Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (1): 174-190.DOI: 10.12211/2096-8280.2023-029
• Invited Review • Previous Articles Next Articles
Lichuan WAN, Xuejun WANG, Shengqi WANG
Received:
2023-04-10
Revised:
2023-11-26
Online:
2024-03-20
Published:
2024-02-29
Contact:
Xuejun WANG, Shengqi WANG
万里川, 王学军, 王升启
通讯作者:
王学军,王升启
作者简介:
基金资助:
CLC Number:
Lichuan WAN, Xuejun WANG, Shengqi WANG. Artificial synthesis and applications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicons[J]. Synthetic Biology Journal, 2024, 5(1): 174-190.
万里川, 王学军, 王升启. 新型冠状病毒复制子人工合成和应用研究进展[J]. 合成生物学, 2024, 5(1): 174-190.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-029
1 | ZHOU P, YANG X L, WANG X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273. |
2 | PIRET J, BOIVIN G. Pandemics throughout history[J]. Frontiers in Microbiology, 2021, 11: 631736. |
3 | HU B, GUO H, ZHOU P, et al. Characteristics of SARS-CoV-2 and COVID-19[J]. Nature Reviews Microbiology, 2021, 19(3): 141-154. |
4 | GORBALENYA A E, BAKER S C, BARIC R S, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2[J]. Nature Microbiology, 2020, 5(4): 536-544. |
5 | CUI J, LI F, SHI Z L. Origin and evolution of pathogenic coronaviruses[J]. Nature Reviews Microbiology, 2019, 17(3): 181-192. |
6 | ZHU N, ZHANG D Y, WANG W L, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. The New England Journal of Medicine, 2020, 382(8): 727-733. |
7 | CAO X T. COVID-19: immunopathology and its implications for therapy[J]. Nature Reviews Immunology, 2020, 20(5): 269-270. |
8 | HUANG C L, WANG Y M, LI X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. The Lancet, 2020, 395(10223): 497-506. |
9 | ZHANG G M, ZHANG J, WANG B W, et al. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis[J]. Respiratory Research, 2020, 21(1): 74. |
10 | THYE A Y K, LAW J W F, TAN L T H, et al. Psychological symptoms in COVID-19 patients: insights into pathophysiology and risk factors of long COVID-19[J]. Biology, 2022, 11(1): 61. |
11 | THALLAPUREDDY K, THALLAPUREDDY K, ZERDA E, et al. Long-term complications of COVID-19 infection in adolescents and children[J]. Current Pediatrics Reports, 2022, 10(1): 11-17. |
12 | MEHANDRU S, MERAD M. Pathological sequelae of long-haul COVID[J]. Nature Immunology, 2022, 23(2): 194-202. |
13 | JOSHEE S, VATTI N, CHANG C. Long-term effects of COVID-19[J]. Mayo Clinic Proceedings, 2022, 97(3): 579-599. |
14 | HAN Q, ZHENG B, DAINES L, et al. Long-term sequelae of COVID-19: a systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms[J]. Pathogens, 2022, 11(2): 269. |
15 | DESAI A D, LAVELLE M, BOURSIQUOT B C, et al. Long-term complications of COVID-19[J]. American Journal of Physiology-Cell Physiology, 2022, 322(1): C1-C11. |
16 | SHIU E Y C, LEUNG N H L, COWLING B J. Controversy around airborne versus droplet transmission of respiratory viruses: implication for infection prevention[J]. Current Opinion in Infectious Diseases, 2019, 32(4): 372-379. |
17 | WANG C C, PRATHER K A, SZNITMAN J, et al. Airborne transmission of respiratory viruses[J]. Science, 2021, 373(6558): eabd9149. |
18 | COLLIER D A, DE MARCO A, FERREIRA I A T M, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies[J]. Nature, 2021, 593(7857): 136-141. |
19 | HARVEY W T, CARABELLI A M, JACKSON B, et al. SARS-CoV-2 variants, spike mutations and immune escape[J]. Nature Reviews Microbiology, 2021, 19(7): 409-424. |
20 | CHOY K T, WONG A Y L, KAEWPREEDEE P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro [J]. Antiviral Research, 2020, 178: 104786. |
21 | BAKOWSKI M A, BEUTLER N, WOLFF K C, et al. Drug repurposing screens identify chemical entities for the development of COVID-19 interventions[J]. Nature Communications, 2021, 12: 3309. |
22 | RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial[J]. Lancet, 2020, 396(10259): 1345-1352. |
23 | YANG H T, RAO Z H. Structural biology of SARS-CoV-2 and implications for therapeutic development[J]. Nature Reviews Microbiology, 2021, 19(11): 685-700. |
24 | CHEN Y, LIU Q Y, GUO D Y. Emerging coronaviruses: genome structure, replication, and pathogenesis[J]. Journal of Medical Virology, 2020, 92(4): 418-423. |
25 | SNIJDER E J, DECROLY E, ZIEBUHR J. The nonstructural proteins directing coronavirus RNA synthesis and processing[J]. Advances in Virus Research, 2016, 96: 59-126. |
26 | KIM D, LEE J Y, YANG J S, et al. The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181(4): 914-921.e10. |
27 | RASHID F, DZAKAH E E, WANG H Y, et al. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta[J]. Virus Research, 2021, 296: 198350. |
28 | SOLA I, ALMAZÁN F, ZÚÑIGA S, et al. Continuous and discontinuous RNA synthesis in coronaviruses[J]. Annual Review of Virology, 2015, 2: 265-288. |
29 | RASKIN S. Genetics of COVID-19[J]. Jornal de Pediatria, 2021, 97(4): 378-386. |
30 | TOYOSHIMA Y, NEMOTO K, MATSUMOTO S, et al. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19[J]. Journal of Human Genetics, 2020, 65(12): 1075-1082. |
31 | SUBISSI L, POSTHUMA C C, COLLET A, et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(37): E3900-E3909. |
32 | ALMAZÁN F, GALÁN C, ENJUANES L. The nucleoprotein is required for efficient coronavirus genome replication[J]. Journal of Virology, 2004, 78(22): 12683-12688. |
33 | ZÚÑIGA S, CRUZ J L G, SOLA I, et al. Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription[J]. Journal of Virology, 2010, 84(4): 2169-2175. |
34 | ZAKHARTCHOUK A N, VISWANATHAN S, MAHONY J B, et al. Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice[J]. Journal of General Virology, 2005, 86(1): 211-215. |
35 | HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e8. |
36 | V'KOVSKI P, KRATZEL A, STEINER S, et al. Coronavirus biology and replication: implications for SARS-CoV-2[J]. Nature Reviews Microbiology, 2021, 19(3): 155-170. |
37 | MASTERS P S. The molecular biology of coronaviruses[J]. Advances in Virus Research, 2006, 66: 193-292. |
38 | WANG J M, WANG L F, SHI Z L. Construction of a non-infectious SARS coronavirus replicon for application in drug screening and analysis of viral protein function[J]. Biochemical and Biophysical Research Communications, 2008, 374(1): 138-142. |
39 | GE F, LUO Y H, LIEW P X, et al. Derivation of a novel SARS-coronavirus replicon cell line and its application for anti-SARS drug screening[J]. Virology, 2007, 360(1): 150-158. |
40 | SOUZA T M L, MOREL C M. The COVID-19 pandemics and the relevance of biosafety facilities for metagenomics surveillance, structured disease prevention and control[J]. Biosafety and Health, 2021, 3(1): 1-3. |
41 | JU X H, ZHU Y K, WANG Y Y, et al. A novel cell culture system modeling the SARS-CoV-2 life cycle[J]. PLoS Pathogens, 2021, 17(3): e1009439. |
42 | ZHANG X W, LIU Y, LIU J Y, et al. A trans-complementation system for SARS-CoV-2 recapitulates authentic viral replication without virulence[J]. Cell, 2021, 184(8): 2229-2238.e13. |
43 | RICARDO-LAX I, LUNA J M, THAO T T N, et al. Replication and single-cycle delivery of SARS-CoV-2 replicons[J]. Science, 2021, 374(6571): 1099-1106. |
44 | FRENCH R, AHLQUIST P. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3[J]. Journal of Virology, 1987, 61(5): 1457-1465. |
45 | BREDENBEEK P J, FROLOV I, RICE C M, et al. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs[J]. Journal of Virology, 1993, 67(11): 6439-6446. |
46 | LOHMANN V, KÖRNER F, KOCH J O, et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line[J]. Science, 1999, 285(5424): 110-113. |
47 | BLIGHT K J, KOLYKHALOV A A, RICE C M. Efficient initiation of HCV RNA replication in cell culture[J]. Science, 2000, 290(5498): 1972-1974. |
48 | THIEL V, HEROLD J, SCHELLE B, et al. Viral replicase gene products suffice for coronavirus discontinuous transcription[J]. Journal of Virology, 2001, 75(14): 6676-6681. |
49 | CURTIS K M, YOUNT B, BARIC R S. Heterologous gene expression from transmissible gastroenteritis virus replicon particles[J]. Journal of Virology, 2002, 76(3): 1422-1434. |
50 | KAPLAN G, RACANIELLO V R. Construction and characterization of poliovirus subgenomic replicons[J]. Journal of Virology, 1988, 62(5): 1687-1696. |
51 | ZHANG H, FISCHER D K, SHUDA M, et al. Construction and characterization of two SARS-CoV-2 minigenome replicon systems[J]. Journal of Medical Virology, 2022, 94(6): 2438-2452. |
52 | HE X, QUAN S, XU M, et al. Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening and testing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2025866118. |
53 | LUO Y W, YU F, ZHOU M, et al. Engineering a reliable and convenient SARS-CoV-2 replicon system for analysis of viral RNA synthesis and screening of antiviral inhibitors[J]. mBio, 2021, 12(1): e02754-20. |
54 | ALMAZÁN F, DEDIEGO M L, GALÁN C, et al. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis[J]. Journal of Virology, 2006, 80(21): 10900-10906. |
55 | VIKTOROVA E G, KHATTAR S, SAMAL S, et al. Poliovirus replicon RNA generation, transfection, packaging, and quantitation of replication[J]. Current Protocols in Microbiology, 2018, 48(1): 15H.4.1-15H.4.15. |
56 | THUMFART J O, MEYERS G. Feline calicivirus: recovery of wild-type and recombinant viruses after transfection of cRNA or cDNA constructs[J]. Journal of Virology, 2002, 76(12): 6398-6407. |
57 | LILJESTRÖM P, GAROFF H. A new generation of animal cell expression vectors based on the semliki forest virus replicon[J]. Biotechnology, 1991, 9(12): 1356-1361. |
58 | KHROMYKH A A, WESTAWAY E G. Subgenomic replicons of the flavivirus Kunjin: construction and applications[J]. Journal of Virology, 1997, 71(2): 1497-1505. |
59 | KHAN S, SONI S, VEERAPU N S. HCV replicon systems: workhorses of drug discovery and resistance[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 325. |
60 | BEHRENS S E, GRASSMANN C W, THIEL H J, et al. Characterization of an autonomous subgenomic pestivirus RNA replicon[J]. Journal of Virology, 1998, 72(3): 2364-2372. |
61 | PANG X, ZHANG M, DAYTON A I. Development of Dengue virus type 2 replicons capable of prolonged expression in host cells[J]. BMC Microbiology, 2001, 1: 18. |
62 | SHI P Y, TILGNER M, LO M K. Construction and characterization of subgenomic replicons of New York strain of West Nile virus[J]. Virology, 2002, 296(2): 219-233. |
63 | HERTZIG T, SCANDELLA E, SCHELLE B, et al. Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA[J]. Journal of General Virology, 2004, 85(6): 1717-1725. |
64 | FENG X L, ZHANG X F, JIANG S Y, et al. A DNA-based non-infectious replicon system to study SARS-CoV-2 RNA synthesis[J]. Computational and Structural Biotechnology Journal, 2022, 20: 5193-5202. |
65 | GE F, XIONG S, LIN F S, et al. High-throughput assay using a GFP-expressing replicon for SARS-CoV drug discovery[J]. Antiviral Research, 2008, 80(2): 107-113. |
66 | ALMAZÁN F, SOLA I, ZUÑIGA S, et al. Coronavirus reverse genetic systems: infectious clones and replicons[J]. Virus Research, 2014, 189: 262-270. |
67 | ZHANG Q Y, DENG C L, LIU J, et al. SARS-CoV-2 replicon for high-throughput antiviral screening[J]. The Journal of General Virology, 2021, 102(5): 001583. |
68 | PIETSCHMANN T, BARTENSCHLAGER R. The hepatitis C virus replicon system and its application to molecular studies[J]. Current Opinion in Drug Discovery & Development, 2001, 4(5): 657-664. |
69 | CHEN M X, XU Y, LI N, et al. Development of full-length cell-culture infectious clone and subgenomic replicon for a genotype 3a isolate of hepatitis C virus[J]. Journal of General Virology, 2021, 102(12): 1704. |
70 | HANNEMANN H. Viral replicons as valuable tools for drug discovery[J]. Drug Discovery Today, 2020, 25(6): 1026-1033. |
71 | LIU Y, LI L, TIMANI K A, et al. A unique robust dual-promoter-driven and dual-reporter-expressing SARS-CoV-2 replicon: construction and characterization[J]. Viruses, 2022, 14(5): 974. |
72 | ALMAZAN F, GONZALEZ J, PENZES Z, Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10): 5516-5521. |
73 | ORTEGO J, ESCORS D, LAUDE H, et al. Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome[J]. Journal of Virology, 2002, 76(22): 11518-11529. |
74 | MASTERS P S, ROTTIER P J M. Coronavirus reverse genetics by targeted RNA recombination[J]. Current Topics in Microbiology and Immunology, 2005, 287: 133-159. |
75 | LAI M M, BARIC R S, MAKINO S, et al. Recombination between nonsegmented RNA genomes of murine coronaviruses[J]. Journal of Virology, 1985, 56(2): 449-456. |
76 | VAN DER MOST R G, HEIJNEN L, SPAAN W J M, et al. Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs[J]. Nucleic Acids Research, 1992, 20(13): 3375-3381. |
77 | MASTERS P S, KOETZNER C A, KERR C A, et al. Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus[J]. Journal of Virology, 1994, 68(1): 328-337. |
78 | KUO L, GODEKE G J, RAAMSMAN M J, et al. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier[J]. Journal of Virology, 2000, 74(3): 1393-1406. |
79 | HAIJEMA B J, VOLDERS H, ROTTIER P J M. Switching species tropism: an effective way to manipulate the feline coronavirus genome[J]. Journal of Virology, 2003, 77(8): 4528-4538. |
80 | WILD J, HRADECNA Z, SZYBALSKI W. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones[J]. Genome Research, 2002, 12(9): 1434-1444. |
81 | ZHANG Y, SONG W H, CHEN S Y, et al. A bacterial artificial chromosome (BAC)-vectored noninfectious replicon of SARS-CoV-2[J]. Antiviral Research, 2021, 185: 104974. |
82 | XIA H J, CAO Z G, XIE X P, et al. Evasion of typeⅠinterferon by SARS-CoV-2[J]. Cell Reports, 2020, 33(1): 108234. |
83 | LEI X B, DONG X J, MA R Y, et al. Activation and evasion of typeⅠinterferon responses by SARS-CoV-2[J]. Nature Communications, 2020, 11: 3810. |
84 | FAHNØE U, PHAM L V, FERNANDEZ-ANTUNEZ C, et al. Versatile SARS-CoV-2 reverse-genetics systems for the study of antiviral resistance and replication[J]. Viruses, 2022, 14(2): 172. |
85 | WIRTH N T, KOZAEVA E, NIKEL P I. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR-Cas9 counterselection[J]. Microbial Biotechnology, 2020, 13(1): 233-249. |
86 | RICE C M, GRAKOUI A, GALLER R, et al. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation[J]. The New Biologist, 1989, 1(3): 285-296. |
87 | YOUNT B, DENISON M R, WEISS S R, et al. Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59[J]. Journal of Virology, 2002, 76(21): 11065-11078. |
88 | YOUN S, LEIBOWITZ J L, COLLISSON E W. In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication[J]. Virology, 2005, 332(1): 206-215. |
89 | YOUNT B, CURTIS K M, FRITZ E A, et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22): 12995-13000. |
90 | BECKER M M, GRAHAM R L, DONALDSON E F, et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 19944-19949. |
91 | THAO T T N, LABROUSSAA F, EBERT N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform[J]. Nature, 2020, 582(7813): 561-565. |
92 | DONALDSON E F, YOUNT B, SIMS A C, et al. Systematic assembly of a full-length infectious clone of human coronavirus NL63[J]. Journal of Virology, 2008, 82(23): 11948-11957. |
93 | BARIC R S, FU K S, SCHAAD M C, et al. Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups[J]. Virology, 1990, 177(2): 646-656. |
94 | EDMONDS J, VAN GRINSVEN E, PROW N, et al. A novel bacterium-free method for generation of flavivirus infectious DNA by circular polymerase extension reaction allows accurate recapitulation of viral heterogeneity[J]. Journal of Virology, 2013, 87(4): 2367-2372. |
95 | TAMURA T, FUKUHARA T, UCHIDA T, et al. Characterization of recombinant Flaviviridae viruses possessing a small reporter tag[J]. Journal of Virology, 2018, 92(2): e01582-17. |
96 | PIYASENA T B H, NEWTON N D, HOBSON-PETERS J, et al. Chimeric viruses of the insect-specific flavivirus Palm Creek with structural proteins of vertebrate-infecting flaviviruses identify barriers to replication of insect-specific flaviviruses in vertebrate cells[J]. Journal of General Virology, 2019, 100(11): 1580-1586. |
97 | SETOH Y X, AMARILLA A A, PENG N Y G, et al. Determinants of Zika virus host tropism uncovered by deep mutational scanning[J]. Nature Microbiology, 2019, 4(5): 876-887. |
98 | TORII S, ONO C, SUZUKI R, et al. Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction[J]. Cell Reports, 2021, 35(3): 109014. |
99 | AMARILLA A A, SNG J D J, PARRY R, et al. A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses[J]. Nature Communications, 2021, 12: 3431. |
100 | MALICOAT J, MANIVASAGAM S, ZUÑIGA S, et al. Development of a single-cycle infectious SARS-CoV-2 virus replicon particle system for use in biosafety level 2 laboratories[J]. Journal of Virology, 2022, 96(3): e0183721. |
101 | TANAKA T, SAITO A, SUZUKI T, et al. Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening[J]. Antiviral Research, 2022, 199: 105268. |
102 | LIU S F, CHOU C K, WU W W, et al. Stable cell clones harboring self-replicating SARS-CoV-2 RNAs for drug screen[J]. Journal of Virology, 2022, 96(6): e0221621. |
[1] | Xuchang YU, Hui WU, Lei LI. Library construction and targeted BGC screening for more efficient discovery of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 492-506. |
[2] | Zezhong LIU, Jie ZHOU, Yun ZHU, Lu LU, Shibo JIANG. Applications of the recombinant human collagen type Ⅲ-based trimerization motif in the design of vaccines to fight against SARS-CoV-2 and influenza virus [J]. Synthetic Biology Journal, 2024, 5(2): 385-395. |
[3] | Zibin TAN, Kang LIANG, Youhai CHEN. Applications of synthetic biology in developing microbial-vectored cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 221-238. |
[4] | Qing YE, Chengfeng QIN. Development of mRNA vaccines in response to the Public Health Emergency of International Concern [J]. Synthetic Biology Journal, 2024, 5(2): 310-320. |
[5] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[8] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[9] | Jiawen CHEN, Jiandong HUANG, Haitao SUN. Current developments in the use of engineered bacteria for cancer therapy [J]. Synthetic Biology Journal, 2023, 4(4): 690-702. |
[10] | Kai WANG, Wan ZHANG, Yunhai HUANG, Lixin ZHANG, Chunbo LOU. Application of phage therapy in the treatment of intracellular pathogens [J]. Synthetic Biology Journal, 2023, 4(4): 676-689. |
[11] | Tiantian WANG, Hong ZHU, Chen YANG. Development of CRISPRa for metabolic engineering applications in cyanobacteria [J]. Synthetic Biology Journal, 2023, 4(4): 824-839. |
[12] | Mengdan MA, Mengyu SHANG, Yuchen LIU. Application and prospect of CRISPR-Cas9 system in tumor biology [J]. Synthetic Biology Journal, 2023, 4(4): 703-719. |
[13] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. |
[14] | Ke LIU, Guihong LIN, Kun LIU, Wei ZHOU, Fengqing WANG, Dongzhi WEI. Mining, engineering and functional expansion of CRISPR/Cas systems [J]. Synthetic Biology Journal, 2023, 4(1): 47-66. |
[15] | Zhengxin DONG, Tao SUN, Lei CHEN, Weiwen ZHANG. Applications of regulatory engineering in photosynthetic cyanobacteria [J]. Synthetic Biology Journal, 2022, 3(5): 966-984. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||