xinxiao SUN1, Qipeng YUAN1, Yajun YAN2, Jia WANG1   

  1. 1.State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,China
    2.College of Engineering,The University of Georgia,Athens,Georgia 30602,USA
  • Received:2020-04-05 Revised:2020-10-22 Online:2021-02-28 Published:2021-03-12
  • Contact: Jia WANG

摘要:

微生物合成生物学是一门新兴的交叉学科,其主要目的是通过改造或创制微生物细胞,使微生物具有特定的生理功能或生产目标产物,因此需要高效、快速、精准的基因操作工具。CRISPR技术是一种成本低、操作简便、效率高、功能多样的基因编辑技术,近年来被广泛应用于合成生物学、代谢工程和医学研究等领域,极大地促进了这些领域的发展。本文简述了CRISPR基因编辑技术的发展历史及其作用机制,重点介绍了近年来CRISPR/Cas9技术在微生物合成生物学领域研究和应用的进展,列举了CRISPR/Cas9技术在微生物合成生物学中生产目标产品的研究,总结了由CRISPR/Cas9技术衍生出的CRISPR/Cas12a、CRISPR/Cas13等技术在微生物合成生物学领域的研究及应用,提出了CRISPR基因编辑技术现存的PAM依赖性、脱靶效应、安全性和应用广泛性等问题,最后展望了该技术在构建高效微生物细胞工厂生产高附加值化合物的发展前景和创造更多适合生产高附加值产品的底盘生物的研究方向。

关键词: CRISPR, Cas9, 微生物, 合成生物学, 基因编辑

Abstract:

With the increase of global consumption on fossil resources for energy products and chemicals and their consequent impact on environment, construction of microbial cell factories for efficient production of biofuels and bio-based chemicals from renewable sources has gained much attention. Pathway engineering of the hosts, such as over-expression of key genes, disruption of competing pathways and integration of heterologous pathways, plays significant role in fulfilling such a purpose. Successful implementation of these pathway engineering strategies requires efficient and accurate gene editing tools. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) systems are a powerful gene editing strategy that was found in prokaryotic organisms such as archaea and bacteria, which provide adaptive immunity against foreign elements. When host cells are infected by viruses, a small sequence of the viral genome is integrated into the CRISPR locus to immunize the host cells, and this small sequence is transcribed into small RNA guide that directs the cleavage of the viral DNA by the Cas nuclease. Inspired by the natural talent, many modified CRISPR systems have been developed to modify genes and genomes, including knock-in, knock-down, large deletions, indels, replacements and chromosomal rearrangements. In this review, we briefly comment on the technical basis and advances in CRISPR-related genome editing tools applied for constructing microbial cell factories, with a focus on the CRISPR-based tools for metabolic engineering of the model organisms E. coli and S. cerevisiae. Furthermore, we highlight major challenges in developing CRISPR tools for multiplex genome editing and sophisticated expression regulation. Finally, we propose future perspectives on the application of CRISPR-based technologies for constructing microbial ecosystems toward high production of desired chemicals. We intend to provide insights and ideas for developing CRISPR-related genome editing tools to better serve the construction of efficient microbial cell factories.

Key words: CRISPR, Cas9, microorganism, synthetic biology, gene editing

中图分类号: