Synthetic Biology Journal ›› 2022, Vol. 3 ›› Issue (4): 748-762.DOI: 10.12211/2096-8280.2021-088
• Invited Review • Previous Articles Next Articles
Qian WANG, Qingsheng QI
Received:
2021-08-27
Revised:
2021-11-25
Online:
2022-09-08
Published:
2022-08-31
Contact:
Qingsheng QI
王倩, 祁庆生
通讯作者:
祁庆生
作者简介:
基金资助:
CLC Number:
Qian WANG, Qingsheng QI. Low-carbon biomanufacturing of polyhydroxyalkanoates: analysis and application based on carbon conversion rate[J]. Synthetic Biology Journal, 2022, 3(4): 748-762.
王倩, 祁庆生. 聚羟基脂肪酸酯的低碳生物制造:基于碳转化率的分析与应用[J]. 合成生物学, 2022, 3(4): 748-762.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2021-088
Fig. 2 Metabolic pathways of microbial biosynthesis of PHA, including natural PHA monomers (3HB, 4HB, 3HV, 3HA, 3HP) and representative non-natural PHA monomers (LA, GA, 2HB)
单体 | 合成途径 | 理论碳摩尔得率 | 宿主 | 途径基因 | 碳源 | 单体比例 (摩尔分数)/% | 文献 |
---|---|---|---|---|---|---|---|
3HB | 乙酰辅酶A | 0.66 | E. coli | — | 葡萄糖 | 100 | [ |
3HV | 苏氨酸途径 | 0.83 | E. coli | E. colithrABC, C.glutamicumilvA | 葡萄糖 | 17.5 | [ |
C.glutamicum WM001 | — | 葡萄糖 | 72.5 | [ | |||
柠苹酸途径 | 0.56 | E. coli | M.jannaschiicimA, E. colileuBCD | 葡萄糖 | 11.5 | [ | |
甲基丙二酰 CoA途径 | 0.83 | S.typhimurium | E. colisbm, ygfG | 葡萄糖 | 30 | [ | |
4HB | 琥珀酰CoA途径 | 0.66~1.33 | E. coli | C.kluyveri4hbD, sucD, orfZ | 葡萄糖 | 12.5 | [ |
H.bluephagenesis | C.kluyverior fZ (genomeintg) | 葡萄糖 | 25 | [ | |||
3HP | 甘油途径 | 1.00 | E. coli | C.butyricumdhaB1, S.entericapduP | 甘油 | 100 | [ |
丙二酰CoA途径 | 1.00 | E. coli | C.aurantiacusmcr, E. coliAccABCD, prpE | 葡萄糖 | 100 | [ | |
LA | 乳酸合成途径 | 1.00 | E. coli | E. colildhA, C.propionicumpct | 葡萄糖 | 30~60 | [ |
2HB | 柠苹酸途径 | 0.66 | E. coli | E. colithrABC, C.glutamicumilvAL.lactispanE | 葡萄糖 | 10~60 | [ |
GA | 木糖Dahms途径 | 0.40 | E. coli | C.crescentusxylBC | 木糖 | 29.5 | [ |
乙醛酸途径 | 0.66 | E. coli | E. coliycdW, aceAK | 葡萄糖 | 39 | [ | |
3HHx | 丁酰辅酶A途径 | 0.66 | E. coli | C.necatorbktBandphaB1, A.caviaephaJ, T.denticolater,E. colifadBandfadA | 葡萄糖 | 13.2 | [ |
C.necator | C.necatorbktB, crthad,M.extorquensccr | 葡萄糖 | 12.1 | [ | |||
3HA | 脂肪酸从头合成 | 0.66 | E. coli | P.putidaphaG, PP_0763 | 葡萄糖 | 100 | [ |
反向β氧化 | 0.66 | E. coli | E. colifadBA、T.denticolater、P.aeruginosaPhaJ1 | 葡萄糖 | 78.8 | [ |
Tab. 1 Representative biosynthesis pathways and production of various PHA monomers
单体 | 合成途径 | 理论碳摩尔得率 | 宿主 | 途径基因 | 碳源 | 单体比例 (摩尔分数)/% | 文献 |
---|---|---|---|---|---|---|---|
3HB | 乙酰辅酶A | 0.66 | E. coli | — | 葡萄糖 | 100 | [ |
3HV | 苏氨酸途径 | 0.83 | E. coli | E. colithrABC, C.glutamicumilvA | 葡萄糖 | 17.5 | [ |
C.glutamicum WM001 | — | 葡萄糖 | 72.5 | [ | |||
柠苹酸途径 | 0.56 | E. coli | M.jannaschiicimA, E. colileuBCD | 葡萄糖 | 11.5 | [ | |
甲基丙二酰 CoA途径 | 0.83 | S.typhimurium | E. colisbm, ygfG | 葡萄糖 | 30 | [ | |
4HB | 琥珀酰CoA途径 | 0.66~1.33 | E. coli | C.kluyveri4hbD, sucD, orfZ | 葡萄糖 | 12.5 | [ |
H.bluephagenesis | C.kluyverior fZ (genomeintg) | 葡萄糖 | 25 | [ | |||
3HP | 甘油途径 | 1.00 | E. coli | C.butyricumdhaB1, S.entericapduP | 甘油 | 100 | [ |
丙二酰CoA途径 | 1.00 | E. coli | C.aurantiacusmcr, E. coliAccABCD, prpE | 葡萄糖 | 100 | [ | |
LA | 乳酸合成途径 | 1.00 | E. coli | E. colildhA, C.propionicumpct | 葡萄糖 | 30~60 | [ |
2HB | 柠苹酸途径 | 0.66 | E. coli | E. colithrABC, C.glutamicumilvAL.lactispanE | 葡萄糖 | 10~60 | [ |
GA | 木糖Dahms途径 | 0.40 | E. coli | C.crescentusxylBC | 木糖 | 29.5 | [ |
乙醛酸途径 | 0.66 | E. coli | E. coliycdW, aceAK | 葡萄糖 | 39 | [ | |
3HHx | 丁酰辅酶A途径 | 0.66 | E. coli | C.necatorbktBandphaB1, A.caviaephaJ, T.denticolater,E. colifadBandfadA | 葡萄糖 | 13.2 | [ |
C.necator | C.necatorbktB, crthad,M.extorquensccr | 葡萄糖 | 12.1 | [ | |||
3HA | 脂肪酸从头合成 | 0.66 | E. coli | P.putidaphaG, PP_0763 | 葡萄糖 | 100 | [ |
反向β氧化 | 0.66 | E. coli | E. colifadBA、T.denticolater、P.aeruginosaPhaJ1 | 葡萄糖 | 78.8 | [ |
Fig. 3 Low carbon and carbon sequestration biosynthetic pathways for PHA production(Low carbon biosynthesis pathways include NOG pathway, EP-bifido pathway, etc. Carbon sequestration biosynthesis pathways include Calvin cycle, serine pathway, ribulose 5-phosphate monophosphate pathway, etc)
1 | ANDERSON A J, DAWES E A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates[J]. Microbiological Reviews, 1990, 54(4): 450-472. |
2 | MADISON L L, HUISMAN G W. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic[J]. Microbiology and Molecular Biology Reviews, 1999, 63(1): 21-53. |
3 | 祁庆生, 王倩, 梁泉峰. 生物合成可降解材料PHA的研究进展和产业化趋势[J]. 中国基础科学, 2009, 11(5): 96-99, 74. |
QI Q S, WANG Q, LIANG Q F. Research progress and industrialization trend of biodegradable materials PHA[J]. China Basic Science, 2009, 11(5): 96-99, 74. | |
4 | STEINBÜCHEL A. Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example[J]. Macromolecular Bioscience, 2001, 1(1): 1-24. |
5 | SUDESH K, ABE H, Synthesis DOI Y., structure and properties of polyhydroxyalkanoates : biological polyesters[J]. Progress in Polymer Science, 2000, 25(10): 1503-1555. |
6 | LI Z B, YANG J, LOH X J. Polyhydroxyalkanoates: opening doors for a sustainable future[J]. NPG Asia Materials, 2016, 8(4): e265. |
7 | REHM B H A, STEINBÜCHEL A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis[J]. International Journal of Biological Macromolecules, 1999, 25(1/2/3): 3-19. |
8 | 赵国强, 李亚丽, 武双, 等. 基于低成本碳源微生物合成聚羟基脂肪酸酯的研究进展[J]. 高分子通报, 2020(11): 22-30. |
ZHAO G Q, LI Y L, WU S, et al. Research progress in polyhydroxyalkanoates biosynthesis by microorganisms based on inexpensive carbon sources[J]. Polymer Bulletin, 2020(11): 22-30. | |
9 | SANTIMANO M C, PRABHU N N, GARG S. PHA production using low-cost agro-industrial wastes by Bacillus sp. strain COL1/A6[J]. Research Journal of Microbiology, 2009, 4(3): 89-96. |
10 | KIM H S, OH Y H, JANG Y A, et al. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution[J]. Microbial Cell Factories, 2016, 15: 95. |
11 | SHEU D S, CHEN W M, YANG J Y, et al. Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources[J]. Enzyme and Microbial Technology, 2009, 44(5): 289-294. |
12 | BUDDE C F, RIEDEL S L, WILLIS L B, et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains[J]. Applied and Environmental Microbiology, 2011, 77(9): 2847-2854. |
13 | KOLLER M, HESSE P, BONA R, et al. Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey[J]. Macromolecular Bioscience, 2007, 7(2): 218-226. |
14 | PARK S J, PARK J P, LEE S Y. Production of poly(3-hydroxybutyrate) from whey by fed-batch culture of recombinant Escherichia coli in a pilot-scale fermenter[J]. Biotechnology Letters, 2002, 24(3):185-189. |
15 | OH Y H, LEE S H, JANG Y A, et al. Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution[J]. Bioresource Technology, 2015, 181: 283-290. |
16 | ANDREESSEN B, LANGE A B, ROBENEK H, et al. Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli [J]. Applied and Environmental Microbiology, 2010, 76(2): 622-626. |
17 | VERLINDEN R A, HILL D J, KENWARD M A, et al. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator [J]. AMB Express, 2011, 1(1): 11. |
18 | NEELAMEGAM A, AL-BATTASHI H, AL-BAHRY S, et al. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation[J]. Journal of Biotechnology, 2018, 265: 25-30. |
19 | POVOLO S, TOFFANO P, BASAGLIA M, et al. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose[J]. Bioresource Technology, 2010, 101(20): 7902-7907. |
20 | CHOI J I, LEE S Y, HAN K. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli [J]. Applied and Environmental Microbiology, 1998, 64(12): 4897-4903. |
21 | ELHADI D, LÜ L, JIANG X R, et al. CRISPRi engineering E. coli for morphology diversification[J]. Metabolic Engineering, 2016, 38: 358-369. |
22 | CHEN Q, WANG Q, WEI G Q, et al. Production in Escherichia coli of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with differing monomer compositions from unrelated carbon sources[J]. Applied and Environmental Microbiology, 2011, 77(14): 4886-4893. |
23 | MA W J, WANG J L, LI Y, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-produced with L-isoleucine in Corynebacterium glutamicum WM001[J]. Microbial Cell Factories, 2018, 17(1): 93. |
24 | WANG Q, LIU X L, QI Q S. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose with elevated 3-hydroxyvalerate fraction via combined citramalate and threonine pathway in Escherichia coli [J]. Applied Microbiology and Biotechnology, 2014, 98(9): 3923-3931. |
25 | ALDOR I S, KIM S W, PRATHER K L, et al. Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium[J]. Applied and Environmental Microbiology, 2002, 68(8): 3848-3854. |
26 | LI Z J, SHI Z Y, JIAN J, et al. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli [J]. Metabolic Engineering, 2010, 12(4): 352-359. |
27 | YE J W, HU D K, CHE X M, et al. Engineering of Halomonas bluephagenesis for low cost production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose[J]. Metabolic Engineering, 2018, 47: 143-152. |
28 | WANG Q, LIU C S, XIAN M, et al. Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli [J]. Journal of Microbiology, 2012, 50(4): 693-697. |
29 | JUNG Y K, KIM T Y, PARK S J, et al. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers[J]. Biotechnology and Bioengineering, 2010, 105(1): 161-171. |
30 | PARK S J, LEE T W, LIM S C, et al. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli [J]. Applied Microbiology and Biotechnology, 2012, 93(1): 273-283. |
31 | CHOI S Y, PARK S J, KIM W J, et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli [J]. Nature Biotechnology, 2016, 34(4): 435-440. |
32 | LI Z J, QIAO K J, SHI W C, et al. Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli [J]. Metabolic Engineering, 2016, 35: 1-8. |
33 | WANG Q, LUAN Y Q, CHENG X L, et al. Engineering of Escherichia coli for the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from glucose[J]. Applied Microbiology and Biotechnology, 2015, 99(6): 2593-2602. |
34 | ZHANG M X, KURITA S, ORITA I, et al. Modification of acetoacetyl-CoA reduction step in Ralstonia eutropha for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from structurally unrelated compounds[J]. Microbial Cell Factories, 2019, 18(1): 147. |
35 | WANG Q, TAPPEL R C, ZHU C J, et al. Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks[J]. Applied and Environmental Microbiology, 2012, 78(2): 519-527. |
36 | ZHUANG Q Q, WANG Q, LIANG Q F, et al. Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli [J]. Metabolic Engineering, 2014, 24: 78-86. |
37 | CHOI J I, LEE S Y. High level production of supra molecular weight poly(3-hydroxybutyrate) by metabolically engineered Escherichia coli [J]. Biotechnology and Bioprocess Engineering, 2004, 9(3): 196-200. |
38 | MARANGONI C, FURIGO A, DE ARAGÃO G M F. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha in whey and inverted sugar with propionic acid feeding[J]. Process Biochemistry, 2002, 38(2): 137-141. |
39 | KOLLER M, BONA R, CHIELLINI E, et al. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora [J]. Bioresource Technology, 2008, 99(11): 4854-4863. |
40 | STEINBÜCHEL A, HUSTEDE E, LIEBERGESELL M, et al. Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria[J]. FEMS Microbiology Letters, 1992, 103(2/3/4): 217-230. |
41 | HAYWOOD G W, ANDERSON A J, WILLIAMS D R, et al. Accumulation of a poly(hydroxyalkanoate) copolymer containing primarily 3-hydroxyvalerate from simple carbohydrate substrates by Rhodococcus sp. NCIMB 40126[J]. International Journal of Biological Macromolecules, 1991, 13(2): 83-88. |
42 | ESCHENLAUER A C, STOUP S K, SRIENC F, et al. Production of heteropolymeric polyhydroxyalkanoate in Escherichia coli from a single carbon source[J]. International Journal of Biological Macromolecules, 1996, 19(2): 121-130. |
43 | YANG J E, CHOI Y J, LEE S J, et al. Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 95-104. |
44 | CHEN Y, CHEN X Y, DU H T, et al. Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV)[J]. Metabolic Engineering, 2019, 54: 69-82. |
45 | AKDOĞAN M, ÇELIK E. Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer by recombinant Bacillus megaterium in fed-batch bioreactors[J]. Bioprocess and Biosystems Engineering, 2021, 44(2): 403-416. |
46 | DOI Y, KANESAWA Y, KUNIOKA M, et al. Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate)[J]. Macromolecules, 1990, 23(1): 26-31. |
47 | VIGNESWARI S, VIJAYA S, MAJID M I A, et al. Enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer with manipulated variables and its properties[J]. Journal of Industrial Microbiology and Biotechnology, 2009, 36(4): 547-556. |
48 | SÖHLING B, GOTTSCHALK G. Molecular analysis of the anaerobic succinate degradation pathway in Clostridium kluyveri [J]. Journal of Bacteriology, 1996, 178(3): 871-880. |
49 | VALENTIN H E, DENNIS D. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose[J]. Journal of Biotechnology, 1997, 58(1): 33-38. |
50 | NAKAMURA S, KUNIOKA M, DOI Y. Biosynthesis and characterization of bacterial poly(3-hydroxybutyrate-co-3-hydroxypropionate)[J]. Journal of Macromolecular Science: Part A- Chemistry, 1991, 28(sup1): 15-24. |
51 | VALENTIN H E, MITSKY T A, MAHADEO D A, et al. Application of a propionyl coenzyme A synthetase for poly(3-hydroxypropionate-co-3-hydroxybutyrate) accumulation in recombinant Escherichia coli [J]. Applied and Environmental Microbiology, 2000, 66(12): 5253-5258. |
52 | FUKUI T, SUZUKI M, TSUGE T, et al. Microbial synthesis of poly[(R)-3-hydroxybutyrate-co-3-hydroxypropionate] from unrelated carbon sources by engineered Cupriavidus necator [J]. Biomacromolecules, 2009, 10(4): 700-706. |
53 | WANG Q, YANG P, XIAN M, et al. Biosynthesis of poly(3-hydroxypropionate-co-3-hydroxybutyrate) with fully controllable structures from glycerol[J]. Bioresource Technology, 2013, 142: 741-744. |
54 | GAO Y Q, LIU C S, DING Y M, et al. Development of genetically stable Escherichia coli strains for poly(3-hydroxypropionate) production[J]. PLoS One, 2014, 9(5): e97845. |
55 | DEB P K, KOKAZ S F, ABED S N, et al. Pharmaceutical and biomedical applications of polymers[M]// Basic fundamentals of drug delivery. Amsterdam: Elsevier, 2019: 203-267. |
56 | GIAMMONA G, CRAPARO E F. Biomedical applications of polylactide (PLA) and its copolymers[J]. Molecules, 2018, 23(4): 980. |
57 | YANG T H, KIM T W, KANG H O, et al. Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase[J]. Biotechnology and Bioengineering, 2010, 105(1): 150-160. |
58 | YANG T H, JUNG Y K, KANG H O, et al. Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli [J]. Applied Microbiology and Biotechnology, 2011, 90(2): 603-614. |
59 | REN Y L, MENG D C, WU L P, et al. Microbial synthesis of a novel terpolyester P(LA-co-3HB-co-3HP) from low-cost substrates[J]. Microbial Biotechnology, 2017, 10(2): 371-380. |
60 | PARK S J, KIM T W, KIM M K, et al. Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters[J]. Biotechnology Advances, 2012, 30(6): 1196-1206. |
61 | DAVID Y, JOO J C, YANG J E, et al. Biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates by employing butyryl-CoA transferases in metabolically engineered Escherichia coli [J]. Biotechnology Journal, 2017, 12(11): 1700116. |
62 | CHOI S Y, KIM W J, YU S J, et al. Engineering the xylose-catabolizing Dahms pathway for production of poly(D-lactate-co-glycolate) and poly(D-lactate-co-glycolate-co-D-2-hydroxybutyrate) in Escherichia coli [J]. Microbial Biotechnology, 2017, 10(6): 1353-1364. |
63 | LI Z J, QIAO K J, CHE X M, et al. Metabolic engineering of Escherichia coli for the synthesis of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose[J]. Metabolic Engineering, 2017, 44: 38-44. |
64 | NODA I, GREEN P R, SATKOWSKI M M, et al. Preparation and properties of a novel class of polyhydroxyalkanoate copolymers[J]. Biomacromolecules, 2005, 6(2): 580-586. |
65 | YU B Y, CHEN P Y, SUN Y M, et al. Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHH x ) films[J]. Journal of Biomaterials Science Polymer Edition, 2012, 23(1/2/3/4): 1-26. |
66 | INSOMPHUN C, XIE H, MIFUNE J, et al. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha [J]. Metabolic Engineering, 2015, 27: 38-45. |
67 | FUKUI T, DOI Y. Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae [J]. Journal of Bacteriology, 1997, 179(15): 4821-4830. |
68 | LEE S H, OH D H, AHN W S, et al. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila[J]. Biotechnology and Bioengineering, 2000, 67(2): 240-244. |
69 | TIMM A, STEINBÜCHEL A. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads[J]. Applied and Environmental Microbiology, 1990, 56(11): 3360-3367. |
70 | REHM B H, MITSKY T A, STEINBÜCHEL A. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli [J]. Applied and Environmental Microbiology, 2001, 67(7): 3102-3109. |
71 | PARK S J, CHOI J I, LEE S Y. Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates[J]. Enzyme and Microbial Technology, 2005, 36(4): 579-588. |
72 | HOKAMURA A, WAKIDA I, MIYAHARA Y, et al. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant Escherichia coli from glucose[J]. Journal of Bioscience and Bioengineering, 2015, 120(3): 305-310. |
73 | TSAY J T, OH W, LARSON T J, et al. Isolation and characterization of the beta-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12[J]. The Journal of Biological Chemistry, 1992, 267(10): 6807-6814. |
74 | NOMURA C T, TANAKA T, GAN Z H, et al. Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes[J]. Biomacromolecules, 2004, 5(4): 1457-1464. |
75 | BOGORAD I W, LIN T S, LIAO J C. Synthetic non-oxidative glycolysis enables complete carbon conservation[J]. Nature, 2013, 502(7473): 693-697. |
76 | WANG Q, XU J S, SUN Z J, et al. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO2 emission[J]. Metabolic Engineering, 2019, 51: 79-87. |
77 | OPGENORTH P H, KORMAN T P, BOWIE J U. A synthetic biochemistry module for production of bio-based chemicals from glucose [J]. Nat Chem Biol 2016, 12 (6):393-395. |
78 | DUDLEY Q M, KARIM A S, JEWETT M C. Cell-free metabolic engineering: Biomanufacturing beyond the cell[J]. Biotechnology Journal, 2015, 10(1): 69-82. |
79 | DÜRRE P, EIKMANNS B J. C1-carbon sources for chemical and fuel production by microbial gas fermentation[J]. Current Opinion in Biotechnology, 2015, 35: 63-72. |
80 | BRIGHAM C. Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other 'Knallgas' bacteria[J]. Applied Microbiology and Biotechnology, 2019, 103(5): 2113-2120. |
81 | ISHIZAKI A, TANAKA K, TAGA N. Microbial production of poly-D-3-hydroxybutyrate from CO2 [J]. Applied Microbiology and Biotechnology, 2001, 57(1/2): 6-12. |
82 | VOLOVA T G, KALACHEVA G S, STEINBÜCHEL A. Biosynthesis of multi-component polyhydroxyalkanoates by the Bacterium Wautersia eutropha [J]. Macromolecular Symposia, 2008, 269(1): 1-7. |
83 | DE SOUZA PINTO LEMGRUBER R, VALGEPEA K, TAPPEL R, et al. Systems-level engineering and characterisation of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB)[J]. Metabolic Engineering, 2019, 53: 14-23. |
84 | WU G F, WU Q Y, SHEN Z Y. Accumulation of poly-β-hydroxybutyrate in cyanobacterium Synechocystis sp. PCC6803[J]. Bioresource Technology, 2001, 76(2): 85-90. |
85 | CARPINE R, DU W, OLIVIERI G, et al. Genetic engineering of Synechocystis sp. PCC6803 for poly-β-hydroxybutyrate overproduction[J]. Algal Research, 2017, 25: 117-127. |
86 | WENDLANDT K D, JECHOREK M, HELM J, et al. Producing poly-3-hydroxybutyrate with a high molecular mass from methane[J]. Journal of Biotechnology, 2001, 86(2): 127-133. |
87 | BOURQUE D, POMERLEAU Y, GROLEAU D. High-cell-density production of poly-β-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens: production of high-molecular-mass PHB[J]. Applied Microbiology and Biotechnology, 1995, 44(3/4): 367-376. |
88 | ORITA I, NISHIKAWA K, NAKAMURA S, et al. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions[J]. Applied Microbiology and Biotechnology, 2014, 98(8): 3715-3725. |
89 | WANG J, TAN H, LI K, et al. Two-stage fermentation optimization for poly-3-hydroxybutyrate production from methanol by a new Methylobacterium isolate from oil fields[J]. Journal of Applied Microbiology, 2020, 128(1): 171-181. |
90 | 王颖, 陈国强. 合成生物学技术在聚羟基脂肪酸酯PHA生产中的应用[J]. 中国科学: 生命科学, 2015, 45(10): 1003-1014. |
WANG Y, CHEN G Q. Application of synthetic biology for the production of polyhydroxyalkanoates[J]. Scientia Sinica (Vitae), 2015, 45(10): 1003-1014. |
[1] | Kai WANG, Wan ZHANG, Yunhai HUANG, Lixin ZHANG, Chunbo LOU. Application of phage therapy in the treatment of intracellular pathogens [J]. Synthetic Biology Journal, 2023, 4(4): 676-689. |
[2] | Yiming TANG, Yifei YAO, Zhongyuan YANG, Yun ZHOU, Zichao WANG, Guanghong WEI. Pathological aggregation and liquid-liquid phase separation of proteins associated with neurodegenerative diseases [J]. Synthetic Biology Journal, 2023, 4(3): 590-610. |
[3] | Qingli CHEN, Yigang TONG. Merging the frontiers: synthetic biology for advanced bacteriophage design [J]. Synthetic Biology Journal, 2023, 4(2): 283-300. |
[4] | Zhaoying YANG, Fan ZHANG, Jianwen GUO, Weiping GAO. Biosynthesis of elastin-like polypeptides and their applications in drug delivery [J]. Synthetic Biology Journal, 2022, 3(4): 728-747. |
[5] | Xiaosheng LIANG, Yongchao GUO, Dong MEN, Xian’en ZHANG. Hybrid systems of virus and nano-gold conducting networks for electrochemical analysis [J]. Synthetic Biology Journal, 2022, 3(2): 415-427. |
[6] | Jiaoyu JIN, Jiahai ZHOU. The mystery of Z-genome biosynthesis has been elucidated [J]. Synthetic Biology Journal, 2022, 3(1): 1-5. |
[7] | Jianming LYU, Huan ZHAO, Dan HU, Hao GAO. Biosynthesis of alkyne moiety in natural products and application of alkyne biosynthetic machineries [J]. Synthetic Biology Journal, 2021, 2(5): 734-750. |
[8] | Zhiguo SU. Great impact of Professor Daniel I.C. Wang and BPEC on development of biochemical engineering [J]. Synthetic Biology Journal, 2021, 2(4): 470-481. |
[9] | Hui ZHANG, Yaomeng YUAN, Chong ZHANG, Song YANG, Xinhui XING. Research progresses and future prospects of synthetic methylotrophic cell factory for methanol assimilation [J]. Synthetic Biology Journal, 2021, 2(2): 222-233. |
[10] | Shengjian YUAN, Yingfei MA. Advances and applications of phage synthetic biology [J]. Synthetic Biology Journal, 2020, 1(6): 635-655. |
[11] | Jiangnan CHEN, Xiaoning CHEN, Xinyi LIU, Wei WAN, Yixin ZHANG, Zihao ZHANG, Yifei ZHENG, Taoran ZHENG, Xuan WANG, Ziyu WANG, Xu YAN, Xu ZHANG, Fuqing WU, Guoqiang CHEN. Engineering Halomonas spp. for next generation industrial biotechnology (NGIB) [J]. Synthetic Biology Journal, 2020, 1(5): 516-527. |
[12] | Cong RAO, Xuan YUN, Yi YU, Zixin DENG. Recent progress of synthetic biology applications in microbial pharmaceuticals research [J]. Synthetic Biology Journal, 2020, 1(1): 92-102. |
[13] | Xin WANG, Jing WANG, Kequan CHEN, Pingkai OUYANG. Research progress in bioproduction of aliphatic diamines by synthetic biotechnology [J]. Synthetic Biology Journal, 2020, 1(1): 71-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||