Synthetic Biology Journal ›› 2023, Vol. 4 ›› Issue (2): 318-332.DOI: 10.12211/2096-8280.2022-061
• Invited Review • Previous Articles Next Articles
Hailong LV1,2,3, Jian WANG2, Hao LV4, Jin WANG2,5, Yong XU3, Dayong GU3
Received:
2022-11-02
Revised:
2022-12-17
Online:
2023-04-27
Published:
2023-04-30
Contact:
Dayong GU
吕海龙1,2,3, 王建2, 吕浩4, 王金2,5, 徐勇3, 顾大勇3
通讯作者:
顾大勇
作者简介:
基金资助:
CLC Number:
Hailong LV, Jian WANG, Hao LV, Jin WANG, Yong XU, Dayong GU. Synthetic biology for next-generation genetic diagnostics[J]. Synthetic Biology Journal, 2023, 4(2): 318-332.
吕海龙, 王建, 吕浩, 王金, 徐勇, 顾大勇. 合成生物学在下一代基因诊断技术中的应用进展[J]. 合成生物学, 2023, 4(2): 318-332.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2022-061
技术 类型 | 方法 | 原理 | 应用对象 | 效果 | 优点 | 参考文献 |
---|---|---|---|---|---|---|
环境污染领域的检测分析 | 基因 修饰 | 大肠杆菌基因修饰合成可感知Cu2+并产生核黄素的孔蛋白,利用核黄素产量计算MFC生物传感器的最大电压,进而实现水中Cu2+的原位检测 | 水中Cu2+的原位检测 | 结果与现有的比色法、FAAS、ICP-OES等分析方法相一致 | 一种快速、经济的分析替代方案 | [ |
环境污染领域的检测分析 | 双色荧光报告基因 | 在一个基因结构中使用双色荧光报告基因来检测生物可利用的镉,双色荧光的产生与镉的暴露浓度成正比 | 环境水样中的Cd(Ⅱ) | 一种新型双传感、全细胞生物传感器的首次开发报告 | 可同时检测镉及其毒性效应 | [ |
环境污染领域的检测分析 | PCR,IFAT | PCR检测贾第虫、弓形虫和隐孢子虫属的DNA,免疫荧光抗体试验(IFAT)检测贾第虫和贾第虫属和隐孢子虫属的DNA的存在 | 饮用水中的原生生物 | 分析得出哥伦比亚的饮用水中致病性原生生物样本的流行率很高 | 两种检测方法相互验证 | [ |
环境污染领域的检测分析 | 逆转录巢式PCR | 开发RT-PCR引物集,优化甲型和乙型肝炎病毒(HAV和HEV)检测的标准模板 | 地下水中HAV和HEV | 开发的巢式RT-PCR有望通过监测HAV和HEV来评估水的安全性 | 可区分假阳性,提高了检测效率 | [ |
环境污染领域的检测分析 | qPCR | 采用HPLC-MS/MS测定抗生素,采用实时定量PCR定量,调查抗生素及其相应的ARGs的发生和分布 | 抗生素耐药性基因(ARGs) | 人为活动及暴雨天气对抗生素污染和ARGs水平均有显著影响 | 增加对污水污染与ARG之间联系的了解 | [ |
肠道微生物的检测分析 | NO感应开关 | 设计NO响应生物传感器,在大肠杆菌Nisle 1917和迷你Sim Cells中对电路进行了表征和优化 | NO | 优化的基因电路NO检测限有所提高,基于Sim Cells的NO生物传感器可以用作合成生物学的安全传感器底盘 | 特征良好的硝酸传感系统有助于细菌治疗和合成生物学的快速发展 | [ |
肠道微生物的检测分析 | 无细胞开关传感器,RT-qPCR | 在基于纸张的无细胞反应中使用RNA开关传感器进行按需和简单的微生物组样本分析 | 肠道微生物群和宿主生物标志物 | 可以用于快速、廉价地检测毒素mRNA来诊断艰难梭菌感染 | 快速、廉价,比标准的基于DNA的qPCR诊断更灵敏 | [ |
传染病 诊断 | 酶报告 基因 | 设计一种专门检测肠道中霍乱弧菌的群体感应信号乳杆菌菌株,并触发一种容易在粪便样本中检测到的酶报告基因的表达 | 霍乱弧菌 | 使用含有天然和工程乳杆菌菌株的发酵食品进行预防性饮食干预,可能会阻碍霍乱的进展 | 可提供快速保护,以抵御霍乱等快速进展的感染 | [ |
传染病 诊断 | 新型合成纳米体 | 通过筛选酵母表面显示的合成纳米体序列库,开发可破坏Spike和ACE2之间相互作用的纳米体 | SARS-CoV-2病毒 | 纳米体mNb6-tri对Spike和SARS-CoV-2的感染具有中和作用 | 气溶胶介导的纳米体中和剂可以直接传递到气道上皮细胞 | [ |
器官移植后检测 | mRNA 疫苗 | 设计一种编码ZIKV结构基因的mRNA疫苗,编码prM-E基因产生病毒样颗粒,导致中和抗体滴度高,保护ZIKV感染并赋予杀菌免疫 | ZIKV热病毒 | 改良的mRNA疫苗可以预防ZIKV疾病 | 可以降低个体对随后暴露于DENV的敏感性风险 | [ |
器官移植后检测 | 酶抑制剂 | 巨细胞病毒(CMV) | 用于人类巨细胞病毒感染的治疗和预防 | 与单独使用免疫抑制剂相比有更好的耐受性 | [ | |
遗传病 诊断 | 基因治疗 | 以基因矫正的热休克蛋白及其后代作为细胞载体,将分子传递到循环和组织中 | 自体造血干/祖细胞(HSPCs) | 有可能治愈由血液系统发育功能改变引起的单基因遗传性疾病 | 具有更安全的整合谱 | [ |
遗传病 诊断 | 下一代基因测序(NGS) | 通过针对所有鱼鳞病相关基因的多基因面板测试,使用NGS进行分子分析 | 中国人遗传学鱼鳞病 | 证明遗传性鱼鳞病是一组不同的角化症,扩大了中国人遗传性鱼鳞病的突变谱和临床表型 | NGS技术极大提高了遗传性鱼鳞病的诊断效率 | [ |
肿瘤基因诊断 | 工程免疫细胞 | 利用免疫细胞、核酸和细菌作为底盘的癌症基因电路疗法 | 肿瘤及癌症 | 合成生物学可创造出更有效的适应性疗法,使其能够特异性靶向癌细胞,同时保留健康细胞 | 可按需进行肿瘤及癌症的免疫治疗 | [ |
基因突变的检测 | 原核生物核糖核酸调节剂 | 从头设计一种在体内和无细胞转录-翻译反应中提供超特异性RNA检测能力的原核核糖体调节因子 | 核糖体调节 因子 | 开发用于与癌症、耐药性和遗传疾病相关的一系列突变的核糖体调节因子 | 实用,强大的分子探针 | [ |
Table 1 Applications of synthetic biology in gene diagnosis
技术 类型 | 方法 | 原理 | 应用对象 | 效果 | 优点 | 参考文献 |
---|---|---|---|---|---|---|
环境污染领域的检测分析 | 基因 修饰 | 大肠杆菌基因修饰合成可感知Cu2+并产生核黄素的孔蛋白,利用核黄素产量计算MFC生物传感器的最大电压,进而实现水中Cu2+的原位检测 | 水中Cu2+的原位检测 | 结果与现有的比色法、FAAS、ICP-OES等分析方法相一致 | 一种快速、经济的分析替代方案 | [ |
环境污染领域的检测分析 | 双色荧光报告基因 | 在一个基因结构中使用双色荧光报告基因来检测生物可利用的镉,双色荧光的产生与镉的暴露浓度成正比 | 环境水样中的Cd(Ⅱ) | 一种新型双传感、全细胞生物传感器的首次开发报告 | 可同时检测镉及其毒性效应 | [ |
环境污染领域的检测分析 | PCR,IFAT | PCR检测贾第虫、弓形虫和隐孢子虫属的DNA,免疫荧光抗体试验(IFAT)检测贾第虫和贾第虫属和隐孢子虫属的DNA的存在 | 饮用水中的原生生物 | 分析得出哥伦比亚的饮用水中致病性原生生物样本的流行率很高 | 两种检测方法相互验证 | [ |
环境污染领域的检测分析 | 逆转录巢式PCR | 开发RT-PCR引物集,优化甲型和乙型肝炎病毒(HAV和HEV)检测的标准模板 | 地下水中HAV和HEV | 开发的巢式RT-PCR有望通过监测HAV和HEV来评估水的安全性 | 可区分假阳性,提高了检测效率 | [ |
环境污染领域的检测分析 | qPCR | 采用HPLC-MS/MS测定抗生素,采用实时定量PCR定量,调查抗生素及其相应的ARGs的发生和分布 | 抗生素耐药性基因(ARGs) | 人为活动及暴雨天气对抗生素污染和ARGs水平均有显著影响 | 增加对污水污染与ARG之间联系的了解 | [ |
肠道微生物的检测分析 | NO感应开关 | 设计NO响应生物传感器,在大肠杆菌Nisle 1917和迷你Sim Cells中对电路进行了表征和优化 | NO | 优化的基因电路NO检测限有所提高,基于Sim Cells的NO生物传感器可以用作合成生物学的安全传感器底盘 | 特征良好的硝酸传感系统有助于细菌治疗和合成生物学的快速发展 | [ |
肠道微生物的检测分析 | 无细胞开关传感器,RT-qPCR | 在基于纸张的无细胞反应中使用RNA开关传感器进行按需和简单的微生物组样本分析 | 肠道微生物群和宿主生物标志物 | 可以用于快速、廉价地检测毒素mRNA来诊断艰难梭菌感染 | 快速、廉价,比标准的基于DNA的qPCR诊断更灵敏 | [ |
传染病 诊断 | 酶报告 基因 | 设计一种专门检测肠道中霍乱弧菌的群体感应信号乳杆菌菌株,并触发一种容易在粪便样本中检测到的酶报告基因的表达 | 霍乱弧菌 | 使用含有天然和工程乳杆菌菌株的发酵食品进行预防性饮食干预,可能会阻碍霍乱的进展 | 可提供快速保护,以抵御霍乱等快速进展的感染 | [ |
传染病 诊断 | 新型合成纳米体 | 通过筛选酵母表面显示的合成纳米体序列库,开发可破坏Spike和ACE2之间相互作用的纳米体 | SARS-CoV-2病毒 | 纳米体mNb6-tri对Spike和SARS-CoV-2的感染具有中和作用 | 气溶胶介导的纳米体中和剂可以直接传递到气道上皮细胞 | [ |
器官移植后检测 | mRNA 疫苗 | 设计一种编码ZIKV结构基因的mRNA疫苗,编码prM-E基因产生病毒样颗粒,导致中和抗体滴度高,保护ZIKV感染并赋予杀菌免疫 | ZIKV热病毒 | 改良的mRNA疫苗可以预防ZIKV疾病 | 可以降低个体对随后暴露于DENV的敏感性风险 | [ |
器官移植后检测 | 酶抑制剂 | 巨细胞病毒(CMV) | 用于人类巨细胞病毒感染的治疗和预防 | 与单独使用免疫抑制剂相比有更好的耐受性 | [ | |
遗传病 诊断 | 基因治疗 | 以基因矫正的热休克蛋白及其后代作为细胞载体,将分子传递到循环和组织中 | 自体造血干/祖细胞(HSPCs) | 有可能治愈由血液系统发育功能改变引起的单基因遗传性疾病 | 具有更安全的整合谱 | [ |
遗传病 诊断 | 下一代基因测序(NGS) | 通过针对所有鱼鳞病相关基因的多基因面板测试,使用NGS进行分子分析 | 中国人遗传学鱼鳞病 | 证明遗传性鱼鳞病是一组不同的角化症,扩大了中国人遗传性鱼鳞病的突变谱和临床表型 | NGS技术极大提高了遗传性鱼鳞病的诊断效率 | [ |
肿瘤基因诊断 | 工程免疫细胞 | 利用免疫细胞、核酸和细菌作为底盘的癌症基因电路疗法 | 肿瘤及癌症 | 合成生物学可创造出更有效的适应性疗法,使其能够特异性靶向癌细胞,同时保留健康细胞 | 可按需进行肿瘤及癌症的免疫治疗 | [ |
基因突变的检测 | 原核生物核糖核酸调节剂 | 从头设计一种在体内和无细胞转录-翻译反应中提供超特异性RNA检测能力的原核核糖体调节因子 | 核糖体调节 因子 | 开发用于与癌症、耐药性和遗传疾病相关的一系列突变的核糖体调节因子 | 实用,强大的分子探针 | [ |
1 | TAN X, LETENDRE J H, COLLINS J J, et al. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics[J]. Cell, 2021, 184(4): 881-898. |
2 | ZHOU T Y, LI R, ZHANG S T, et al. A copper-specific microbial fuel cell biosensor based on riboflavin biosynthesis of engineered Escherichia coli [J]. Biotechnology and Bioengineering, 2021, 118(1): 210-222. |
3 | HUI C Y, GUO Y, WU J, et al. Detection of bioavailable cadmium by double-color fluorescence based on a dual-sensing bioreporter system[J]. Frontiers in Microbiology, 2021, 12: 696195. |
4 | TRIVIÑO-VALENCIA J, LORA F, ZULUAGA J D, et al. Detection by PCR of pathogenic protozoa in raw and drinkable water samples in Colombia[J]. Parasitology Research, 2016, 115(5): 1789-1797. |
5 | PINTO-DUARTE V A, HÉRNANDEZ-ARANGO N M, MARIN-GALLEGO B J, et al. Detection of Giardia duodenalis and Toxoplasma gondii in soil and water samples in the Quindío River Basin, Colombia[J]. Food and Waterborne Parasitology, 2022, 28: e00175. |
6 | BAE K S, LEE S W, LEE J Y, et al. Development of diagnostic systems for wide range and highly sensitive detection of two waterborne hepatitis viruses from groundwater using the conventional reverse transcription nested PCR assay[J]. Journal of Virological Methods, 2022, 299: 114344. |
7 | JIA J, GUAN Y J, CHENG M Q, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China[J]. Science of the Total Environment, 2018, 642: 1136-1144. |
8 | AHMED W, GYAWALI P, HAMILTON K A, et al. Antibiotic resistance and sewage-associated marker genes in untreated sewage and a river characterized during baseflow and stormflow[J]. Frontiers in Microbiology, 2021, 12: 632850. |
9 | CHEN X J, WANG B J, THOMPSON I P, et al. Rational design and characterization of nitric oxide biosensors in E. coli Nissle 1917 and mini SimCells[J]. ACS Synthetic Biology, 2021, 10(10): 2566-2578. |
10 | TAKAHASHI M K, TAN X, DY A J, et al. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers[J]. Nature Communications, 2018, 9: 3347. |
11 | TAKAHASHI M K, TAN X, DY A J. Cell-free paper-based analysis of gut microbiota and host biomarkers[J]. Methods in Molecular Biology, 2022, 2433: 351-374. |
12 | MAO N, CUBILLOS-RUIZ A, CAMERON D E, et al. Probiotic strains detect and suppress cholera in mice[J]. Science Translational Medicine, 2018, 10(445): eaao2586. |
13 | SCHOOF M, FAUST B, SAUNDERS R A, et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike[J]. Science, 2020, 370(6523): 1473-1479. |
14 | RICHNER J M, HIMANSU S, DOWD K A, et al. Modified mRNA vaccines protect against Zika virus infection[J]. Cell, 2017, 168(6): 1114-1125.e10. |
15 | MEESING A, RAZONABLE R R. New developments in the management of cytomegalovirus infection after transplantation[J]. Drugs, 2018, 78(11): 1085-1103. |
16 | TUCCI F, SCARAMUZZA S, AIUTI A, et al. Update on clinical ex vivo hematopoietic stem cell gene therapy for inherited monogenic diseases[J]. Molecular Therapy, 2021, 29(2): 489-504. |
17 | CHENG R H, LIANG J Y, LI Y, et al. Next-generation sequencing through multi-gene panel testing for diagnosis of hereditary ichthyosis in Chinese[J]. Clinical Genetics, 2020, 97(5): 770-778. |
18 | WU M R, JUSIAK B, LU T K. Engineering advanced cancer therapies with synthetic biology[J]. Nature Reviews Cancer, 2019, 19(4): 187-195. |
19 | SHIMABUKURO-VORNHAGEN A, BÖLL B, SCHELLONGOWSKI P, et al. Critical care management of chimeric antigen receptor T-cell therapy recipients[J]. CA: a Cancer Journal for Clinicians, 2022, 72(1): 78-93. |
20 | DIMITRI A, HERBST F, FRAIETTA J A. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing[J]. Molecular Cancer, 2022, 21(1): 78. |
21 | HONG F, MA D, WU K Y, et al. Precise and programmable detection of mutations using ultraspecific riboregulators[J]. Cell, 2020, 180(5): 1018-1032.e16. |
22 | RYLOTT E L, BRUCE N C. How synthetic biology can help bioremediation[J]. Current Opinion in Chemical Biology, 2020, 58: 86-95. |
23 | PARUCH L. Molecular diagnostic tools applied for assessing microbial water quality[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5128. |
24 | YAASHIKAA P R, DEVI M K, KUMAR P S. Engineering microbes for enhancing the degradation of environmental pollutants: a detailed review on synthetic biology[J]. Environmental Research, 2022, 214(Pt 1): 113868. |
25 | THAVARAJAH W, VEROSLOFF M S, JUNG J K, et al. A primer on emerging field-deployable synthetic biology tools for global water quality monitoring[J]. Npj Clean Water, 2020, 3: 18. |
26 | DOU J, BENNETT M R. Synthetic biology and the gut microbiome[J]. Biotechnology Journal, 2018, 13(5): 1700159. |
27 | RAMACHANDRAN G, BIKARD D. Editing the microbiome the CRISPR way[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374(1772): 20180103. |
28 | MIMEE M, TUCKER A C, VOIGT C A, et al. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota[J]. Cell Systems, 2015, 1(1): 62-71. |
29 | SINGH R P, SHADAN A, MA Y. Biotechnological applications of probiotics: a multifarious weapon to disease and metabolic abnormality[J]. Probiotics and Antimicrobial Proteins, 2022, 14(6): 1184-1210. |
30 | MILLS H, ACQUAH R, TANG N, et al. The use of bacteria in cancer treatment: a review from the perspective of cellular microbiology[J]. Emergency Medicine International, 2022, 2022: 8127137. |
31 | CRESCI G A M, LAMPE J W, GIBSON G. Targeted approaches for in situ gut microbiome manipulation[J]. JPEN Journal of Parenteral and Enteral Nutrition, 2020, 44(4): 581-588. |
32 | BOBER J R, BEISEL C L, NAIR N U. Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications[J]. Annual Review of Biomedical Engineering, 2018, 20: 277-300. |
33 | CAÑEZ C, SELLE K, GOH Y J, et al. Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus [J]. FEMS Microbiology Letters, 2019, 366(9): fnz105. |
34 | KUMAR P, SINHA R, SHUKLA P. Artificial intelligence and synthetic biology approaches for human gut microbiome[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(8): 2103-2121. |
35 | VOORHEES P J, CRUZ-TERAN C, EDELSTEIN J, et al. Challenges & opportunities for phage-based in situ microbiome engineering in the gut[J]. Journal of Controlled Release, 2020, 326: 106-119. |
36 | BARANI M, RAHDAR A, SARGAZI S, et al. Nanotechnology for inflammatory bowel disease management: detection, imaging and treatment[J]. Sensing and Bio-Sensing Research, 2021, 32: 100417. |
37 | NJUE F, CHIH S. When to intervene for donor-specific antibody after heart transplantation[J]. Current Opinion in Organ Transplantation, 2019, 24(3): 271-278. |
38 | SU J A, BAXTER-LOWE L A, KANTOR P F, et al. The clinical impact of donor-specific antibodies on antibody-mediated rejection and long-term prognosis after heart transplantation[J]. Current Opinion in Organ Transplantation, 2019, 24(3): 245-251. |
39 | ROTH T L, MARSON A. Genetic disease and therapy[J]. Annual Review of Pathology, 2021, 16: 145-166. |
40 | BHARATHKUMAR N, SUNIL A, MEERA P, et al. CRISPR/Cas-based modifications for therapeutic applications: a review[J]. Molecular Biotechnology, 2022, 64(4): 355-372. |
41 | LIN H F, LI G, PENG X W, et al. The use of CRISPR/Cas9 as a tool to study human infectious viruses[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 590989. |
42 | SHARMA G, SHARMA A R, BHATTACHARYA M, et al. CRISPR-Cas9: a preclinical and clinical perspective for the treatment of human diseases[J]. Molecular Therapy, 2021, 29(2): 571-586. |
43 | KANG K, SONG Y, KIM I, et al. Therapeutic applications of the CRISPR-Cas system[J]. Bioengineering, 2022, 9(9): 477. |
44 | PICKAR-OLIVER A, GERSBACH C A. The next generation of CRISPR-Cas technologies and applications[J]. Nature Reviews Molecular Cell Biology, 2019, 20(8): 490-507. |
45 | WANG X S, XIONG E H, TIAN T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay[J]. ACS Nano, 2020, 14(2): 2497-2508. |
46 | KLEINSTIVER B P, SOUSA A A, WALTON R T, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing[J]. Nature Biotechnology, 2019, 37(3): 276-282. |
47 | CHEN J S, MA E B, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439. |
48 | LI S Y, CHENG Q X, WANG J M, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discovery, 2018, 4: 20. |
49 | LV H L, WANG J, ZHANG J, et al. Definition of CRISPR Cas12a trans-cleavage units to facilitate CRISPR diagnostics[J]. Frontiers in Microbiology, 2021, 12: 766464. |
50 | LI Y, LI S Y, WANG J, et al. CRISPR/Cas systems towards next-generation biosensing[J]. Trends in Biotechnology, 2019, 37(7): 730-743. |
51 | KHAN A, OSTAKU J, ARAS E, et al. Combating infectious diseases with synthetic biology[J]. ACS Synthetic Biology, 2022, 11(2): 528-537. |
52 | HUANG Z, TIAN D, LIU Y, et al. Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis[J]. Biosensors & Bioelectronics, 2020, 164: 112316. |
53 | BROTO M, KAMINSKI M M, ADRIANUS C, et al. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs[J]. Nature Nanotechnology, 2022, 17(10): 1120-1126. |
54 | ZOU Y P, MASON M G, BOTELLA J R. Evaluation and improvement of isothermal amplification methods for point-of-need plant disease diagnostics[J]. PLoS One, 2020, 15(6): e0235216. |
55 | MUSTAFA M I, MAKHAWI A M. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases[J]. Journal of Clinical Microbiology, 2021, 59(3): e00745-e00720. |
56 | LEE R A, PUIG H, NGUYEN P Q, et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25722-25731. |
57 | MANGHWAR H, LINDSEY K, ZHANG X L, et al. CRISPR/Cas system: recent advances and future prospects for genome editing[J]. Trends in Plant Science, 2019, 24(12): 1102-1125. |
58 | KIM J, CAMPBELL A S, DE ÁVILA B E F, et al. Wearable biosensors for healthcare monitoring[J]. Nature Biotechnology, 2019, 37(4): 389-406. |
59 | NGUYEN P Q, SOENKSEN L R, DONGHIA N M, et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection[J]. Nature Biotechnology, 2021, 39(11): 1366-1374. |
60 | RHEA K A, MCDONALD N D, COLE S D, et al. Variability in cell-free expression reactions can impact qualitative genetic circuit characterization[J]. Synthetic Biology, 2022, 7(1): ysac011. |
61 | SADAT MOUSAVI P, SMITH S J, CHEN J B, et al. A multiplexed, electrochemical interface for gene-circuit-based sensors[J]. Nature Chemistry, 2020, 12(1): 48-55. |
62 | LAI W, XIONG X W, WANG F, et al. Nonlinear regulation of enzyme-free DNA circuitry with ultrasensitive switches[J]. ACS Synthetic Biology, 2019, 8(9): 2106-2112. |
63 | KIM H, SKINNER D J, GLASS D S, et al. 4-Bit adhesion logic enables universal multicellular interface patterning[J]. Nature, 2022, 608(7922): 324-329. |
64 | NAJJAR D, RAINBOW J, SHARMA TIMILSINA S, et al. A lab-on-a-chip for the concurrent electrochemical detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in saliva and plasma[J]. Nature Biomedical Engineering, 2022, 6(8): 968-978. |
65 | BHADRA S, POTHUKUCHY A, SHROFF R, et al. Cellular reagents for diagnostics and synthetic biology[J]. PLoS One, 2018, 13(8): e0201681. |
66 | SHAO Y Y, LU N, WU Z F, et al. Creating a functional single-chromosome yeast[J]. Nature, 2018, 560(7718): 331-335. |
67 | OOIJEVAAR R E, TERVEER E M, VERSPAGET H W, et al. Clinical application and potential of fecal microbiota transplantation [J]. Annual Review of Medicine, 2019, 70: 335-351. |
[1] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[2] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
[3] | Zhonghu BAI, He REN, Jianqi NIE, Yang SUN. The recent progresses and applications of in-parallel fermentation technology [J]. Synthetic Biology Journal, 2023, 4(5): 904-915. |
[4] | Yujie WU, Xinxin LIU, Jianhui LIU, Kaiguang Yang, Zhigang SUI, Lihua ZHANG, Yukui ZHANG. Research progress of strain screening and quantitative analysis of key molecules based on high-throughput liquid chromatography and mass spectrometry [J]. Synthetic Biology Journal, 2023, 4(5): 1000-1019. |
[5] | Zhehui HU, Juan XU, Guangkai BIAN. Application of automated high-throughput technology in natural product biosynthesis [J]. Synthetic Biology Journal, 2023, 4(5): 932-946. |
[6] | Huan LIU, Qiu CUI. Advances and applications of ambient ionization mass spectrometry in screening of microbial strains [J]. Synthetic Biology Journal, 2023, 4(5): 980-999. |
[7] | Yongcan CHEN, Tong SI, Jianzhi ZHANG. Applications of automated synthetic biotechnology in DNA assembly and microbial chassis manipulation [J]. Synthetic Biology Journal, 2023, 4(5): 857-876. |
[8] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[9] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[10] | Meili SUN, Kaifeng WANG, Ran LU, Xiaojun JI. Rewiring and application of Yarrowia lipolytica chassis cell [J]. Synthetic Biology Journal, 2023, 4(4): 779-807. |
[11] | Mengdan MA, Mengyu SHANG, Yuchen LIU. Application and prospect of CRISPR-Cas9 system in tumor biology [J]. Synthetic Biology Journal, 2023, 4(4): 703-719. |
[12] | Tiantian WANG, Hong ZHU, Chen YANG. Development of CRISPRa for metabolic engineering applications in cyanobacteria [J]. Synthetic Biology Journal, 2023, 4(4): 824-839. |
[13] | Jicong LIN, Gen ZOU, Hongmin LIU, Yongjun WEI. Application of CRISPR/Cas genome editing technology in the synthesis of secondary metabolites of filamentous fungi [J]. Synthetic Biology Journal, 2023, 4(4): 738-755. |
[14] | Zhi SUN, Ning YANG, Chunbo LOU, Chao TANG, Xiaojing YANG. Rational design for functional topology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2023, 4(3): 444-463. |
[15] | Qilong LAI, Shuai YAO, Yuguo ZHA, Hong BAI, Kang NING. Microbiome-based biosynthetic gene cluster data mining techniques and application potentials [J]. Synthetic Biology Journal, 2023, 4(3): 611-627. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||