合成生物学 ›› 2025, Vol. 6 ›› Issue (5): 1093-1106.DOI: 10.12211/2096-8280.2025-086
魏家秀1, 嵇佩云1, 节庆雨1, 黄秋燕1, 叶浩1, 戴俊彪1,2
收稿日期:2025-08-20
修回日期:2025-09-27
出版日期:2025-10-31
发布日期:2025-11-05
通讯作者:
戴俊彪
作者简介:基金资助:WEI Jiaxiu1, JI Peiyun1, JIE Qingyu1, HUANG Qiuyan1, YE Hao1, DAI Junbiao1,2
Received:2025-08-20
Revised:2025-09-27
Online:2025-10-31
Published:2025-11-05
Contact:
DAI Junbiao
摘要:
植物人工染色体(PAC)是一种人工构建、能在植物细胞中独立复制并稳定遗传的染色体载体,具有高度工程化潜力。其核心优势在于能够承载超大容量基因模块并且独立于天然染色体系统,被视为一种潜在的通用基因操作平台,具有遗传稳定性与安全性。本文从合成生物学视角,系统评述了PAC的构建策略、递送技术,并讨论了其在植物核外基因组中的研究进展。当前,PAC构建主要采取自上而下与自下而上两种策略。然而,PAC的大容量也使其递送更为困难。PAC的构建不仅能在染色体尺度上改造现有植物,更能通过构建全新的基因网络和代谢途径,尝试设计和创造自然界尚未存在的、具有特殊功能或属性的新生命形式,极大地拓展了合成生物学在植物领域的疆界。为充分释放这一潜力,未来研究需攻克超大DNA片段合成与递送的技术瓶颈,持续优化其遗传稳定性,并深度融合人工智能与合成生物技术,以实现PAC的精准设计与高效功能调控,从而驱动其在农业、医药及环保等领域的突破性应用。
中图分类号:
魏家秀, 嵇佩云, 节庆雨, 黄秋燕, 叶浩, 戴俊彪. 植物人工染色体的构建与应用[J]. 合成生物学, 2025, 6(5): 1093-1106.
WEI Jiaxiu, JI Peiyun, JIE Qingyu, HUANG Qiuyan, YE Hao, DAI Junbiao. Construction and application of plant artificial chromosomes[J]. Synthetic Biology Journal, 2025, 6(5): 1093-1106.
| [1] | COHEN S N, CHANG A C Y, BOYER H W, et al. Construction of biologically functional bacterial plasmids in vitro [J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(11): 3240-3244. |
| [2] | MURRAY A W, SZOSTAK J W. Construction of artificial chromosomes in yeast[J]. Nature, 1983, 305(5931): 189-193. |
| [3] | BURKE D T, CARLE G F, OLSON M V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors[J]. Science, 1987, 236(4803): 806-812. |
| [4] | HARRINGTON J J, BOKKELEN G V, MAYS R W, et al. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes[J]. Nature Genetics, 1997, 15(4): 345-355. |
| [5] | CARLSON S R, RUDGERS G W, ZIELER H, et al. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome[J]. PLoS Genetics, 2007, 3(10): e179. |
| [6] | YU W C, LAMB J C, HAN F P, et al. Telomere-mediated chromosomal truncation in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(46): 17331-17336. |
| [7] | BIRCHLER J A, HAN F P. Maize centromeres: structure, function, epigenetics[J]. Annual Review of Genetics, 2009, 43: 287-303. |
| [8] | JIANG S Y, LUO Z Q, WU J, et al. Building a eukaryotic chromosome arm by de novo design and synthesis[J]. Nature Communications, 2023, 14: 7886. |
| [9] | JAKUBIEC A, SAROKINA A, CHOINARD S, et al. Replicating minichromosomes as a new tool for plastid genome engineering[J]. Nature Plants, 2021, 7(7): 932-941. |
| [10] | SHAO R F, BARKER S C. Chimeric mitochondrial minichromosomes of the human body louse, Pediculus humanus: evidence for homologous and non-homologous recombination[J]. Gene, 2011, 473(1): 36-43. |
| [11] | RUF S, KARCHER D, BOCK R. Determining the transgene containment level provided by chloroplast transformation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(17): 6998-7002. |
| [12] | MALIGA P. Plastid transformation in higher plants[J]. Annual Review of Plant Biology, 2004, 55: 289-313. |
| [75] | LIU Y G, SHIRANO Y, FUKAKI H, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 6535-6540. |
| [76] | LIN L, LIU Y G, XU X P, et al. Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5962-5967. |
| [77] | ZHU Q L, LIU Y G. TransGene stacking Ⅱ vector system for plant metabolic engineering and synthetic biology[J]. Methods in Molecular Biology, 2021, 2238: 19-35. |
| [78] | SRIVASTAVA V, THOMSON J. Gene stacking by recombinases[J]. Plant Biotechnology Journal, 2016, 14(2): 471-482. |
| [79] | ZHAO Y C, HAN J L, TAN J T, et al. Efficient assembly of long DNA fragments and multiple genes with improved nickase-based cloning and Cre/loxP recombination[J]. Plant Biotechnology Journal, 2022, 20(10): 1983-1995. |
| [80] | ZHU Q L, ZENG D C, YU S Z, et al. From Golden Rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm[J]. Molecular Plant, 2018, 11(12): 1440-1448. |
| [81] | ZHU Q L, YU S Z, ZENG D C, et al. Development of “Purple Endosperm Rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system[J]. Molecular Plant, 2017, 10(7): 918-929. |
| [82] | WANG L M, SHEN B R, LI B D, et al. A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice[J]. Molecular Plant, 2020, 13(12): 1802-1815. |
| [83] | SUN C, LI H C, LIU Y J, et al. Iterative recombinase technologies for efficient and precise genome engineering across kilobase to megabase scales[J]. Cell, 2025, 188(17): 4693-4710.e15. |
| [84] | RENSING S A, GOFFINET B, MEYBERG R, et al. The moss Physcomitrium (Physcomitrella) patens: a model organism for non-seed plants[J]. The Plant Cell, 2020, 32(5): 1361-1376. |
| [85] | KAMISUGI Y, CUMING A C, COVE D J. Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens [J]. Nucleic Acids Research, 2005, 33(19): e173. |
| [86] | BEN-TOV D, MAFESSONI F, CUCUY A, et al. Uncovering the dynamics of precise repair at CRISPR/Cas9-induced double-strand breaks[J]. Nature Communications, 2024, 15: 5096. |
| [87] | JEONG S H, LEE H J, LEE S J. Recent advances in CRISPR-Cas technologies for synthetic biology[J]. Journal of Microbiology, 2023, 61(1): 13-36. |
| [13] | BOCK R. Transgenic plastids in basic research and plant biotechnology[J]. Journal of Molecular Biology, 2001, 312(3): 425-438. |
| [14] | TAUNT H N, STOFFELS L, PURTON S. Green biologics: the algal chloroplast as a platform for making biopharmaceuticals[J]. Bioengineered, 2018, 9(1): 48-54. |
| [15] | WANI S H, HAIDER N, KUMAR H, et al. Plant plastid engineering[J]. Current Genomics, 2010, 11(7): 500-512. |
| [16] | JAMES J S, DAI J B, CHEW W L, et al. The design and engineering of synthetic genomes[J]. Nature Reviews Genetics, 2025, 26(5): 298-319. |
| [17] | PUCHTA H, HOUBEN A. Plant chromosome engineering-past, present and future[J]. New Phytologist, 2024, 241(2): 541-552. |
| [18] | YU W C, HAN F P, GAO Z, et al. Construction and behavior of engineered minichromosomes in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21): 8924-8929. |
| [19] | ZHONG C X, MARSHALL J B, TOPP C, et al. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3[J]. The Plant Cell, 2002, 14(11): 2825-2836. |
| [20] | GENT J I, WANG N, DAWE R K. Stable centromere positioning in diverse sequence contexts of complex and satellite centromeres of maize and wild relatives[J]. Genome Biology, 2017, 18(1): 121. |
| [21] | ZÁVODNÍK M, FAJKUS P, FRANEK M, et al. Telomerase RNA gene paralogs in plants - the usual pathway to unusual telomeres[J]. New Phytologist, 2023, 239(6): 2353-2366. |
| [22] | KUMAWAT S, CHOI J Y. No end in sight: mysteries of the telomeric variation in plants[J]. American Journal of Botany, 2023, 110(11): e16244. |
| [23] | GRAHAM N D, CODY J P, SWYERS N C, et al. Chapter Three - Engineered minichromosomes in plants: structure, function, and applications[M/OL]//JEON K W. International review of cell and molecular biology. Netherlands, Amsterdan: Academic Press, 2015: 63-119. (2015-06-17)[2025-09-01]. . |
| [24] | BIRCHLER J A, GRAHAM N D, SWYERS N C, et al. Plant minichromosomes[J]. Current Opinion in Biotechnology, 2016, 37: 135-142. |
| [25] | YIN X Z, ZHANG Y X, CHEN Y H, et al. Precise characterization and tracking of stably inherited artificial minichromosomes made by telomere-mediated chromosome truncation in Brassica napus [J]. Frontiers in Plant Science, 2021, 12: 743792. |
| [88] | ROZOV S M, PERMYAKOVA N V, DEINEKO E V. The problem of the low rates of CRISPR/Cas9-mediated knock-ins in plants: approaches and solutions[J]. International Journal of Molecular Sciences, 2019, 20(13): 3371. |
| [89] | LIANG Z, CHEN K L, LI T D, et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes[J]. Nature Communications, 2017, 8: 14261. |
| [90] | WOO J W, KIM J, KWON S I, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nature Biotechnology, 2015, 33(11): 1162-1164. |
| [91] | OSTROV N, BEAL J, ELLIS T, et al. Technological challenges and milestones for writing genomes[J]. Science, 2019, 366(6463): 310-312. |
| [92] | LIU W S, STEWART C N JR. Plant synthetic biology[J]. Trends in Plant Science, 2015, 20(5): 309-317. |
| [93] | VOLLEN K, ZHAO C S, ALONSO J M, et al. Sourcing DNA parts for synthetic biology applications in plants[J]. Current Opinion in Biotechnology, 2024, 87: 103140. |
| [94] | PFOTENHAUER A C, OCCHIALINI A, NGUYEN M A, et al. Building the plant SynBio toolbox through combinatorial analysis of DNA regulatory elements[J]. ACS Synthetic Biology, 2022, 11(8): 2741-2755. |
| [95] | NAYAK N, MEHROTRA S, KARAMCHANDANI A N, et al. Recent advances in designing synthetic plant regulatory modules[J]. Frontiers in Plant Science, 2025, 16: 1567659. |
| [96] | TIAN C F, LI J H, WU Y H, et al. An integrative database and its application for plant synthetic biology research[J]. Plant Communications, 2024, 5(5): 100827. |
| [97] | SILVEIRA GOMIDE M DA, DE CASTRO LEITÃO M, COELHO C M. Biocircuits in plants and eukaryotic algae[J]. Frontiers in Plant Science, 2022, 13: 982959. |
| [98] | BASSO M F, ARRAES F B M, GROSSI-DE-SA M, et al. Insights into genetic and molecular elements for transgenic crop development[J]. Frontiers in Plant Science, 2020, 11: 509. |
| [99] | ANDRES J, BLOMEIER T, ZURBRIGGEN M D. Synthetic switches and regulatory circuits in plants[J]. Plant Physiology, 2019, 179(3): 862-884. |
| [26] | GAETA R T, MASONBRINK R E, ZHAO C Z, et al. In vivo modification of a maize engineered minichromosome[J]. Chromosoma, 2013, 122(3): 221-232. |
| [27] | YAN X H, LI C, YANG J, et al. Induction of telomere-mediated chromosomal truncation and behavior of truncated chromosomes in Brassica napus [J]. The Plant Journal, 2017, 91(4): 700-713. |
| [28] | KAPUSI E, MA L, TEO C H, et al. Telomere-mediated truncation of barley chromosomes[J]. Chromosoma, 2012, 121(2): 181-190. |
| [29] | TEO C H, MA L, KAPUSI E, et al. Induction of telomere-mediated chromosomal truncation and stability of truncated chromosomes in Arabidopsis thaliana [J]. The Plant Journal, 2011, 68(1): 28-39. |
| [30] | NELSON A D, LAMB J C, KOBROSSLY P S, et al. Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis [J]. The Plant Cell, 2011, 23(6): 2263-2272. |
| [31] | XU C H, CHENG Z K, YU W C. Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation[J]. The Plant Journal, 2012, 70(6): 1070-1079. |
| [32] | YAN D, MA Y H, WANG H, et al. High ionic conductivity conjugated artificial solid electrolyte interphase enabling stable lithium metal batteries[J]. Green Chemistry, 2025, 27(25): 7564-7574. |
| [33] | LIU J L, ZHANG R X, CHAI N, et al. Programmable genome engineering and gene modifications for plant biodesign[J]. Plant Communications, 2025, 6(8): 101427. |
| [34] | YANG X Y, LI J H, CHEN L, et al. Stable mitotic inheritance of rice minichromosomes in cell suspension cultures[J]. Plant Cell Reports, 2015, 34(6): 929-941. |
| [35] | SATTAR M N, HASHEDI S A AL, MUNIR M, et al. Practical applications of minichromosomes in modern agriculture for better crops[M]//AL-KHAYRI J M, YATOO A M, JAIN S M, et al. Handbook of agricultural technologies. Singapore: Springer Nature Singapore, 2025: 1-22. (2025-02-28)[2025-09-01]. . |
| [36] | JONES N, HOUBEN A. B chromosomes in plants: escapees from the A chromosome genome [J]. Trends in Plant Science, 2003, 8(9): 417-423. |
| [37] | BIRCHLER J A, SWYERS N C. Engineered minichromosomes in plants[J]. Experimental Cell Research, 2020, 388(2): 111852. |
| [38] | NAISH M. Bridging the gap: unravelling plant centromeres in the telomere-to-telomere era[J]. New Phytologist, 2024, 244(6): 2143-2149. |
| [39] | COMAI L, MAHESHWARI S, MARIMUTHU M P A. Plant centromeres[J]. Current Opinion in Plant Biology, 2017, 36: 158-167. |
| [100] | EMILIANI V, ENTCHEVA E, HEDRICH R, et al. Optogenetics for light control of biological systems[J]. Nature Reviews Methods Primers, 2022, 2: 55. |
| [101] | KONG C, YANG Y, QI T C, et al. Predictive genetic circuit design for phenotype reprogramming in plants[J]. Nature Communications, 2025, 16: 715. |
| [102] | VAZQUEZ-VILAR M, QUIJANO-RUBIO A, FERNANDEZ-DEL-CARMEN A, et al. GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data[J]. Nucleic Acids Research, 2017, 45(4): 2196-2209. |
| [103] | YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature Protocols, 2007, 2(7): 1565-1572. |
| [104] | JIANG F W, ZHU J, LIU H L. Protoplasts: a useful research system for plant cell biology, especially dedifferentiation[J]. Protoplasma, 2013, 250(6): 1231-1238. |
| [105] | DLUGOSZ E M, LENAGHAN S C, STEWART C N. A robotic platform for high-throughput protoplast isolation and transformation[J]. Journal of Visualized Experiments, 2016(115): e54300. |
| [106] | ONG J Y, SWIDAH R, MONTI M, et al. SCRaMbLE: a study of its robustness and challenges through enhancement of hygromycin B resistance in a semi-synthetic yeast[J]. Bioengineering, 2021, 8(3): 42. |
| [107] | SCHINDLER D, WALKER R S K, JIANG S Y, et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast[J]. Cell, 2023, 186(24): 5237-5253.e22. |
| [108] | NGUYEN E, POLI M, DURRANT M G, et al. Sequence modeling and design from molecular to genome scale with Evo[J]. Science, 2024, 386(6723): eado9336. |
| [109] | AVSEC Ž, LATYSHEVA N, CHENG J, et al. AlphaGenome: advancing regulatory variant effect prediction with a unified DNA sequence model[EB/OL]. bioRxiv. 2025. (2025-07-11)[2025-09-01]. . |
| [110] | PRADHAN B, PANDA D, BISHI S K, et al. Progress and prospects of C4 trait engineering in plants[J]. Plant Biology, 2022, 24(6): 920-931. |
| [111] | PRYWES N, PHILLIPS N R, TUCK O T, et al. Rubisco function, evolution, and engineering[J]. Annual Review of Biochemistry, 2023, 92: 385-410. |
| [40] | YU W C, YAU Y Y, BIRCHLER J A. Plant artificial chromosome technology and its potential application in genetic engineering[J]. Plant Biotechnology Journal, 2016, 14(5): 1175-1182. |
| [41] | ANANIEV E V, WU C C, CHAMBERLIN M A, et al. Artificial chromosome formation in maize (Zea mays L.)[J]. Chromosoma, 2009, 118(2): 157-177. |
| [42] | LOGSDON G A, GAMBOGI C W, LISKOVYKH M A, et al. Human artificial chromosomes that bypass centromeric DNA[J]. Cell, 2019, 178(3): 624-639.e19. |
| [43] | MENDIBURO M J, PADEKEN J, FÜLÖP S, et al. Drosophila CENH3 is sufficient for centromere formation[J]. Science, 2011, 334(6056): 686-690. |
| [44] | ZENG Y B, WANG M Y, GENT J I, et al. Increased maize chromosome number by engineered chromosome fission[J]. Science Advances, 2025, 11(21): eadw3433. |
| [45] | DAWE R K, GENT J I, ZENG Y B, et al. Synthetic maize centromeres transmit chromosomes across generations[J]. Nature Plants, 2023, 9(3): 433-441. |
| [46] | PESKA V, GARCIA S. Origin, diversity, and evolution of telomere sequences in plants[J]. Frontiers in Plant Science, 2020, 11: 117. |
| [47] | TAN X Y, WU X L, HAN M Z, et al. Yeast autonomously replicating sequence (ARS): identification, function, and modification[J]. Engineering in Life Sciences, 2021, 21(7): 464-474. |
| [48] | ECKDAHL T T, BENNETZEN J L, ANDERSON J N. DNA structures associated with autonomously replicating sequences from plants[J]. Plant Molecular Biology, 1989, 12(5): 507-516. |
| [49] | MOLIN W T, YAGUCHI A, BLENNER M, et al. Autonomous replication sequences from the Amaranthus palmeri eccDNA replicon enable replication in yeast[J]. BMC Research Notes, 2020, 13(1): 330. |
| [50] | OCCHIALINI A, PFOTENHAUER A C, LI L, et al. Mini-synplastomes for plastid genetic engineering[J]. Plant Biotechnology Journal, 2022, 20(2): 360-373. |
| [51] | OCCHIALINI A, KING G, MAJDI M, et al. An optimized version of the small synthetic genome (mini-synplastome) for plastid metabolic engineering in Solanum tuberosum (potato)[J]. ACS Synthetic Biology, 2024, 13(12): 4245-4257. |
| [52] | YONG J X, WU M M, CARROLL B J, et al. Enhancing plant biotechnology by nanoparticle delivery of nucleic acids[J]. Trends in Genetics, 2024, 40(4): 352-363. |
| [53] | RUSTGI S, NAVEED S, WINDHAM J, et al. Plant biomacromolecule delivery methods in the 21st century[J]. Frontiers in Genome Editing, 2022, 4: 1011934. |
| [54] | MIYAMOTO T, NUMATA K. Advancing biomolecule delivery in plants: harnessing synthetic nanocarriers to overcome multiscale barriers for cutting-edge plant bioengineering[J]. Bulletin of the Chemical Society of Japan, 2023, 96(9): 1026-1044. |
| [55] | CHO H J, MOY Y, RUDNICK N A, et al. Development of an efficient marker-free soybean transformation method using the novel bacterium Ochrobactrum haywardense H1[J]. Plant Biotechnology Journal, 2022, 20(5): 977-990. |
| [56] | WOO S S, JIANG J, GILL B S, et al. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor [J]. Nucleic Acids Research, 1994, 22(23): 4922-4931. |
| [57] | WANG G L, HOLSTEN T E, SONG W Y, et al. Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus[J]. The Plant Journal, 1995, 7(3): 525-533. |
| [58] | HAMILTON C M, FRARY A, LEWIS C, et al. Stable transfer of intact high molecular weight DNA into plant chromosomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(18): 9975-9979. |
| [59] | ZIEMIENOWICZ A. Agrobacterium-mediated plant transformation: factors, applications and recent advances[J]. Biocatalysis and Agricultural Biotechnology, 2014, 3(4): 95-102. |
| [60] | LI X Y, YANG Q H, PENG L, et al. Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(42): 26389-26397. |
| [61] | GORALOGIA G S, WILLIG C, STRAUSS S H. Engineering Agrobacterium for improved plant transformation[J]. The Plant Journal, 2025, 121(5): e70015. |
| [62] | LIU Y C, VIDALI L. Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens [J]. Journal of Visualized Experiments, 2011(50): e2560. |
| [63] | BATES G W. Plant transformation via protoplast electroporation[M/OL]//HALL R D. Methods in molecular biology: plant cell culture protocols. Totowa, NJ: Humana Press, 1999: 359-366 [2025-09-01]. . |
| [64] | MORI K, TANASE K, SASAKI K. Novel electroporation-based genome editing of carnation plant tissues using RNPs targeting the anthocyanidin synthase gene[J]. Planta, 2024, 259(4): 84. |
| [65] | LEE K, WANG K. Strategies for genotype-flexible plant transformation[J]. Current Opinion in Biotechnology, 2023, 79: 102848. |
| [66] | ISMAGUL A, YANG N N, MALTSEVA E, et al. A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions[J]. BMC Plant Biology, 2018, 18(1): 135. |
| [67] | KANDHOL N, DASH P K, SINGH V P, et al. Nanomaterial-based gene delivery in plants: an upcoming genetic revolution [J/OL]. Trends in Plant Science, 2025. (2025-06-28)[2025-09-01]. . |
| [68] | YAN Y, ZHU X J, YU Y, et al. Nanotechnology strategies for plant genetic engineering[J]. Advanced Materials, 2022, 34(7): 2106945. |
| [69] | ZUVIN M, KURUOGLU E, KAYA V O, et al. Magnetofection of green fluorescent protein encoding DNA-bearing polyethyleneimine-coated superparamagnetic iron oxide nanoparticles to human breast cancer cells[J]. ACS Omega, 2019, 4(7): 12366-12374. |
| [70] | LIU Y, YANG H, SAKANISHI A. Ultrasound: mechanical gene transfer into plant cells by sonoporation[J]. Biotechnology Advances, 2006, 24(1): 1-16. |
| [71] | YANG L Y, CUI G M, WANG Y X, et al. Expression of foreign genes demonstrates the effectiveness of pollen-mediated transformation in Zea mays [J]. Frontiers in Plant Science, 2017, 8: 383. |
| [72] | JOERSBO M, BRUNSTEDT J. Sonication: a new method for gene transfer to plants[J]. Physiologia Plantarum, 1992, 85(2): 230-234. |
| [73] | NANASATO Y, KONAGAYA K I, OKUZAKI A, et al. Agrobacterium-mediated transformation of kabocha squash (Cucurbita moschata Duch) induced by wounding with aluminum borate whiskers[J]. Plant Cell Reports, 2011, 30(8): 1455-1464. |
| [74] | MATSUSHITA J, OTANI M, WAKITA Y, et al. Transgenic plant regeneration through silicon carbide whisker-mediated transformation of rice (Oryza sativa L.)[J]. Breeding Science, 1999, 49(1): 21-26. |
| [112] | BAHUGUNA V, BHATT G, MAIKHURI R, et al. Nitrogen fixation through genetic engineering: a future systemic approach of nitrogen fixation[M/OL]//NATH M, BHATT D, BHARGAVA P, et al. Microbial metatranscriptomics belowground. Singapore: Springer Singapore, 2021: 109-122. (2021-06-03)[2025-09-01]. . |
| [113] | BENNETT E M, MURRAY J W, ISALAN M. Engineering nitrogenases for synthetic nitrogen fixation: from pathway engineering to directed evolution[J]. BioDesign Research, 2023, 5: 5. |
| [114] | MONTESINOS E. Functional peptides for plant disease control[J]. Annual Review of Phytopathology, 2023, 61: 301-324. |
| [115] | AHUJA I, KISSEN R, BONES A M. Phytoalexins in defense against pathogens[J]. Trends in Plant Science, 2012, 17(2): 73-90. |
| [116] | HUANG W K, ZHANG Y M, XIAO N, et al. Trans-complementation of the viral movement protein mediates efficient expression of large target genes via a tobacco mosaic virus vector[J]. Plant Biotechnology Journal, 2024, 22(11): 2957-2970. |
| [117] | HU Y J, GU C C, WANG X F, et al. Asymmetric total synthesis of taxol[J]. Journal of the American Chemical Society, 2021, 143(42): 17862-17870. |
| [118] | LI J H, MUTANDA I, WANG K B, et al. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana [J]. Nature Communications, 2019, 10: 4850. |
| [119] | SU C, CUI H T, WANG W W, et al. Bioremediation of complex organic pollutants by engineered Vibrio natriegens [J]. Nature, 2025, 642(8069): 1024-1033. |
| [120] | BOEHM C R, BOCK R. Recent advances and current challenges in synthetic biology of the plastid genetic system and metabolism[J]. Plant Physiology, 2019, 179(3): 794-802. |
| [121] | ZHANG Y Z, YUAN J L, ZHANG L R, et al. Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in Arabidopsis [J]. Nature Communications, 2020, 11: 6212. |
| [1] | 宋开南, 张礼文, 王超, 田平芳, 李广悦, 潘国辉, 徐玉泉. 小分子生物农药及其生物合成研究进展[J]. 合成生物学, 2025, 6(5): 1203-1223. |
| [2] | 于文文, 吕雪芹, 李兆丰, 刘龙. 植物合成生物学与母乳低聚糖生物制造[J]. 合成生物学, 2025, 6(5): 992-997. |
| [3] | 颜钊涛, 周鹏飞, 汪阳忠, 张鑫, 谢雯燕, 田晨菲, 王勇. 植物合成生物学:植物细胞大规模培养的新机遇[J]. 合成生物学, 2025, 6(5): 1107-1125. |
| [4] | 孙扬, 陈立超, 石艳云, 王珂, 吕丹丹, 徐秀美, 张立新. 作物光合作用合成生物学的策略与展望[J]. 合成生物学, 2025, 6(5): 1025-1040. |
| [5] | 赵欣雨, 盛琦, 刘开放, 刘佳, 刘立明. 天冬氨酸族饲用氨基酸微生物细胞工厂的创制[J]. 合成生物学, 2025, 6(5): 1184-1202. |
| [6] | 何杨昱, 杨凯, 王玮琳, 黄茜, 丘梓樱, 宋涛, 何流赏, 姚金鑫, 甘露, 何玉池. 国际基因工程机器大赛中植物合成生物学主题的设计与实践[J]. 合成生物学, 2025, 6(5): 1243-1254. |
| [7] | 张学博, 朱成姝, 陈睿雲, 金庆姿, 刘晓, 熊燕, 陈大明. 农业合成生物学:政策规划与产业发展协同推进[J]. 合成生物学, 2025, 6(5): 1224-1242. |
| [8] | 刘婕, 郜钰, 马永硕, 尚轶. 合成生物学在农业中的进展及挑战[J]. 合成生物学, 2025, 6(5): 998-1024. |
| [9] | 郑雷, 郑棋腾, 张天骄, 段鲲, 张瑞福. 构建根际合成微生物菌群促进作物养分高效吸收利用[J]. 合成生物学, 2025, 6(5): 1058-1071. |
| [10] | 李超, 张焕, 杨军, 王二涛. 固氮合成生物学研究进展[J]. 合成生物学, 2025, 6(5): 1041-1057. |
| [11] | 蒲娅, 焦雨铃. 植物人工染色体的研究现状与应用前景[J]. 合成生物学, 2025, 6(5): 1072-1092. |
| [12] | 方馨仪, 孙丽超, 霍毅欣, 王颖, 岳海涛. 微生物合成高级醇的发展趋势与挑战[J]. 合成生物学, 2025, 6(4): 873-898. |
| [13] | 朱欣悦, 陈恬恬, 邵恒煊, 唐曼玉, 华威, 程艳玲. 益生菌辅助防治恶性肿瘤的研究进展[J]. 合成生物学, 2025, 6(4): 899-919. |
| [14] | 吴晓燕, 宋琪, 许睿, 丁陈君, 陈方, 郭勍, 张波. 合成生物学研发竞争态势对比分析[J]. 合成生物学, 2025, 6(4): 940-955. |
| [15] | 张建康, 王文君, 郭洪菊, 白北辰, 张亚飞, 袁征, 李彦辉, 李航. 基于机器视觉的高通量微生物克隆挑选工作站研制及应用[J]. 合成生物学, 2025, 6(4): 956-971. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||