Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (2): 385-398.DOI: 10.12211/2096-8280.2021-059
• Invited Review • Previous Articles Next Articles
JIA Jianhong1, YANG Lingling2, LIU An’an1, PANG Daiwen1
Received:2021-05-08
															
							
																	Revised:2021-05-29
															
							
															
							
																	Online:2022-05-11
															
							
																	Published:2022-04-30
															
						Contact:
								PANG Daiwen   
													贾剑红1, 杨玲玲2, 刘安安1, 庞代文1
通讯作者:
					庞代文
							作者简介:基金资助:CLC Number:
JIA Jianhong, YANG Lingling, LIU An’an, PANG Daiwen. Space-time-coupled live-cell synthesis of quantum dots[J]. Synthetic Biology Journal, 2022, 3(2): 385-398.
贾剑红, 杨玲玲, 刘安安, 庞代文. “时-空耦合”活细胞合成量子点[J]. 合成生物学, 2022, 3(2): 385-398.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-059
 
																													Fig. 3 Schematic illustration for one-step labeling of microvesicles by coupling the intracellular synthesis of fluorescent quantum dots in live MCF-7 cells[40]
| 1 | ROSS-MACDONALD P, COELHO P S R, ROEMER T, et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption[J]. Nature, 1999, 402(6760): 413-418. | 
| 2 | UETZ P, GIOT L, CAGNEY G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae [J]. Nature, 2000, 403(6770): 623-627. | 
| 3 | GAVIN A C, ALOY P, GRANDI P, et al. Proteome survey reveals modularity of theyeastcell machinery[J]. Nature, 2006, 440(7084): 631-636. | 
| 4 | REITH F, ETSCHMANN B, GROSSE C, et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(42): 17757-17762. | 
| 5 | KLAUS T, JOERGER R, OLSSON E, et al. Silver-based crystalline nanoparticles, microbially fabricated[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(24): 13611-13614. | 
| 6 | PAULSEN I T, SAIER M H JR. A novel family of ubiquitous heavy metal ion transport proteins[J]. The Journal of Membrane Biology, 1997, 156(2): 99-103. | 
| 7 | KLAUS-JOERGER T, JOERGER R, OLSSON E, et al. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science[J]. Trends in Biotechnology, 2001, 19(1): 15-20. | 
| 8 | ADAMIS P D B, MANNARINO S C, ELEUTHERIO E C A. Glutathione and gamma-glutamyl transferases are involved in the formation of cadmium-glutathione complex[J]. FEBS Letters, 2009, 583(9): 1489-1492. | 
| 9 | DAMERON C T, REESE R N, MEHRA R K, et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites[J]. Nature, 1989, 338(6216): 596-597. | 
| 10 | KOWSHIK M, VOGEL W, URBAN J, et al. Microbial synthesis of semiconductor PbS nanocrystallites[J]. Advanced Materials, 2002, 14(11): 815-818. | 
| 11 | SWEENEY R Y, MAO C B, GAO X X, et al. Bacterial biosynthesis of cadmium sulfide nanocrystals[J]. Chemistry & Biology, 2004, 11(11): 1553-1559. | 
| 12 | LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497): 1744-1747. | 
| 13 | AHMAD A, SENAPATI S, KHAN M I, et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species[J]. Nanotechnology, 2003, 14(7): 824-828. | 
| 14 | ALIVISATOS A P. Perspectives on the physical chemistry of semiconductor nanocrystals[J]. Journal of Physical Chemistry, 1996, 100(31): 13226-13239. | 
| 15 | ALIVISATOS A P. Birth of a nanoscience building block[J]. ACS Nano, 2008, 2(8): 1514-1516. | 
| 16 | BRUS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state[J]. The Journal of Chemical Physics, 1984, 80(9): 4403-4409. | 
| 17 | ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937. | 
| 18 | LEACH A D P, MACDONALD J E. Optoelectronic properties of CuInS2 nanocrystals and their origin[J]. The Journal of Physical Chemistry Letters, 2016, 7(3): 572-583. | 
| 19 | YU X J, LIU X Y, YANG K, et al. Pnictogen semimetal (Sb, Bi)-based nanomaterials for cancer imaging and therapy: a materials perspective[J]. ACS Nano, 2021, 15(2): 2038-2067. | 
| 20 | JING L H, KERSHAW S V, LI Y L, et al. Aqueous based semiconductor nanocrystals[J]. Chemical Reviews, 2016, 116(18): 10623-10730. | 
| 21 | LI C Y, WANG Q B. Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window[J]. ACS Nano, 2018, 12(10): 9654-9659. | 
| 22 | WU X Y, LIU H J, LIU J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature Biotechnology, 2003, 21(1): 41-46. | 
| 23 | BRUNS O T, BISCHOF T S, HARRIS D K, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J]. Nature Biomedical Engineering, 2017, 1: 56. | 
| 24 | LIU S L, WANG Z G, XIE H Y, et al. Single-virus tracking: from imaging methodologies to virological applications[J]. Chemical Reviews, 2020, 120(3): 1936-1979. | 
| 25 | ZHANG J J, LIN Y, ZHOU H, et al. Cell membrane-camouflaged NIR II fluorescent Ag2Te quantum dots-based nanobioprobes for enhanced in vivo homotypic tumor imaging[J]. Advanced Healthcare Materials, 2019, 8(14): 1900341. | 
| 26 | WANG Z G, WANG L, LAMB D C, et al. Real-time dissecting the dynamics of drug transportation in the live brain[J]. Nano Letters, 2021, 21(1): 642-650. | 
| 27 | CHEN G, ZHU J Y, ZHANG Z L, et al. Transformation of cell-derived microparticles into quantum-dot-labeled nanovectors for antitumor siRNA delivery[J]. Angewandte Chemie International Edition, 2015, 54(3): 1036-1040. | 
| 28 | WANG L, SHI X H, ZHANG Y F, et al. CdZnSeS quantum dots condensed with ordered mesoporous carbon for high-sensitive electrochemiluminescence detection of hydrogen peroxide in live cells[J]. Electrochimica Acta, 2020, 362: 137107. | 
| 29 | WANG J J, LIN Y, JIANG Y Z, et al. Multifunctional cellular beacons with in situ synthesized quantum dots make pathogen detectable with the naked eye[J]. Analytical Chemistry, 2019, 91(11): 7280-7287. | 
| 30 | JIANG P, TIAN Z Q, ZHU C N, et al. Emission-tunable near-infrared Ag2S quantum dots[J]. Chemistry of Materials, 2012, 24(1): 3-5. | 
| 31 | MA J J, YU M X, ZHANG Z, et al. Gd-DTPA-coupled Ag2Se quantum dots for dual-modality magnetic resonance imaging and fluorescence imaging in the second near-infrared window[J]. Nanoscale, 2018, 10(22): 10699-10704. | 
| 32 | CHIN P T K, DE MELLO DONEGÁ C, BAVEL S S VAN, et al. Highly luminescent CdTe/CdSe colloidal heteronanocrystals with temperature-dependent emission color[J]. Journal of the American Chemical Society, 2007, 129(48): 14880-14886. | 
| 33 | YU W W, PENG X G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers[J]. Angewandte Chemie International Edition, 2002, 41(13): 2368-2371. | 
| 34 | JIANG P, ZHU C N, ZHANG Z L, et al. Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo [J]. Biomaterials, 2012, 33(20): 5130-5135. | 
| 35 | LIU P, WANG Q S, LI X. Studies on CdSe/L-cysteine quantum dots synthesized in aqueous solution for biological labeling[J]. The Journal of Physical Chemistry C, 2009, 113(18): 7670-7676. | 
| 36 | MA J, CHEN J Y, ZHANG Y, et al. Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: process and mechanism[J]. The Journal of Physical Chemistry B, 2007, 111(41): 12012-12016. | 
| 37 | MUSSA FARKHANI S, VALIZADEH A. Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots[J]. IET Nanobiotechnology, 2014, 8(2): 59-76. | 
| 38 | CUI R, LIU H H, XIE H Y, et al. Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots[J]. Advanced Functional Materials, 2009, 19(15): 2359-2364. | 
| 39 | XIONG L H, CUI R, ZHANG Z L, et al. Uniform fluorescent nanobioprobes for pathogen detection[J]. ACS Nano, 2014, 8(5): 5116-5124. | 
| 40 | XIONG L H, TU J W, ZHANG Y N, et al. Designer cell-self-implemented labeling of microvesicles in situ with the intracellular-synthesized quantum dots[J]. Science China Chemistry, 2020, 63(4): 448-453. | 
| 41 | WU S M, SU Y L, LIANG R R, et al. Crucial factors in biosynthesis of fluorescent CdSe quantum dots in Saccharomyces cerevisiae [J]. RSC Advances, 2015, 5(96): 79184-79191. | 
| 42 | YAN Z Y, QIAN J, GU Y Q, et al. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells[J]. Materials Research Express, 2014, 1(1): 015401. | 
| 43 | BURK R F, HILL K E. Regulation of selenium metabolism and transport[J]. Annual Review of Nutrition, 2015, 35: 109-134. | 
| 44 | GANTHER H E J C. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase[J]. Carcinogenesis, 1999, 20(9): 1657-1666. | 
| 45 | WHITE P J. Selenium metabolism in plants[J]. Biochimica et Biophysica Acta, 2018, 1862(11): 2333-2342. | 
| 46 | SEALE L A, HA H Y, HASHIMOTO A C, et al. Relationship between selenoprotein P and selenocysteine lyase: insights into selenium metabolism[J]. Free Radical Biology and Medicine, 2018, 127: 182-189. | 
| 47 | BROOKS J, LEFEBVRE D D. Optimization of conditions for cadmium selenide quantum dot biosynthesis in Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology, 2017, 101(7): 2735-2745. | 
| 48 | SHAO M, ZHANG R, WANG C, et al. Living cell synthesis of CdSe quantum dots: manipulation based on the transformation mechanism of intracellular Se-precursors[J]. Nano Research, 2018, 11(5): 2498-2511. | 
| 49 | WEEKLEY C M, HARRIS H H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease[J]. Chemical Society Reviews, 2013, 42(23): 8870-8894. | 
| 50 | ZANETTI T A, BIAZI B I, BARANOSKI A, et al. Response of HepG2/C3A cells supplemented with sodium selenite to hydrogen peroxide-induced oxidative stress[J]. Journal of Trace Elements in Medicine and Biology, 2018, 50: 209-215. | 
| 51 | GEETHA N, BHAVYA G, ABHIJITH P, et al. Insights into nanomycoremediation: secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification[J]. Journal of Hazardous Materials, 2021, 409: 124541. | 
| 52 | TARZE A, DAUPLAIS M, GRIGORAS I, et al. Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae [J]. Journal of Biological Chemistry, 2007, 282(12): 8759-8767. | 
| 53 | XU P, LIU L, ZENG G M, et al. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium [J]. Applied Microbiology and Biotechnology, 2014, 98(14): 6409-6418. | 
| 54 | LUO Q Y, LIN Y, LI Y, et al. Nanomechanical analysis ofyeastcells in CdSe quantum dot biosynthesis[J]. Small, 2014, 10(4): 699-704. | 
| 55 | ORTIZ D F, RUSCITTI T, MCCUE K F, et al. Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein[J]. Journal of Biological Chemistry, 1995, 270(9): 4721-4728. | 
| 56 | LI Y, CUI R, ZHANG P, et al. Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway[J]. ACS Nano, 2013, 7(3): 2240-2248. | 
| 57 | ZHANG R, SHAO M, HAN X, et al. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae [J]. International Journal of Nanomedicine, 2017, 12: 3865-3879. | 
| 58 | TIAN L J, LI W W, ZHU T T, et al. Directed biofabrication of nanoparticles through regulating extracellular electron transfer[J]. Journal of the American Chemical Society, 2017, 139(35): 12149-12152. | 
| 59 | TIAN L J, MIN Y, WANG X M, et al. Biogenic quantum dots for sensitive, label-free detection of mercury ions[J]. ACS Applied Bio Materials, 2019, 2(6): 2661-2667. | 
| 60 | TIAN L J, LI W W, ZHU T T, et al. Acid-stimulated bioassembly of high-performance quantum dots in Escherichia coli [J]. Journal of Materials Chemistry A, 2019, 7(31): 18480-18487. | 
| 61 | SAKIMOTO K K, WONG A B., YANG P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. | 
| 62 | KORNIENKO N, SAKIMOTO K K, HERLIHY D M, et al. Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11750-11755. | 
| 63 | WANG B, ZENG C P, CHU K H, et al. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles[J]. Advanced Energy Materials, 2017, 7(20): 1700611. | 
| 64 | CUI Y H, TIAN L J, LI W W, et al. Solar-energy-facilitated CdS x Se1- x quantum dot bio-assembly in Escherichia coli and Tetrahymena pyriformis [J]. Journal of Materials Chemistry A, 2019, 7(11): 6205-6212. | 
| 65 | CUI R, ZHANG M X, TIAN Z Q, et al. Intermediate-dominated controllable biomimetic synthesis of gold nanoparticles in a quasi-biological system[J]. Nanoscale, 2010, 2(10): 2120-2125. | 
| 66 | ZHANG M X, CUI R, TIAN Z Q, et al. Kinetics-controlled formation of gold clusters using a quasi-biological system[J]. Advanced Functional Materials, 2010, 20(21): 3673-3677. | 
| 67 | ZHANG M X, CUI R, ZHAO J Y, et al. Synthesis of sub-5 nm Au-Ag alloy nanoparticles using bio-reducing agent in aqueous solution[J]. Journal of Materials Chemistry, 2011, 21(43): 17080-17082. | 
| 68 | XIONG L H, CUI R, ZHANG Z L, et al. Harnessing intracellular biochemical pathways for in vitro synthesis of designer tellurium nanorods[J]. Small, 2015, 11(40): 5416-5422. | 
| 69 | CUI R, GU Y P, ZHANG Z L, et al. Controllable synthesis of PbSe nanocubes in aqueous phase using a quasi-biosystem[J]. Journal of Materials Chemistry, 2012, 22(9): 3713-3716. | 
| 70 | GU Y P, CUI R, ZHANG Z L, et al. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging[J]. Journal of the American Chemical Society, 2012, 134(1): 79-82. | 
| 71 | ZHAO J Y, CUI R, ZHANG Z L, et al. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters[J]. Nanoscale, 2014, 6(21): 13126-13134. | 
| 72 | CUI R, GU Y P, BAO L, et al. Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine[J]. Analytical Chemistry, 2012, 84(21): 8932-8935. | 
| 73 | LÜ C, ZHANG T Y, LIN Y, et al. Transformation of viral light particles into near-infrared fluorescence quantum dot-labeled active tumor-targeting nanovectors for drug delivery[J]. Nano Letters, 2019, 19(10): 7035-7042. | 
| 74 | ZHAO J Y, CHEN G, GU Y P, et al. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles[J]. Journal of the American Chemical Society, 2016, 138(6): 1893-1903. | 
| 75 | YU Z L, ZHANG W, ZHAO J Y, et al. Development of a dual-modally traceable nanoplatform for cancer theranostics using natural circulating cell-derived microparticles in oral cancer patients[J]. Advanced Functional Materials, 2017, 27(40): 1703482. | 
| 76 | WANG W, YANG Q L, DU Y H, et al. Metabolic labeling of peptidoglycan with NIR-II dye enables in vivo imaging of gut microbiota[J]. Angewandte Chemie International Edition, 2020, 59(7): 2628-2633. | 
| 77 | HUANG J S, JIANG Y Y, LI J C, et al. Molecular chemiluminescent probes with a very long near-infrared emission wavelength for in vivo imaging[J]. Angewandte Chemie International Edition, 2021, 60(8): 3999-4003. | 
| 78 | FANG Y, SHANG J Z, LIU D K, et al. Design, synthesis, and application of a small molecular NIR-II fluorophore with maximal emission beyond 1200 nm[J]. Journal of the American Chemical Society, 2020, 142(36): 15271-15275. | 
| 79 | CHEN D D, LIU Y, ZHANG Z, et al. NIR-II fluorescence imaging reveals bone marrow retention of small polymer nanoparticles[J]. Nano Letters, 2021, 21(1): 798-805. | 
| 80 | HUANG J S, HUANG J G, CHENG P H, et al. Near-infrared chemiluminescent reporters for in vivo imaging of reactive oxygen and nitrogen species in kidneys[J]. Advanced Functional Materials, 2020, 30(39): 2003628. | 
| 81 | FAN Y, WANG P Y, LU Y B, et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging[J]. Nature Nanotechnology, 2018, 13(10): 941-946. | 
| 82 | YU T Y, WEI D M, LI Z, et al. Target-modulated sensitization of upconversion luminescence by NIR-emissive quantum dots: a new strategy to construct upconversion biosensors[J]. Chemical Communications, 2020, 56(13): 1976-1979. | 
| 83 | ZHANG Y J, YANG H C, AN X Y, et al. Controlled synthesis of Ag2Te@Ag2S core-shell quantum dots with enhanced and tunable fluorescence in the second near-infrared window[J]. Small, 2020, 16(14): 2001003. | 
| 84 | PEREIRA C F, VIEGAS I M A, SOUZA SOBRINHA I G, et al. Surface-enhanced infrared absorption spectroscopy using silver selenide quantum dots[J]. Journal of Materials Chemistry C, 2020, 8(30): 10448-10455. | 
| 85 | DONG L L, LI W J, YU L D, et al. Ultrasmall Ag2Te quantum dots with rapid clearance for amplified computed tomography imaging and augmented photonic tumor hyperthermia[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42558-42566. | 
| 86 | YU M X, MA J J, WANG J M, et al. Ag2Te quantum dots as contrast agents for near-infrared fluorescence and computed tomography imaging[J]. ACS Applied Nano Materials, 2020, 3(6): 6071-6077. | 
| 87 | KARGOZAR S, HOSEINI S J, MILAN P B, et al. Quantum dots: A review from concept to clinic[J]. Biotechnology Journal, 2020, 15(12): 2000117. | 
| 88 | BAHY R M. Autofocus microscope system based on blur measurement approach[J]. Journal of Physics: Conference Series, 2021, 1721(1): 012058. | 
| 89 | ZHANG L Q, YANG T T, DU C N, et al. Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up[J]. Nature Nanotechnology, 2020, 15(2): 94-98. | 
| 90 | HAGE F S, RADTKE G, KEPAPTSOGLOU D M, et al. Single-atom vibrational spectroscopy in the scanning transmission electron microscope[J]. Science, 2020, 367(6482): 1124-1127. | 
| 91 | WANG D Q, HE P S, WANG Z J, et al. Advances in single cell Raman spectroscopy technologies for biological and environmental applications[J]. Current Opinion in Biotechnology, 2020, 64: 218-229. | 
| 92 | YUAN Y, RAJ P, ZHANG J, et al. Furin-mediated self-assembly of olsalazine nanoparticles for targeted Raman imaging of tumors[J]. Angewandte Chemie International Edition, 2021, 60(8): 3923-3927. | 
| 93 | DE MOLINER F, KNOX K, GORDON D, et al. A palette of minimally tagged sucrose analogues for real-time Raman imaging of intracellular plant metabolism[J]. Angewandte Chemie International Edition, 2021, 60(14): 7637-7642. | 
| 94 | GU Y Q, BI X Y, YE J. Gap-enhanced resonance Raman tags for live-cell imaging[J]. Journal of Materials Chemistry B, 2020, 8(31): 6944-6955. | 
| 95 | HE Q, ZABOTINA O A, YU C X. Principal component analysis facilitated fast and noninvasive Raman spectroscopic imaging of plant cell wall pectin distribution and interaction with enzymatic hydrolysis[J]. Journal of Raman Spectroscopy, 2020, 51(12): 2458-2467. | 
| 96 | TIAN S D, LI H Z, LI Z, et al. Polydiacetylene-based ultrastrong bioorthogonal Raman probes for targeted live-cell Raman imaging[J]. Nature Communications, 2020, 11(1): 6223. | 
| 97 | PARK T J, LEE S Y, HEO N S, et al. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli [J]. Angewandte Chemie International Edition, 2010, 49(39): 7019-7024. | 
| 98 | ZHOU X, LI H D, SHI C, et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging[J]. Biomaterials, 2020, 253: 120089. | 
| 99 | WANG X N, NIU M T, FAN J X, et al. Photoelectric bacteria enhance the in situ production of tetrodotoxin for antitumor therapy[J]. Nano Letters, 2021, 21(10): 4270-4279. | 
| 100 | ZHANG Z W, CHEN J, YANG Q L, et al. Eco-friendly intracellular microalgae synthesis of fluorescent CdSe QDs as a sensitive nanoprobe for determination of imatinib[J]. Sensors and Actuators B: Chemical, 2018, 263: 625-633. | 
| 101 | ÓRDENES-AENISHANSLINS N, ANZIANI-OSTUNI G, QUEZADA C P, et al. Biological synthesis of CdS/CdSe core/shell nanoparticles and its application in quantum dot sensitized solar cells[J]. Frontiers in Microbiology, 2019, 10: 1587. | 
| [1] | DONG Ying, MA Mengdan, HUANG Weiren. Progress in the miniaturization of CRISPR-Cas systems [J]. Synthetic Biology Journal, 2025, 6(1): 105-117. | 
| [2] | REN Jiawei, ZHANG Jinpeng, XU Guoqiang, ZHANG Xiaomei, XU Zhenghong, ZHANG Xiaojuan. Effect of terminators on the downstream transcript unit with gene expression in Escherichiacoli [J]. Synthetic Biology Journal, 2025, 6(1): 213-227. | 
| [3] | XU Huaisheng, SHI Xiaolong, LIU Xiaoguang, XU Miaomiao. Key technologies for DNA storage: encoding, error correction, random access, and security [J]. Synthetic Biology Journal, 2025, 6(1): 157-176. | 
| [4] | ZHONG Quanzhou, SHAN Yiyi, PEI Qingyun, JIN Yanyun, WANG Yihan, MENG Luyuan, WANG Xinyun, ZHANG Yuxin, LIU Kunyuan, WANG Huizhong, FENG Shangguo. Research progress in the production of α-arbutin through biosynthesis [J]. Synthetic Biology Journal, 2025, 6(1): 118-135. | 
| [5] | WANG Ziyuan, YANG Lirong, WU Jianping, ZHENG Wenlong. A review on enzyme-catalyzed synthesis of chiral amino acids [J]. Synthetic Biology Journal, 2024, 5(6): 1319-1349. | 
| [6] | ZHU Fanghuan, CEN Xuecong, CHEN Zhen. Research progress of diols production by microbes [J]. Synthetic Biology Journal, 2024, 5(6): 1367-1385. | 
| [7] | LIU Yining, PU Wei, YANG Jinxing, WANG Yu. Recent advances in the biosynthesis of ω-amino acids and lactams [J]. Synthetic Biology Journal, 2024, 5(6): 1350-1366. | 
| [8] | LI Geng, SHEN Xiaolin, SUN Xinxiao, WANG Jia, YUAN Qipeng. Research progress in recombinant expression and application of peroxidases [J]. Synthetic Biology Journal, 2024, 5(6): 1498-1517. | 
| [9] | FU Yu, ZHONG Fangrui. Recent advances in chemically driven enantioselective photobiocatalysis [J]. Synthetic Biology Journal, 2024, 5(5): 1021-1049. | 
| [10] | CHEN Yu, ZHANG Kang, QIU Yijing, CHENG Caiyun, YIN Jingjing, SONG Tianshun, XIE Jingjing. Progress of microbial electrosynthesis for conversion of CO2 [J]. Synthetic Biology Journal, 2024, 5(5): 1142-1168. | 
| [11] | ZHENG Haotian, LI Chaofeng, LIU Liangxu, WANG Jiawei, LI Hengrun, NI Jun. Design, optimization and application of synthetic carbon-negative phototrophic community [J]. Synthetic Biology Journal, 2024, 5(5): 1189-1210. | 
| [12] | CHENG Xiaolei, LIU Tiangang, TAO Hui. Recent research progress in non-canonical biosynthesis of terpenoids [J]. Synthetic Biology Journal, 2024, 5(5): 1050-1071. | 
| [13] | YANG Haoran, YE Farong, HUANG Ping, WANG Ping. Recent advances in glycoprotein synthesis [J]. Synthetic Biology Journal, 2024, 5(5): 1072-1101. | 
| [14] | XIA Kongchen, XU Weihua, WU Qi. Recent advances in photo-induced promiscuous enzymatic reactions [J]. Synthetic Biology Journal, 2024, 5(5): 997-1020. | 
| [15] | CHENG Zhongyu, LI Fuzhuo. Recent advances in chemoenzymatic synthesis of natural products via site- selective P450 oxidation [J]. Synthetic Biology Journal, 2024, 5(5): 960-980. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||