合成生物学 ›› 2022, Vol. 3 ›› Issue (5): 901-914.DOI: 10.12211/2096-8280.2021-096
赵权宇
收稿日期:
2021-09-30
修回日期:
2021-11-18
出版日期:
2022-10-31
发布日期:
2022-11-16
通讯作者:
赵权宇
作者简介:
基金资助:
Quanyu ZHAO
Received:
2021-09-30
Revised:
2021-11-18
Online:
2022-10-31
Published:
2022-11-16
Contact:
Quanyu ZHAO
摘要:
微藻生物技术是实现碳达峰和碳中和的潜在途径之一。目前,微藻存在固碳效率低、光合转化效率低以及活性组分含量低等关键问题,需要通过合成生物学等生物技术手段构建新的藻株,并依据微藻固碳和代谢的特点,构筑减碳或负碳的新技术路线。适应性实验室进化(ALE)在提高微藻对二氧化碳固定,强化废水处理和改善代谢表型等方面均取得了一定进展,已获得了耐受高浓度二氧化碳和其他环境压力的进化藻株。但是,微藻ALE的效率还有待提高,基于固碳、光合和活性组分生物合成的合成生物学元件挖掘的研究还比较少。为克服以上问题,亟需改变微藻ALE的策略,结合高通量ALE装置的应用,缩短进化时间;在已有进化株的基础上,深入挖掘耐受基因、光合和活性组分生物合成的元件,为微藻基因改造打下基础;借鉴其他微生物ALE的已有经验,深刻理解微藻实验室适应性进化的动态过程,探索ALE的基本规律。最后对ALE应对微藻碳中和挑战的可能途径进行了展望。
中图分类号:
赵权宇. 面向碳中和的微藻适应性实验室进化研究进展[J]. 合成生物学, 2022, 3(5): 901-914.
Quanyu ZHAO. Research progress in carbon neutrality oriented adaptive laboratory evolution of microalgae[J]. Synthetic Biology Journal, 2022, 3(5): 901-914.
出发藻株 | 适应进化压力 | 接种细胞密度 | 总时间/d | 文献 |
---|---|---|---|---|
Desmodesmus sp. MAS1, Heterochlorella sp. MAS3 | pH 3.0 | — | 14 | [ |
Chlamydomonas reinhardtii | 20 μmol/(m2·s), 60 μmol/(m2·s), 400 μmol/(m2·s) | — | — | [ |
Coccomyxa sp.M2 | pH 3.0~7.0 | — | — | [ |
Chlorella sp. LAMB 3, Chlorella sp. LAMB 122 | 40% CO2 | 0.4 g/L | 7 | [ |
Chlorellapyrenoidosa | 1500~4750 mg/L NH4+ | 1×108 cells/mL | 19 | [ |
Scenedesmus sp. | 盐浓度0.5%~2.5% 光强4.0~6.0 klux 温度30~35 ℃ | 0.1 g/L 0.1 g/L 0.1 g/L | 10 10 10 | [ |
Chlamydomonas reinhardtii | 0.2 mol/L NaCl | 5×105 cells/mL | 2 | [ |
表1 微藻的短期驯化
Tab. 1 Short-term acclimation for microalgae
出发藻株 | 适应进化压力 | 接种细胞密度 | 总时间/d | 文献 |
---|---|---|---|---|
Desmodesmus sp. MAS1, Heterochlorella sp. MAS3 | pH 3.0 | — | 14 | [ |
Chlamydomonas reinhardtii | 20 μmol/(m2·s), 60 μmol/(m2·s), 400 μmol/(m2·s) | — | — | [ |
Coccomyxa sp.M2 | pH 3.0~7.0 | — | — | [ |
Chlorella sp. LAMB 3, Chlorella sp. LAMB 122 | 40% CO2 | 0.4 g/L | 7 | [ |
Chlorellapyrenoidosa | 1500~4750 mg/L NH4+ | 1×108 cells/mL | 19 | [ |
Scenedesmus sp. | 盐浓度0.5%~2.5% 光强4.0~6.0 klux 温度30~35 ℃ | 0.1 g/L 0.1 g/L 0.1 g/L | 10 10 10 | [ |
Chlamydomonas reinhardtii | 0.2 mol/L NaCl | 5×105 cells/mL | 2 | [ |
出发藻株 | 适应进化压力 | 接种细胞密度 /(g/L) | 周期 | 总时间/d | 文献 |
---|---|---|---|---|---|
Chlorococcum littorale | 缺氮 | OD750=0.5 | 13 | 134(前8个周期,每个周期前2天正常,后面6天 缺氮;后面5个周期,前2天正常,后面12天缺氮) | [ |
Chlorella vulgaris | 255 μE/(m2·s)红光 | 0.84 | 38 | 114 | [ |
Dunaliella salina | 42 μE/(m2·s)蓝光 + 128 μE/(m2·s)红光 | 0.5 | 16 | 80 | [ |
Dunaliella salina | 42 μE/(m2·s)蓝光 + 128 μE/(m2·s)红光 + 2.5 mol/L NaCl | — | — | — | [ |
Tisochrysis lutea | 温度波动(低温6~21 ℃, 高温26~35 ℃) | — | 13 | 150 | [ |
Synechocystis sp. PCC 6803 | 3% NaCl | OD730=0.2 | 43 | 303 | [ |
Schizochytrium sp. | 34.5 ℃ | — | 70 | 70 | [ |
Chlamydomonas sp. | 5%或7%海盐 | 0.02 | — | 84 | [ |
Isochrysis galbana Parke | 100 mg/L或200 mg/L苯酚 | 5×105 cells/mL | 30 | 90 | [ |
Crypthecodiniumcohnii | 9~54 g/L葡萄糖 | OD470=0.1 | 260 | 650 | [ |
藻菌共培养 | 体积分数20%渗滤液 | — | 21天一个 周期 | 24个月 | [ |
C.reinhardtii | 0.2 mol/L NaCl | 5×105 cells/mL | 2~3天 一个周期 | 17个月 | [ |
Schizochytrium sp. | 30 g/L NaCl | — | 150 | 150 | [ |
Schizochytrium sp. | 4 ℃, 30 g/L NaCl | — | 30 | 90 | [ |
Schizochytrium sp. | 230 r/min | — | 40 | 40 | [ |
Phaeodactylumtricornutum | 50%~90%盐度 | 1×106 cells/mL | 35 | 252 | [ |
表2 微藻的长期适应进化
Tab. 2 Long-term ALE for microalgae
出发藻株 | 适应进化压力 | 接种细胞密度 /(g/L) | 周期 | 总时间/d | 文献 |
---|---|---|---|---|---|
Chlorococcum littorale | 缺氮 | OD750=0.5 | 13 | 134(前8个周期,每个周期前2天正常,后面6天 缺氮;后面5个周期,前2天正常,后面12天缺氮) | [ |
Chlorella vulgaris | 255 μE/(m2·s)红光 | 0.84 | 38 | 114 | [ |
Dunaliella salina | 42 μE/(m2·s)蓝光 + 128 μE/(m2·s)红光 | 0.5 | 16 | 80 | [ |
Dunaliella salina | 42 μE/(m2·s)蓝光 + 128 μE/(m2·s)红光 + 2.5 mol/L NaCl | — | — | — | [ |
Tisochrysis lutea | 温度波动(低温6~21 ℃, 高温26~35 ℃) | — | 13 | 150 | [ |
Synechocystis sp. PCC 6803 | 3% NaCl | OD730=0.2 | 43 | 303 | [ |
Schizochytrium sp. | 34.5 ℃ | — | 70 | 70 | [ |
Chlamydomonas sp. | 5%或7%海盐 | 0.02 | — | 84 | [ |
Isochrysis galbana Parke | 100 mg/L或200 mg/L苯酚 | 5×105 cells/mL | 30 | 90 | [ |
Crypthecodiniumcohnii | 9~54 g/L葡萄糖 | OD470=0.1 | 260 | 650 | [ |
藻菌共培养 | 体积分数20%渗滤液 | — | 21天一个 周期 | 24个月 | [ |
C.reinhardtii | 0.2 mol/L NaCl | 5×105 cells/mL | 2~3天 一个周期 | 17个月 | [ |
Schizochytrium sp. | 30 g/L NaCl | — | 150 | 150 | [ |
Schizochytrium sp. | 4 ℃, 30 g/L NaCl | — | 30 | 90 | [ |
Schizochytrium sp. | 230 r/min | — | 40 | 40 | [ |
Phaeodactylumtricornutum | 50%~90%盐度 | 1×106 cells/mL | 35 | 252 | [ |
1 | MAI B R, DENG X J, LIU X, et al. The climatology of ambient CO2 concentrations from long-term observation in the Pearl River Delta region of China: roles of anthropogenic and biogenic processes[J]. Atmospheric Environment, 2021, 251: 118266. |
2 | ROGELJ J, DEN ELZEN M, HÖHNE N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534(7609): 631-639. |
3 | RUEDA O, MOGOLLÓN J M, TUKKER A, et al. Negative-emissions technology portfolios to meet the 1.5 ℃ target[J]. Global Environmental Change, 2021, 67: 102238. |
4 | GONG F Y, CAI Z, LI Y. Synthetic biology for CO2 fixation[J]. Science China Life Sciences, 2016, 59(11): 1106-1114. |
5 | HEPBURN C, ADLEN E, BEDDINGTON J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. |
6 | BHATIA S K, BHATIA R K, JEON J M, et al. Carbon dioxide capture and bioenergy production using biological system - a review[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 143-158. |
7 | EFROYMSON R A, PATTULLO M B, MAYES M A, et al. Exploring the sustainability and sealing mechanisms of unlined ponds for growing algae for fuel and other commodity-scale products[J]. Renewable and Sustainable Energy Reviews, 2020, 121: 109708. |
8 | HOSSAIN N, MAHLIA T M I. Progress in physicochemical parameters of microalgae cultivation for biofuel production[J]. Critical Reviews in Biotechnology, 2019, 39(6): 835-859. |
9 | YIN Z H, ZHU L D, LI S X, et al. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions[J]. Bioresource Technology, 2020, 301: 122804. |
10 | BEDNAR J, OBERSTEINER M, BAKLANOV A, et al. Operationalizing the net-negative carbon economy[J]. Nature, 2021, 596(7872): 377-383. |
11 | MOREIRA D, PIRES J C M. Atmospheric CO2 capture by algae: negative carbon dioxide emission path[J]. Bioresource Technology, 2016, 215: 371-379. |
12 | UDEN S, DARGUSCH P, GREIG C. Cutting through the noise on negative emissions[J]. Joule, 2021, 5(8): 1956-1970. |
13 | VAN DEN HENDE S, VERVAEREN H, BOON N. Flue gas compounds and microalgae: (bio-) chemical interactions leading to biotechnological opportunities[J]. Biotechnology Advances, 2012, 30(6): 1405-1424. |
14 | 'T LAM G P, VERMUË M H, EPPINK M H M, et al. Multi-product microalgae biorefineries: from concept towards reality[J]. Trends in Biotechnology, 2018, 36(2): 216-227. |
15 | SALEHIZADEH H, YAN N, FARNOOD R. Recent advances in microbial CO2 fixation and conversion to value-added products[J]. Chemical Engineering Journal, 2020, 390: 124584. |
16 | FIGUEROA I A, BARNUM T P, SOMASEKHAR P Y, et al. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(1): E92-E101. |
17 | ANGSTENBERGER M, DE SIGNORI F, VECCHI V, et al. Cell synchronization enhances nuclear transformation and genome editing via Cas9 enabling homologous recombination in Chlamydomonas reinhardtii [J]. ACS Synthetic Biology, 2020, 9(10): 2840-2850. |
18 | FERENCZI A, PYOTT D E, XIPNITOU A, et al. Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(51): 13567-13572. |
19 | SERIF M, DUBOIS G, FINOUX A L, et al. One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing[J]. Nature Communications, 2018, 9: 3924. |
20 | SHARMA A K, NYMARK M, FLO S, et al. Simultaneous knockout of multiple LHCF genes using single sgRNAs and engineering of a high-fidelity Cas9 for precise genome editing in marine algae[J]. Plant Biotechnology Journal, 2021, 19(8): 1658-1669. |
21 | SÜDFELD C, HUBÁČEK M, FIGUEIREDO D, et al. High-throughput insertional mutagenesis reveals novel targets for enhancing lipid accumulation in Nannochloropsis oceanica [J]. Metabolic Engineering, 2021, 66: 239-258. |
22 | WANG Q T, FENG Y B, LU Y D, et al. Manipulating fatty-acid profile at unit chain-length resolution in the model industrial oleaginous microalgae Nannochloropsis [J]. Metabolic Engineering, 2021, 66: 157-166. |
23 | 丁明珠, 李炳志, 王颖, 等. 合成生物学重要研究方向进展[J]. 合成生物学, 2020, 1(1): 7-28. |
DING M Z, LI B Z, WANG Y, et al. Significant research progress in synthetic biology[J]. Synthetic Biology Journal, 2020, 1(1): 7-28. | |
24 | 李祎, 林振泉, 刘子鹤. 酿酒酵母适应性实验室进化工具的最新进展[J]. 合成生物学, 2021, 2(2): 287-301. |
LI Y, LIN Z Q, LIU Z H. Advances in yeast based adaptive laboratory evolution[J]. Synthetic Biology Journal, 2021, 2(2): 287-301. | |
25 | LAPANSE A J, KRISHNAN A, POSEWITZ M C. Adaptive laboratory evolution for algal strain improvement: methodologies and applications[J]. Algal Research, 2021, 53: 102122. |
26 | SANDBERG T E, SALAZAR M J, WENG L L, et al. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology[J]. Metabolic Engineering, 2019, 56: 1-16. |
27 | ZHAO Q Y, HUANG H. Adaptive evolution improves algal strains for environmental remediation[J]. Trends in Biotechnology, 2021, 39(2): 112-115. |
28 | SHAW A J, LAM F H, HAMILTON M, et al. Metabolic engineering of microbial competitive advantage for industrial fermentation processes[J]. Science, 2016, 353(6299): 583-586. |
29 | ZHU Z M, ZHANG J, JI X M, et al. Evolutionary engineering of industrial microorganisms-strategies and applications[J]. Applied Microbiology and Biotechnology, 2018, 102(11): 4615-4627. |
30 | YU S Y, ZHAO Q Y, MIAO X L, et al. Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution[J]. Bioresource Technology, 2013, 147: 499-507. |
31 | DIAO J J, SONG X Y, CUI J Y, et al. Rewiring metabolic network by chemical modulator based laboratory evolution doubles lipid production in Crypthecodinium cohnii [J]. Metabolic Engineering, 2019, 51: 88-98. |
32 | WANG X, LUO S W, LUO W, et al. Adaptive evolution of microalgal strains empowered by fulvic acid for enhanced polyunsaturated fatty acid production[J]. Bioresource Technology, 2019, 277: 204-210. |
33 | SHIN S E, KOH H G, KANG N K, et al. Isolation, phenotypic characterization and genome wide analysis of a Chlamydomonas reinhardtii strain naturally modified under laboratory conditions: towards enhanced microalgal biomass and lipid production for biofuels[J]. Biotechnology for Biofuels, 2017, 10: 308. |
34 | COLLINS S, BELL G. Evolution of natural algal populations at elevated CO2 [J]. Ecology Letters, 2006, 9(2): 129-135. |
35 | ABINANDAN S, SUBASHCHANDRABOSE S R, COLE N, et al. Sustainable production of biomass and biodiesel by acclimation of non-acidophilic microalgae to acidic conditions[J]. Bioresource Technology, 2019, 271: 316-324. |
36 | BONENTE G, PIPPA S, CASTELLANO S, et al. Acclimation of Chlamydomonas reinhardtii to different growth irradiances[J]. Journal of Biological Chemistry, 2012, 287(8): 5833-5847. |
37 | DESJARDINS S M, LAAMANEN C A, BASILIKO N, et al. Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH[J]. Extremophiles, 2021, 25(2): 129-141. |
38 | LI J, TANG X X, PAN K H, et al. The regulating mechanisms of CO2 fixation and carbon allocations of two Chlorella sp. strains in response to high CO2 levels[J]. Chemosphere, 2020, 247: 125814. |
39 | WANG Q K, YU Z Y, WEI D, et al. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation[J]. Bioresource Technology, 2021, 333: 125151. |
40 | MANEECHOTE W, CHEIRSILP B. Stepwise-incremental physicochemical factors induced acclimation and tolerance in oleaginous microalgae to crucial outdoor stresses and improved properties as biodiesel feedstocks[J]. Bioresource Technology, 2021, 328: 124850. |
41 | PERRINEAU M M, ZELZION E, GROSS J, et al. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii [J]. Environmental Microbiology, 2014, 16(6): 1755-1766. |
42 | LI X Y, YUAN Y Z, CHENG D J, et al. Exploring stress tolerance mechanism of evolved freshwater strain Chlorella sp. S30 under 30 g/L salt[J]. Bioresource Technology, 2018, 250: 495-504. |
43 | CHENG D J, LI X Y, YUAN Y Z, et al. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas[J]. Science of the Total Environment, 2019, 650: 2931-2938. |
44 | CABANELAS I T D, KLEINEGRIS D M M, WIJFFELS R H, et al. Repeated nitrogen starvation doesn't affect lipid productivity of Chlorococcum littorale [J]. Bioresource Technology, 2016, 219: 576-582. |
45 | FU W Q, GUDMUNDSSON O, FEIST A M, et al. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor[J]. Journal of Biotechnology, 2012, 161(3): 242-249. |
46 | FU W Q, GUÐMUNDSSON O, PAGLIA G, et al. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution[J]. Applied Microbiology and Biotechnology, 2013, 97(6): 2395-2403. |
47 | FU W Q, PAGLIA G, MAGNÚSDÓTTIR M, et al. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina [J]. Microbial Cell Factories, 2014, 13: 3. |
48 | GACHELIN M, BOUTOUTE M, CARRIER G, et al. Enhancing PUFA-rich polar lipids in Tisochrysis lutea using adaptive laboratory evolution (ALE) with oscillating thermal stress[J]. Applied Microbiology and Biotechnology, 2021, 105(1): 301-312. |
49 | HU L, HE J Y, DONG M J, et al. Divergent metabolic and transcriptomic responses of Synechocystis sp. PCC 6803 to salt stress after adaptive laboratory evolution[J]. Algal Research, 2020, 47: 101856. |
50 | KATO Y, HO S H, VAVRICKA C J, et al. Evolutionary engineering of salt-resistant Chlamydomonas sp. strains reveals salinity stress-activated starch-to-lipid biosynthesis switching[J]. Bioresource Technology, 2017, 245: 1484-1490. |
51 | LI H, TAN J, SUN T L, et al. Acclimation of Isochrysis galbana Parke (Isochrysidaceae) for enhancing its tolerance and biodegradation to high-level phenol in seawater[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111571. |
52 | LI X R, PEI G S, LIU L S, et al. Metabolomic analysis and lipid accumulation in a glucose tolerant Crypthecodinium cohnii strain obtained by adaptive laboratory evolution[J]. Bioresource Technology, 2017, 235: 87-95. |
53 | OKUROWSKA K, KARUNAKARAN E, AL-FARTTOOSY A, et al. Adapting the algal microbiome for growth on domestic landfill leachate[J]. Bioresource Technology, 2021, 319: 124246. |
54 | SUN X M, REN L J, BI Z Q, et al. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis[J]. Bioresource Technology, 2018, 267: 438-444. |
55 | SUN X M, REN L J, BI Z Q, et al. Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp[J]. Biotechnology for Biofuels, 2018, 11: 65. |
56 | SUN X M, REN L J, JI X J, et al. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis[J]. Bioresource Technology, 2016, 211: 374-381. |
57 | WANG L B, XUE C Z, WANG L, et al. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution[J]. Bioresource Technology, 2016, 205: 264-268. |
58 | ARORA N, PHILIPPIDIS G P. Microalgae strain improvement strategies: random mutagenesis and adaptive laboratory evolution[J]. Trends in Plant Science, 2021, 26(11): 1199-1200. |
59 | ARORA N, YEN H W, PHILIPPIDIS G P. Harnessing the power of mutagenesis and adaptive laboratory evolution for high lipid production by oleaginous microalgae and yeasts[J]. Sustainability, 2020, 12(12): 5125. |
60 | ASLAM A, THOMAS-HALL S R, MUGHAL T A, et al. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas[J]. Bioresource Technology, 2017, 233: 271-283. |
61 | HU X C, TANG X Y, BI Z Q, et al. Adaptive evolution of microalgae Schizochytrium sp. under high temperature for efficient production of docosahexaeonic acid[J]. Algal Research, 2021, 54: 102212. |
62 | JIAN X J, GUO X J, WANG J, et al. Microbial microdroplet culture system (MMC): an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution[J]. Biotechnology and Bioengineering, 2020, 117(6): 1724-1737. |
63 | WANG J, JIAN X J, XING X H, et al. Empowering a methanol-dependent Escherichia coli via adaptive evolution using a high-throughput microbial microdroplet culture system[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 570. |
64 | LI D J, WANG L, ZHAO Q Y, et al. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution[J]. Bioresource Technology, 2015, 185: 269-275. |
65 | CHENG D J, LI D J, YUAN Y Z, et al. Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution[J]. Biotechnology for Biofuels, 2017, 10: 75. |
66 | QI W Q, CHEN T J, WANG L, et al. High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation[J]. Bioresource Technology, 2017, 227: 317-323. |
67 | QI W Q, MEI S H, YUAN Y Z, et al. Enhancing fermentation wastewater treatment by co-culture of microalgae with volatile fatty acid- and alcohol-degrading bacteria[J]. Algal Research, 2018, 31: 31-39. |
68 | IBARRA R U, EDWARDS J S, PALSSON B O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth[J]. Nature, 2002, 420(6912): 186-189. |
69 | WANG X, BALAMURUGAN S, LIU S F, et al. Enhanced polyunsaturated fatty acid production using food wastes and biofuels byproducts by an evolved strain of Phaeodactylum tricornutum [J]. Bioresource Technology, 2020, 296: 122351. |
70 | ZHOU L, CHENG D J, WANG L, et al. Comparative transcriptomic analysis reveals phenol tolerance mechanism of evolved Chlorella strain[J]. Bioresource Technology, 2017, 227: 266-272. |
71 | HIROOKA S, HIROSE Y, KANESAKI Y, et al. Acidophilic green algal genome provides insights into adaptation to an acidic environment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(39): E8304-E8313. |
72 | LI J, PAN K H, TANG X X, et al. The molecular mechanisms of Chlorella sp. responding to high CO2: a study based on comparative transcriptome analysis between strains with high- and low-CO2 tolerance[J]. Science of the Total Environment, 2021, 763: 144185. |
73 | PENG H F, WEI D, CHEN G, et al. Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169[J]. Biotechnology for Biofuels, 2016, 9: 151. |
74 | SALAMA E S, GOVINDWAR S P, KHANDARE R V, et al. Can omics approaches improve microalgal biofuels under abiotic stress? [J]. Trends in Plant Science, 2019, 24(7): 611-624. |
75 | PALSSON B. Adaptive laboratory evolution[J]. Microbe Magazine, 2011, 6(2): 69-74. |
76 | FLETCHER E, FEIZI A, BISSCHOPS M M M, et al. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments[J]. Metabolic Engineering, 2017, 39: 19-28. |
77 | REN L J, SUN X M, ZHANG L H, et al. Exergy analysis for docosahexaenoic acid production by fermentation and strain improvement by adaptive laboratory evolution for Schizochytrium sp[J]. Bioresource Technology, 2020, 298: 122562. |
78 | ZHOU L, YUAN Y Z, LI X Y, et al. Exploration of phenol tolerance mechanism through antioxidative responses of an evolved strain, Chlorella sp. L5[J]. Journal of Applied Phycology, 2018, 30(4): 2379-2385. |
79 | LACROIX R A, PALSSON B O, FEIST A M. A model for designing adaptive laboratory evolution experiments[J]. Applied and Environmental Microbiology, 2017, 83(8): e03115-e03116. |
80 | PHANEUF P V, GOSTING D, PALSSON B O, et al. ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation[J]. Nucleic Acids Research, 2018, 47(D1): D1164-D1171. |
81 | YU T, ZHOU Y J, HUANG M T, et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis[J]. Cell, 2018, 174(6): 1549-1558.e14. |
82 | GONG Z, NIELSEN J, ZHOU Y J. Engineering robustness of microbial cell factories[J]. Biotechnology Journal, 2017, 12(10): 1700014. |
83 | 许可, 王靖楠, 李春. 智能抗逆微生物细胞工厂与绿色生物制造[J]. 合成生物学, 2020, 1(4): 427-439. |
XU K, WANG J N, LI C. Intelligent microbial cell factory with tolerance for green biological manufacturing[J]. Synthetic Biology Journal, 2020, 1(4): 427-439. | |
84 | BAEK K, YU J, JEONG J, et al. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis[J]. Biotechnology and Bioengineering, 2018, 115(3): 719-728. |
85 | HAO X H, LUO L, JOUHET J, et al. Enhanced triacylglycerol production in the diatom Phaeodactylum tricornutum by inactivation of a Hotdog-fold thioesterase gene using TALEN-based targeted mutagenesis[J]. Biotechnology for Biofuels, 2018, 11: 312. |
86 | NADUTHODI M I S, MOHANRAJU P, SÜDFELD C, et al. CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1[J]. Biotechnology for Biofuels, 2019, 12: 66. |
87 | LIU R M, LIANG L Y, FREED E F, et al. Engineering regulatory networks for complex phenotypes in E. coli [J]. Nature Communications, 2020, 11: 4050. |
88 | NOH M H, CHA S, KIM M, et al. Recent advances in microbial cell growth regulation strategies for metabolic engineering[J]. Biotechnology and Bioprocess Engineering, 2020, 25(6): 810-828. |
89 | CASTLE S D, GRIERSON C S, GOROCHOWSKI T E. Towards an engineering theory of evolution[J]. Nature Communications, 2021, 12: 3326. |
90 | ZHENG Y Y, HONG K Q, WANG B W, et al. Genetic diversity for accelerating microbial adaptive laboratory evolution[J]. ACS Synthetic Biology, 2021, 10(7): 1574-1586. |
91 | 王钱福, 严兴, 魏维, 等. 生物元件的挖掘、改造与标准化[J]. 生命科学, 2011, 23(9): 860-868. |
WANG Q F, YAN X, WEI W, et al. Screening, modification and standardization of biological parts for synthesis biology[J]. Chinese Bulletin of Life Sciences, 2011, 23(9): 860-868. | |
92 | PENG Z, LIU G, HUANG K Y. Cold adaptation mechanisms of a snow alga Chlamydomonas nivalis during temperature fluctuations[J]. Frontiers in Microbiology, 2021, 11: 611080. |
93 | WANG Y L, LIU X X, GAO H, et al. Early stage adaptation of a mesophilic green alga to Antarctica: systematic increases in abundance of enzymes and LEA proteins[J]. Molecular Biology and Evolution, 2019, 37(3): 849-863. |
94 | LUAN G D, ZHANG S S, LU X F. Engineering cyanobacteria chassis cells toward more efficient photosynthesis[J]. Current Opinion in Biotechnology, 2020, 62: 1-6. |
95 | SANDRINI G, JI X, VERSPAGEN J M H, et al. Rapid adaptation of harmful cyanobacteria to rising CO2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(33): 9315-9320. |
96 | LI J, ZHU K, MIAO L, et al. Simultaneous improvement of limonene production and tolerance in Yarrowia lipolytica through tolerance engineering and evolutionary engineering[J]. ACS Synthetic Biology, 2021, 10(4): 884-896. |
97 | FAYYAZ M, CHEW K W, SHOW P L, et al. Genetic engineering of microalgae for enhanced biorefinery capabilities[J]. Biotechnology Advances, 2020, 43: 107554. |
98 | KILIAN O, BENEMANN C S E, NIYOGI K K, et al. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 21265-21269. |
99 | WEEKS D P. Homologous recombination in Nannochloropsis: a powerful tool in an industrially relevant alga[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52): 20859-20860. |
100 | CHANG K S, KIM J, PARK H, et al. Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method[J]. Bioresource Technology, 2020, 303: 122932. |
101 | MALCI K, WALLS L E, RIOS-SOLIS L. Multiplex genome engineering methods for yeast cell factory development[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 589468. |
[1] | 叶精勤, 黄文华, 潘超, 朱力, 王恒樑. 合成生物学在多糖结合疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 338-352. |
[2] | 马雪璟, 郭畅, 华兆琳, 侯百东. 合成生物技术助力纳米颗粒疫苗理性设计时代的到来[J]. 合成生物学, 2024, 5(2): 353-368. |
[3] | 涂辉阳, 韩为东, 张斌. 肿瘤新抗原疫苗的设计与优化策略[J]. 合成生物学, 2024, 5(2): 254-266. |
[4] | 方超, 黄卫人. 合成生物学在肿瘤疫苗设计中的应用进展[J]. 合成生物学, 2024, 5(2): 239-253. |
[5] | 王步森, 徐婧含, 高智强, 侯利华. 病毒载体疫苗研究进展[J]. 合成生物学, 2024, 5(2): 281-293. |
[6] | 章金勇, 顾江, 关山, 李海波, 曾浩, 邹全明. 合成生物学助力细菌疫苗研发[J]. 合成生物学, 2024, 5(2): 321-337. |
[7] | 袁为锋, 赵永亮, 吴芷萱, 徐可. 合成生物学在新冠病毒广谱疫苗研发中的应用[J]. 合成生物学, 2024, 5(2): 369-384. |
[8] | 袁燕燕, 陈慧芳, 杨思慧, 王洪辉, 聂舟. 人工调控受体聚集的化学合成生物学策略及应用[J]. 合成生物学, 2024, 5(1): 53-76. |
[9] | 赵静宇, 张健, 祁庆生, 王倩. 基于细菌双组分系统的生物传感器的研究进展[J]. 合成生物学, 2024, 5(1): 38-52. |
[10] | 孟倩, 尹聪, 黄卫人. 肿瘤类器官及其在合成生物学中的研究进展[J]. 合成生物学, 2024, 5(1): 191-201. |
[11] | 郭肖杰, 剪兴金, 王立言, 张翀, 邢新会. 合成生物学表型测试生物反应器及其装备化研究进展[J]. 合成生物学, 2024, 5(1): 16-37. |
[12] | 刘夺, 刘培源, 李连月, 王雅欣, 崔钰惠, 薛慧敏, 王汉杰. 工程化细胞外囊泡的设计合成与生物医学应用[J]. 合成生物学, 2024, 5(1): 154-173. |
[13] | 孙翰, 刘进. 真核微藻脂质代谢工程的研究进展和展望[J]. 合成生物学, 2023, 4(6): 1140-1160. |
[14] | 刘伟松, 张坤城, 崔会娟, 朱之光, 张以恒, 张玲玲. 电能辅助二氧化碳生物转化[J]. 合成生物学, 2023, 4(6): 1191-1222. |
[15] | 孙绘梨, 崔金玉, 栾国栋, 吕雪峰. 面向高效光驱固碳产醇的蓝细菌合成生物技术研究进展[J]. 合成生物学, 2023, 4(6): 1161-1177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||