合成生物学 ›› 2022, Vol. 3 ›› Issue (4): 626-637.DOI: 10.12211/2096-8280.2021-087

• 特约评述 • 上一篇    下一篇

细菌生物被膜的软物质特性及其工程化应用

朱润涛, 钟超, 戴卓君   

  1. 中国科学院深圳先进技术研究院合成生物学研究所,广东 深圳 518055
  • 收稿日期:2021-08-27 修回日期:2021-12-22 出版日期:2022-08-31 发布日期:2022-09-08
  • 通讯作者: 钟超,戴卓君
  • 作者简介:朱润涛(1993—),男,硕士。研究方向为基于工程细菌及工程菌群的活体材料。E-mail:rt.zhu@siat.ac.cn
    钟超(1979—),男,博士,研究员。研究方向为利用合成生物学技术发展新材料,包括活体功能材料和蛋白水下黏合材料。E-mail:chao.zhong@siat.ac.cn
    戴卓君(1987—),女,博士,副研究员。研究方向是编辑合成功能菌群并结合高分子化学与物理的手段实现生物制剂及活体材料的智能制造。E-mail:zj.dai@siat.ac.cn
  • 基金资助:
    国家重点研发计划(2018YFA0903000);国家自然科学基金(32071427);深圳市科技计划(KQTD20180413181837372)

Biofilm matrixes-from soft matters to engineered materials

Runtao ZHU, Chao ZHONG, Zhuojun DAI   

  1. Institute of Synthetic Biology,Shenzhen Institude of Advanced Technology,Chinese Acdamey of Science,Shenzhen 518055,Guangdong,China
  • Received:2021-08-27 Revised:2021-12-22 Online:2022-08-31 Published:2022-09-08
  • Contact: Chao ZHONG, Zhuojun DAI

摘要:

2014年,利用工程化生物被膜大肠杆菌淀粉样蛋白纤维(curli)组装活材料工作的发表,正式拉开了活体功能材料这一新兴领域的序幕。截至目前,围绕活体材料主题,针对curli系统的编辑、组装、性能拓展以及应用等各个方向的相关研究层出不穷,也有一系列的综述对相关工作进行了详细的梳理,并对活体功能材料以及材料合成生物学新方向及新学科进行归纳及定义。然而,当研究人员试着去构建整幅活体材料领域发生及发展的拼图时,其中有一些关键信息缺失。在众多的生物体系中,为什么活体材料新方向会从生物被膜开启?另外,在生物被膜的繁杂组分中,是如何剥离出curli核心系统,并成为整个活体功能材料工程化的中心?围绕着这些疑问,本篇综述从生物被膜的软物质特性以及curli生物起源及调控的研究开始挖掘。从高分子物理及合成生物学的观点解读工程化生物被膜从体系选择、去粗取精、工程化设计、系统构建以及性能推广及优化中,由繁至简,再由简至繁的全过程。作者希望借这篇综述回顾工程化生物被膜curli从发掘到发展的历程,并进一步思考相关领域背后发展及推动的知识积累、设计思维以及发展理念,并期待这些思考将对未来活体材料研究的新体系与新范式带来启示、借鉴以及推动。

关键词: 生物被膜, 高分子物理, 合成生物学, 活体功能材料, 基因线路, 生物材料

Abstract:

The properties of natural living materials are tied with their biological function. For example, as bacteria grow under some conditions, they generate extracellular matrices composed of proteins and biopolymers to attain specific functions such as protection of bacteria from antibiotics and host defenses. In these dynamic processes, the spatial and temporal information required for the biofilm synthesis is encoded in the genome. The fast development of synthetic biology has greatly promoted the understanding of biology and broadened the application of engineered biological systems. Especially, the field of engineered living materials (ELMs) emerged at the intersection between the synthetic biology and the material science. In the last two decades, genetic engineering has applied living cells to express recombinant fusion proteins that can be purified and processed into protein-based materials. Also, metabolic engineering has applied living cells to synthesize small molecules that can serve as monomers for polymers and rubbers production. However, in these cases the cells only act as bio-factory and the properties of the final materials do not exploit the features of living biological systems. In contrast, ELMs are composed of living cells, which act as building blocks to modulate and direct the formation and function of the final materials. The resultant ELMs is programmable, self-regenerative and evolvable. The most pioneering efforts in ELMs development have focused on the engineering functional amyloids, which are secreted and assembled into nanofibrous structure on the cell surface. Especially, the curli of the E. coli was the very first engineered biofilm system. Since 2014, the related research about programming curli for ELMs assembly has accumulated rapidly. In this review, we discussed why and how this model system was chosen, engineered and developed, from the view of polymer physics and synthetic biology. We hope that our thoughts in this review would bring inspirations for more and further model system development in the ELMs.

Key words: biofilm, polymer physics, synthetic biology, living functional materials, gene circuit, biological materials

中图分类号: