合成生物学 ›› 2020, Vol. 1 ›› Issue (1): 92-102.DOI: 10.12211/2096-8280.2020-036
饶聪1, 云轩1, 虞沂1, 邓子新1,2
收稿日期:
2020-03-26
修回日期:
2020-04-19
出版日期:
2020-02-25
发布日期:
2020-07-07
通讯作者:
虞沂,邓子新
作者简介:
饶聪(1996-),男,硕士研究生。|虞沂(1978—),男,教授,博士生导师,研究方向为天然产物化学生物学。E-mail: 基金资助:
Cong RAO1, Xuan YUN1, Yi YU1, Zixin DENG1,2
Received:
2020-03-26
Revised:
2020-04-19
Online:
2020-02-25
Published:
2020-07-07
Contact:
Yi YU,Zixin DENG
摘要:
微生物天然产物一直都是新型生物药物创新的主要源泉,是目前开发临床抗菌、抗肿瘤、免疫抑制剂等药物的重要资源。随着临床耐药菌的日益增多,新型病原菌和病毒的不断出现,以及新骨架天然产物挖掘难度的增加,新型微生物药物的开发正面临着巨大挑战。作为21世纪生命医学领域催动原创突破和学科交叉融合的前沿学科,合成生物学的崛起为解决药物研发困境提供了新的思路和方法,它可以突破天然药物发现的瓶颈,设计新的生物合成途径,产生更多天然药物及类似物。本文综述了近五年来合成生物学在微生物药物研究领域的技术革新,及其在氨基糖苷类抗生素、核苷类抗生素、核糖体肽、萜类以及聚酮类化合物等5大类微生物天然药物的发掘、生物合成以及新结构创制等方面的应用。
中图分类号:
饶聪, 云轩, 虞沂, 邓子新. 微生物药物的合成生物学研究进展[J]. 合成生物学, 2020, 1(1): 92-102.
Cong RAO, Xuan YUN, Yi YU, Zixin DENG. Recent progress of synthetic biology applications in microbial pharmaceuticals research[J]. Synthetic Biology Journal, 2020, 1(1): 92-102.
图1 Valienamine天然多步合成途径及改造后的简化合成途径
Fig. 1 The natural multistep biosynthetic pathway of valienamine, and the simplified biosynthetic pathway after modification
图3 喹啉酸及其类似物喂养工程菌SL3052产生siomycin及其类似物
Fig. 3 The engineered strain SL3052 fed with quinolinic acid and its analogues, leading to the production of siomycin and its analogues
1 | NEWMAN David J, CRAGG Gordon M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. Journal of Natural Product, 2020, 83 (3): 770-803. |
2 | BERDY J. Thoughts and facts about antibiotics: where we are now and where we are heading[J]. Journal of Antibiotics, 2012, 65(8): 385-395. |
3 | KELWICK R, MACDONALD J T, WEBB A J, et al. Developments in the tools and methodologies of synthetic biology[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 60. |
4 | MUKHERJEE S, STAMATIS D, BERTSCH J, et al. Genomes OnLine database (GOLD) v.7: updates and new features[J]. Nucleic Acids Research, 2019, 47 (D1): 649-659. |
5 | SMANSKI M J, ZHOU H, CLAESEN J, et al. Synthetic biology to access and expand nature’s chemical diversity[J]. Nature Reviews Microbiology, 2016,14 (3):135-149. |
6 | BLIN Kai, PASCAL ANDREU Victòria, DE LOS SANTOS Emmanuel L C, et al. The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters[J]. Nucleic Acids Research, 2018, 47 (D1): 625-630. |
7 |
NAVARRO MU OZ Jorge C, SELEM MOJICA Nelly, MULLOWNEY Michael W, et al. A computational framework for systematic exploration of biosynthetic diversity from large-scale genomic data[J]. bioRxiv., 2018: 445270.DOI: 10.110/445270
DOI |
8 | Gökcen ERASLAN, Žiga AVSEC, GAGNEUR Julien, et al. Deep learning: new computational modelling techniques for genomics[J]. Nature Reviews Genetics, 2019, 20 (7): 389-403. |
9 | TIETZ Jonathan I, SCHWALEN Christopher J, PATEL Parth S, et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape[J]. Nature Chemical Biology, 2017, 13 (5): 470-478. |
10 | HU Qiannan, DENG Zhe, HU Huanan, et al. RxnFinder: biochemical reaction search engines using molecular structures, molecular fragments and reaction similarity[J]. Bioinformatics, 2011, 27 (17): 2465-2467. |
11 | CHENG Xingxiang, SUN Dandan, ZHANG Dachuan, et al. RxnBLAST: molecular scaffold and reactive chemical environment feature extractor for biochemical reactions[J]. Bioinformatics, 2020,36(9): 2946-2947. |
12 |
ZHANG Tong, TIAN Yu, YUAN Le, et al. Bio2Rxn: sequence-based enzymatic reaction predictions by a consensus strategy[J]. Bioinformatics, 2020. DOI: 10.1093/bio in formatics/baa135.
DOI |
13 | TU Weizhong, ZHANG Haoran, LIU Juan, et al. BioSynther: a customized biosynthetic potential explorer[J]. Bioinformatics, 2015, 32 (3): 472-473. |
14 | DING Shaozhen, LIAO Xiaoping, TU Weizhong, et al. EcoSynther: a customized platform to explore biosynthetic potential in E. coli[J]. ACS Chemical Biology, 2017, 12 (11), 2823-2829. |
15 | HAMEDIRAD Mohammad, CHAO Ran, WEISBERG Scott, et al. Towards a fully automated algorithm driven platform for biosystems design[J]. Nature Communications, 2019, 10 (1): 5150. |
16 | HERRMANN S, SIEGL T, LUZHETSKA M, et al. Site-specific recombination strategies for engineering actinomycete genomes[J]. Applied and Environmental Microbiology, 2012, 78 (6): 1804-1812. |
17 | JIANG W, BIKARD D, COX D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31 (3): 233-239. |
18 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337 (6096): 816-821. |
19 | COBB Ryan E, WANG Yajie, ZHAO Huimin. High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4 (6): 723-728. |
20 | ZHANG M M, WONG F T, WANG Y, et al. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nature Chemical Biology, 2017, 13: 607-609. |
21 | WANG Hailong, LI Zhen, JIA Ruonan, et al. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression[J]. Nature Protocols, 2016, 11 (7): 1175-1190. |
22 | BU Qingting, YU Pin, WANG Jue, et al. Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches[J]. Microbial Cell Factories, 2019, 18 (1): 16. |
23 | KALLIFIDAS Dimitris, JIANG Guangde, DING Yousong, et al. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters[J]. Microbial Cell Factories, 2018, 17 (1): 25. |
24 | LUO X, REITER M A, D'ESPAUX L,et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567 (7746): 123-126. |
25 | JUNG W S, LEE S K, HONG J S, et al. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae[J]. Applied Microbiology and Biotechnology, 2006, 72 (4): 763-769. |
26 | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496 (7446): 528-532. |
27 | LI Sicong, GUO Junhong, REVA Anna, et al. Methyltransferases of gentamicin biosynthesis[J]. PNAS, 2018, 115 (6): 1340. |
28 | BURY Priscila dos Santos, HUANG Fanglu, LI Sicong, et al. Structural basis of the selectivity of GenN, an aminoglycoside N-methyltransferase involved in gentamicin biosynthesis[J]. ACS Chemical Biology, 2017, 12 (11): 2779-2787. |
29 | TAO Weixin, CHEN Li, ZHAO Chunhua, et al. In vitro packaging mediated one-step targeted cloning of natural product pathway[J]. ACS Synthetic Biology, 2019, 8 (9): 1991-1997. |
30 | CUI Li, ZHU Ying, GUAN Xiaoqing, et al. De novo biosynthesis of β-valienamine in engineered Streptomyces hygroscopicus 5008[J]. ACS Synthetic Biology, 2016, 5 (1): 15-20. |
31 | CUI Li, WEI Xiaodong, WANG Xinran, et al. A validamycin shunt pathway for valienamine synthesis in engineered Streptomyces hygroscopicus 5008[J]. ACS Synthetic Biology, 2020, 9(2), 294-303. |
32 | ZHAO Q, LUO Y, ZHANG X, et al. A severe leakage of intermediates to shunt products in acarbose biosynthesis[J]. Nature Communications, 2020, 11 (1): 1468. |
33 | CHEN Wenqing, QI Jianzhao, WU Pan, et al. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43 (2): 401-417. |
34 | QI Jianzhao, WAN Dan, MA Hongmin, et al. Deciphering carbamoylpolyoxamic acid biosynthesis reveals unusual acetylation cycle associated with tandem reduction and sequential hydroxylation[J]. Cell Chemical Biology, 2016, 23 (8): 935-944. |
35 | CHEN Wenqing, LI Yan, LI Jie, et al. An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis[J]. Protein & Cell, 2016, 7 (9): 673-683. |
36 | WU Pan, WAN Dan, XU Gudan, et al. An unusual Protector-Protégé strategy for the biosynthesis of purine nucleoside antibiotics[J]. Cell Chemical Biology, 2017, 24 (2): 171-181. |
37 |
ZHANG Meng, ZHANG Peichao, XU Gudan, et al. Comparative investigation into formycin A and pyrazofurin A biosynthesis reveals branch pathways for the construction of C-nucleoside scaffolds[J]. Applied and Environmental Microbiology, 2019. DOI:10.1128/AEM.01971-19.
DOI |
38 | LIU Yan, GONG Rong, LIU Xiaoqin, et al. Discovery and characterization of the tubercidin biosynthetic pathway from Streptomyces tubercidicus NBRC 13090[J]. Microbial Cell Factories, 2018, 17 (1): 131. |
39 |
XU Gudan, KONG Liyuan, GONG Rong, et al. Coordinated biosynthesis of the purine nucleoside antibiotics aristeromycin and coformycin in actinomycetes[J]. Applied and Environmental Microbiology, 2018, 84 (22).DOI: 10.1128/AEM.01860-18.
DOI |
40 | ZHANG Yi, CHEN Manyun, BRUNER Steven D, et al. Heterologous production of microbial ribosomally synthesized and post-translationally modified peptides[J]. Frontiers in Microbiology, 2018, 9: 1801. |
41 | ZHENG Qingfei, FANG Hui, LIU Wen. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics[J]. Organic & Biomolecular Chemistry, 2017, 15 (16): 3376-3390. |
42 | QIU Yanping, DU Yanan, WANG Shoufeng, et al. Radical S-adenosylmethionine protein NosN forms the side ring system of nosiheptide by functionalizing the polythiazolyl peptide S-conjugated indolic moiety[J]. Organic Letters, 2019, 21 (5): 1502-1505. |
43 | LIU Jingyu, LIN Zhi, CHEN Hua, et al. Biosynthesis of the central piperidine nitrogen heterocycle in series a thiopeptides[J]. Chinese Journal of Chemistry, 2019, 37 (1): 35-41. |
44 | WANG Jian, LIN Zhi, BAI Xuebing, et al. Optimal design of thiostrepton-derived thiopeptide antibiotics and their potential application against oral pathogens[J]. Organic Chemistry Frontiers, 2019, 6 (8): 1194-1199. |
45 | MO Tianlu, LIU Wanqiu, JI Wenjuan, et al. Biosynthetic insights into Linaridin natural products from genome mining and Precursor peptide mutagenesis[J]. ACS Chemical Biology, 2017, 12 (6): 1484-1488. |
46 | BIAN Guangkai, HAN Yichao, HOU Anwei, et al. Releasing the potential power of terpene synthases by a robust precursor supply platform[J]. Metabolic Engineering, 2017, 42: 1-8. |
47 | BIAN Guangkai, HOU Anwei, YUAN Yujie, et al. Metabolic engineering-based rapid characterization of a sesquiterpene cyclase and the skeletons of Fusariumdiene and Fusagramineol from Fusarium graminearum[J]. Organic Letters, 2018, 20 (6): 1626-1629. |
48 | CHENG S, LIU X, JIANG G, et al. Orthogonal engineering of biosynthetic pathway for efficient production of Limonene in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2019, 8 (5): 968-975. |
49 | KANG Wei, MA Tian, LIU Min, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10 (1): 1-11. |
50 | WANG Weishan, LI Shanshan, LI Zilong, et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces[J]. Nature Biotechnology, 2020, 38 (1): 76-83. |
51 | YOU Di, WANG Miaomiao, YIN Bincheng, et al. Precursor supply for Erythromycin biosynthesis: Engineering of propionate assimilation pathway based on propionylation modification[J]. ACS Synthetic Biology, 2019, 8 (2): 371-380. |
52 | PALAZZOTTO E, TONG Y, LEE S Y, et al. Synthetic biology and metabolic engineering of actinomycetes for natural product discovery[J]. Biotechnology Advances, 2019, 37 (6): 107366. |
[1] | 刁志钿, 王喜先, 孙晴, 徐健, 马波. 单细胞拉曼光谱测试分选装备研制及应用进展[J]. 合成生物学, 2023, 4(5): 1020-1035. |
[2] | 卢挥, 张芳丽, 黄磊. 合成生物学自动化装置iBioFoundry的构建与应用[J]. 合成生物学, 2023, 4(5): 877-891. |
[3] | 白仲虎, 任和, 聂简琪, 孙杨. 高通量平行发酵技术的发展与应用[J]. 合成生物学, 2023, 4(5): 904-915. |
[4] | 吴玉洁, 刘欣欣, 刘健慧, 杨开广, 随志刚, 张丽华, 张玉奎. 基于高通量液相色谱质谱技术的菌株筛选与关键分子定量分析研究进展[J]. 合成生物学, 2023, 4(5): 1000-1019. |
[5] | 胡哲辉, 徐娟, 卞光凯. 自动化高通量技术在天然产物生物合成中的应用[J]. 合成生物学, 2023, 4(5): 932-946. |
[6] | 刘欢, 崔球. 原位电离质谱技术在微生物菌株筛选中的应用进展[J]. 合成生物学, 2023, 4(5): 980-999. |
[7] | 王雁南, 孙宇辉. 碱基编辑技术及其在微生物合成生物学中的应用[J]. 合成生物学, 2023, 4(4): 720-737. |
[8] | 刘晚秋, 季向阳, 许慧玲, 卢屹聪, 李健. 限制性内切酶的无细胞快速制备研究[J]. 合成生物学, 2023, 4(4): 840-851. |
[9] | 孙美莉, 王凯峰, 陆然, 纪晓俊. 解脂耶氏酵母底盘细胞的工程改造及应用[J]. 合成生物学, 2023, 4(4): 779-807. |
[10] | 张凡忠, 相长君, 张骊駻. 进化与大数据导向生物信息学在天然产物研究中的发展及应用[J]. 合成生物学, 2023, 4(4): 629-650. |
[11] | 曾涛, 巫瑞波. 数据驱动的酶反应预测与设计[J]. 合成生物学, 2023, 4(3): 535-550. |
[12] | 孙智, 杨宁, 娄春波, 汤超, 杨晓静. 功能拓扑的理性设计及其在合成生物学中的应用[J]. 合成生物学, 2023, 4(3): 444-463. |
[13] | 赖奇龙, 姚帅, 查毓国, 白虹, 宁康. 微生物组生物合成基因簇发掘方法及应用前景[J]. 合成生物学, 2023, 4(3): 611-627. |
[14] | 孟巧珍, 郭菲. “可折叠性”在酶智能设计改造中的应用研究——以AlphaFold2为例[J]. 合成生物学, 2023, 4(3): 571-589. |
[15] | 王晟, 王泽琛, 陈威华, 陈珂, 彭向达, 欧发芬, 郑良振, 孙瑨原, 沈涛, 赵国屏. 基于人工智能和计算生物学的合成生物学元件设计[J]. 合成生物学, 2023, 4(3): 422-443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||