Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (1): 174-190.DOI: 10.12211/2096-8280.2023-029
• Invited Review • Previous Articles Next Articles
WAN Lichuan, WANG Xuejun, WANG Shengqi
Received:2023-04-10
															
							
																	Revised:2023-11-26
															
							
															
							
																	Online:2024-03-20
															
							
																	Published:2024-02-29
															
						Contact:
								WANG Xuejun, WANG Shengqi   
													万里川, 王学军, 王升启
通讯作者:
					王学军,王升启
							作者简介:基金资助:CLC Number:
WAN Lichuan, WANG Xuejun, WANG Shengqi. Artificial synthesis and applications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicons[J]. Synthetic Biology Journal, 2024, 5(1): 174-190.
万里川, 王学军, 王升启. 新型冠状病毒复制子人工合成和应用研究进展[J]. 合成生物学, 2024, 5(1): 174-190.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2023-029
| 1 | ZHOU P, YANG X L, WANG X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270-273. | 
| 2 | PIRET J, BOIVIN G. Pandemics throughout history[J]. Frontiers in Microbiology, 2021, 11: 631736. | 
| 3 | HU B, GUO H, ZHOU P, et al. Characteristics of SARS-CoV-2 and COVID-19[J]. Nature Reviews Microbiology, 2021, 19(3): 141-154. | 
| 4 | GORBALENYA A E, BAKER S C, BARIC R S, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2[J]. Nature Microbiology, 2020, 5(4): 536-544. | 
| 5 | CUI J, LI F, SHI Z L. Origin and evolution of pathogenic coronaviruses[J]. Nature Reviews Microbiology, 2019, 17(3): 181-192. | 
| 6 | ZHU N, ZHANG D Y, WANG W L, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. The New England Journal of Medicine, 2020, 382(8): 727-733. | 
| 7 | CAO X T. COVID-19: immunopathology and its implications for therapy[J]. Nature Reviews Immunology, 2020, 20(5): 269-270. | 
| 8 | HUANG C L, WANG Y M, LI X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. The Lancet, 2020, 395(10223): 497-506. | 
| 9 | ZHANG G M, ZHANG J, WANG B W, et al. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis[J]. Respiratory Research, 2020, 21(1): 74. | 
| 10 | THYE A Y K, LAW J W F, TAN L T H, et al. Psychological symptoms in COVID-19 patients: insights into pathophysiology and risk factors of long COVID-19[J]. Biology, 2022, 11(1): 61. | 
| 11 | THALLAPUREDDY K, THALLAPUREDDY K, ZERDA E, et al. Long-term complications of COVID-19 infection in adolescents and children[J]. Current Pediatrics Reports, 2022, 10(1): 11-17. | 
| 12 | MEHANDRU S, MERAD M. Pathological sequelae of long-haul COVID[J]. Nature Immunology, 2022, 23(2): 194-202. | 
| 13 | JOSHEE S, VATTI N, CHANG C. Long-term effects of COVID-19[J]. Mayo Clinic Proceedings, 2022, 97(3): 579-599. | 
| 14 | HAN Q, ZHENG B, DAINES L, et al. Long-term sequelae of COVID-19: a systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms[J]. Pathogens, 2022, 11(2): 269. | 
| 15 | DESAI A D, LAVELLE M, BOURSIQUOT B C, et al. Long-term complications of COVID-19[J]. American Journal of Physiology-Cell Physiology, 2022, 322(1): C1-C11. | 
| 16 | SHIU E Y C, LEUNG N H L, COWLING B J. Controversy around airborne versus droplet transmission of respiratory viruses: implication for infection prevention[J]. Current Opinion in Infectious Diseases, 2019, 32(4): 372-379. | 
| 17 | WANG C C, PRATHER K A, SZNITMAN J, et al. Airborne transmission of respiratory viruses[J]. Science, 2021, 373(6558): eabd9149. | 
| 18 | COLLIER D A, DE MARCO A, FERREIRA I A T M, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies[J]. Nature, 2021, 593(7857): 136-141. | 
| 19 | HARVEY W T, CARABELLI A M, JACKSON B, et al. SARS-CoV-2 variants, spike mutations and immune escape[J]. Nature Reviews Microbiology, 2021, 19(7): 409-424. | 
| 20 | CHOY K T, WONG A Y L, KAEWPREEDEE P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro [J]. Antiviral Research, 2020, 178: 104786. | 
| 21 | BAKOWSKI M A, BEUTLER N, WOLFF K C, et al. Drug repurposing screens identify chemical entities for the development of COVID-19 interventions[J]. Nature Communications, 2021, 12: 3309. | 
| 22 | RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial[J]. Lancet, 2020, 396(10259): 1345-1352. | 
| 23 | YANG H T, RAO Z H. Structural biology of SARS-CoV-2 and implications for therapeutic development[J]. Nature Reviews Microbiology, 2021, 19(11): 685-700. | 
| 24 | CHEN Y, LIU Q Y, GUO D Y. Emerging coronaviruses: genome structure, replication, and pathogenesis[J]. Journal of Medical Virology, 2020, 92(4): 418-423. | 
| 25 | SNIJDER E J, DECROLY E, ZIEBUHR J. The nonstructural proteins directing coronavirus RNA synthesis and processing[J]. Advances in Virus Research, 2016, 96: 59-126. | 
| 26 | KIM D, LEE J Y, YANG J S, et al. The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181(4): 914-921.e10. | 
| 27 | RASHID F, DZAKAH E E, WANG H Y, et al. The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta[J]. Virus Research, 2021, 296: 198350. | 
| 28 | SOLA I, ALMAZÁN F, ZÚÑIGA S, et al. Continuous and discontinuous RNA synthesis in coronaviruses[J]. Annual Review of Virology, 2015, 2: 265-288. | 
| 29 | RASKIN S. Genetics of COVID-19[J]. Jornal de Pediatria, 2021, 97(4): 378-386. | 
| 30 | TOYOSHIMA Y, NEMOTO K, MATSUMOTO S, et al. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19[J]. Journal of Human Genetics, 2020, 65(12): 1075-1082. | 
| 31 | SUBISSI L, POSTHUMA C C, COLLET A, et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(37): E3900-E3909. | 
| 32 | ALMAZÁN F, GALÁN C, ENJUANES L. The nucleoprotein is required for efficient coronavirus genome replication[J]. Journal of Virology, 2004, 78(22): 12683-12688. | 
| 33 | ZÚÑIGA S, CRUZ J L G, SOLA I, et al. Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription[J]. Journal of Virology, 2010, 84(4): 2169-2175. | 
| 34 | ZAKHARTCHOUK A N, VISWANATHAN S, MAHONY J B, et al. Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice[J]. Journal of General Virology, 2005, 86(1): 211-215. | 
| 35 | HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271-280.e8. | 
| 36 | V'KOVSKI P, KRATZEL A, STEINER S, et al. Coronavirus biology and replication: implications for SARS-CoV-2[J]. Nature Reviews Microbiology, 2021, 19(3): 155-170. | 
| 37 | MASTERS P S. The molecular biology of coronaviruses[J]. Advances in Virus Research, 2006, 66: 193-292. | 
| 38 | WANG J M, WANG L F, SHI Z L. Construction of a non-infectious SARS coronavirus replicon for application in drug screening and analysis of viral protein function[J]. Biochemical and Biophysical Research Communications, 2008, 374(1): 138-142. | 
| 39 | GE F, LUO Y H, LIEW P X, et al. Derivation of a novel SARS-coronavirus replicon cell line and its application for anti-SARS drug screening[J]. Virology, 2007, 360(1): 150-158. | 
| 40 | SOUZA T M L, MOREL C M. The COVID-19 pandemics and the relevance of biosafety facilities for metagenomics surveillance, structured disease prevention and control[J]. Biosafety and Health, 2021, 3(1): 1-3. | 
| 41 | JU X H, ZHU Y K, WANG Y Y, et al. A novel cell culture system modeling the SARS-CoV-2 life cycle[J]. PLoS Pathogens, 2021, 17(3): e1009439. | 
| 42 | ZHANG X W, LIU Y, LIU J Y, et al. A trans-complementation system for SARS-CoV-2 recapitulates authentic viral replication without virulence[J]. Cell, 2021, 184(8): 2229-2238.e13. | 
| 43 | RICARDO-LAX I, LUNA J M, THAO T T N, et al. Replication and single-cycle delivery of SARS-CoV-2 replicons[J]. Science, 2021, 374(6571): 1099-1106. | 
| 44 | FRENCH R, AHLQUIST P. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3[J]. Journal of Virology, 1987, 61(5): 1457-1465. | 
| 45 | BREDENBEEK P J, FROLOV I, RICE C M, et al. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs[J]. Journal of Virology, 1993, 67(11): 6439-6446. | 
| 46 | LOHMANN V, KÖRNER F, KOCH J O, et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line[J]. Science, 1999, 285(5424): 110-113. | 
| 47 | BLIGHT K J, KOLYKHALOV A A, RICE C M. Efficient initiation of HCV RNA replication in cell culture[J]. Science, 2000, 290(5498): 1972-1974. | 
| 48 | THIEL V, HEROLD J, SCHELLE B, et al. Viral replicase gene products suffice for coronavirus discontinuous transcription[J]. Journal of Virology, 2001, 75(14): 6676-6681. | 
| 49 | CURTIS K M, YOUNT B, BARIC R S. Heterologous gene expression from transmissible gastroenteritis virus replicon particles[J]. Journal of Virology, 2002, 76(3): 1422-1434. | 
| 50 | KAPLAN G, RACANIELLO V R. Construction and characterization of poliovirus subgenomic replicons[J]. Journal of Virology, 1988, 62(5): 1687-1696. | 
| 51 | ZHANG H, FISCHER D K, SHUDA M, et al. Construction and characterization of two SARS-CoV-2 minigenome replicon systems[J]. Journal of Medical Virology, 2022, 94(6): 2438-2452. | 
| 52 | HE X, QUAN S, XU M, et al. Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening and testing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2025866118. | 
| 53 | LUO Y W, YU F, ZHOU M, et al. Engineering a reliable and convenient SARS-CoV-2 replicon system for analysis of viral RNA synthesis and screening of antiviral inhibitors[J]. mBio, 2021, 12(1): e02754-20. | 
| 54 | ALMAZÁN F, DEDIEGO M L, GALÁN C, et al. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis[J]. Journal of Virology, 2006, 80(21): 10900-10906. | 
| 55 | VIKTOROVA E G, KHATTAR S, SAMAL S, et al. Poliovirus replicon RNA generation, transfection, packaging, and quantitation of replication[J]. Current Protocols in Microbiology, 2018, 48(1): 15H.4.1-15H.4.15. | 
| 56 | THUMFART J O, MEYERS G. Feline calicivirus: recovery of wild-type and recombinant viruses after transfection of cRNA or cDNA constructs[J]. Journal of Virology, 2002, 76(12): 6398-6407. | 
| 57 | LILJESTRÖM P, GAROFF H. A new generation of animal cell expression vectors based on the semliki forest virus replicon[J]. Biotechnology, 1991, 9(12): 1356-1361. | 
| 58 | KHROMYKH A A, WESTAWAY E G. Subgenomic replicons of the flavivirus Kunjin: construction and applications[J]. Journal of Virology, 1997, 71(2): 1497-1505. | 
| 59 | KHAN S, SONI S, VEERAPU N S. HCV replicon systems: workhorses of drug discovery and resistance[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 325. | 
| 60 | BEHRENS S E, GRASSMANN C W, THIEL H J, et al. Characterization of an autonomous subgenomic pestivirus RNA replicon[J]. Journal of Virology, 1998, 72(3): 2364-2372. | 
| 61 | PANG X, ZHANG M, DAYTON A I. Development of Dengue virus type 2 replicons capable of prolonged expression in host cells[J]. BMC Microbiology, 2001, 1: 18. | 
| 62 | SHI P Y, TILGNER M, LO M K. Construction and characterization of subgenomic replicons of New York strain of West Nile virus[J]. Virology, 2002, 296(2): 219-233. | 
| 63 | HERTZIG T, SCANDELLA E, SCHELLE B, et al. Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA[J]. Journal of General Virology, 2004, 85(6): 1717-1725. | 
| 64 | FENG X L, ZHANG X F, JIANG S Y, et al. A DNA-based non-infectious replicon system to study SARS-CoV-2 RNA synthesis[J]. Computational and Structural Biotechnology Journal, 2022, 20: 5193-5202. | 
| 65 | GE F, XIONG S, LIN F S, et al. High-throughput assay using a GFP-expressing replicon for SARS-CoV drug discovery[J]. Antiviral Research, 2008, 80(2): 107-113. | 
| 66 | ALMAZÁN F, SOLA I, ZUÑIGA S, et al. Coronavirus reverse genetic systems: infectious clones and replicons[J]. Virus Research, 2014, 189: 262-270. | 
| 67 | ZHANG Q Y, DENG C L, LIU J, et al. SARS-CoV-2 replicon for high-throughput antiviral screening[J]. The Journal of General Virology, 2021, 102(5): 001583. | 
| 68 | PIETSCHMANN T, BARTENSCHLAGER R. The hepatitis C virus replicon system and its application to molecular studies[J]. Current Opinion in Drug Discovery & Development, 2001, 4(5): 657-664. | 
| 69 | CHEN M X, XU Y, LI N, et al. Development of full-length cell-culture infectious clone and subgenomic replicon for a genotype 3a isolate of hepatitis C virus[J]. Journal of General Virology, 2021, 102(12): 1704. | 
| 70 | HANNEMANN H. Viral replicons as valuable tools for drug discovery[J]. Drug Discovery Today, 2020, 25(6): 1026-1033. | 
| 71 | LIU Y, LI L, TIMANI K A, et al. A unique robust dual-promoter-driven and dual-reporter-expressing SARS-CoV-2 replicon: construction and characterization[J]. Viruses, 2022, 14(5): 974. | 
| 72 | ALMAZAN F, GONZALEZ J, PENZES Z, Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10): 5516-5521. | 
| 73 | ORTEGO J, ESCORS D, LAUDE H, et al. Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome[J]. Journal of Virology, 2002, 76(22): 11518-11529. | 
| 74 | MASTERS P S, ROTTIER P J M. Coronavirus reverse genetics by targeted RNA recombination[J]. Current Topics in Microbiology and Immunology, 2005, 287: 133-159. | 
| 75 | LAI M M, BARIC R S, MAKINO S, et al. Recombination between nonsegmented RNA genomes of murine coronaviruses[J]. Journal of Virology, 1985, 56(2): 449-456. | 
| 76 | VAN DER MOST R G, HEIJNEN L, SPAAN W J M, et al. Homologous RNA recombination allows efficient introduction of site-specific mutations into the genome of coronavirus MHV-A59 via synthetic co-replicating RNAs[J]. Nucleic Acids Research, 1992, 20(13): 3375-3381. | 
| 77 | MASTERS P S, KOETZNER C A, KERR C A, et al. Optimization of targeted RNA recombination and mapping of a novel nucleocapsid gene mutation in the coronavirus mouse hepatitis virus[J]. Journal of Virology, 1994, 68(1): 328-337. | 
| 78 | KUO L, GODEKE G J, RAAMSMAN M J, et al. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier[J]. Journal of Virology, 2000, 74(3): 1393-1406. | 
| 79 | HAIJEMA B J, VOLDERS H, ROTTIER P J M. Switching species tropism: an effective way to manipulate the feline coronavirus genome[J]. Journal of Virology, 2003, 77(8): 4528-4538. | 
| 80 | WILD J, HRADECNA Z, SZYBALSKI W. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones[J]. Genome Research, 2002, 12(9): 1434-1444. | 
| 81 | ZHANG Y, SONG W H, CHEN S Y, et al. A bacterial artificial chromosome (BAC)-vectored noninfectious replicon of SARS-CoV-2[J]. Antiviral Research, 2021, 185: 104974. | 
| 82 | XIA H J, CAO Z G, XIE X P, et al. Evasion of typeⅠinterferon by SARS-CoV-2[J]. Cell Reports, 2020, 33(1): 108234. | 
| 83 | LEI X B, DONG X J, MA R Y, et al. Activation and evasion of typeⅠinterferon responses by SARS-CoV-2[J]. Nature Communications, 2020, 11: 3810. | 
| 84 | FAHNØE U, PHAM L V, FERNANDEZ-ANTUNEZ C, et al. Versatile SARS-CoV-2 reverse-genetics systems for the study of antiviral resistance and replication[J]. Viruses, 2022, 14(2): 172. | 
| 85 | WIRTH N T, KOZAEVA E, NIKEL P I. Accelerated genome engineering of Pseudomonas putida by I-SceI-mediated recombination and CRISPR-Cas9 counterselection[J]. Microbial Biotechnology, 2020, 13(1): 233-249. | 
| 86 | RICE C M, GRAKOUI A, GALLER R, et al. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation[J]. The New Biologist, 1989, 1(3): 285-296. | 
| 87 | YOUNT B, DENISON M R, WEISS S R, et al. Systematic assembly of a full-length infectious cDNA of mouse hepatitis virus strain A59[J]. Journal of Virology, 2002, 76(21): 11065-11078. | 
| 88 | YOUN S, LEIBOWITZ J L, COLLISSON E W. In vitro assembled, recombinant infectious bronchitis viruses demonstrate that the 5a open reading frame is not essential for replication[J]. Virology, 2005, 332(1): 206-215. | 
| 89 | YOUNT B, CURTIS K M, FRITZ E A, et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(22): 12995-13000. | 
| 90 | BECKER M M, GRAHAM R L, DONALDSON E F, et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 19944-19949. | 
| 91 | THAO T T N, LABROUSSAA F, EBERT N, et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform[J]. Nature, 2020, 582(7813): 561-565. | 
| 92 | DONALDSON E F, YOUNT B, SIMS A C, et al. Systematic assembly of a full-length infectious clone of human coronavirus NL63[J]. Journal of Virology, 2008, 82(23): 11948-11957. | 
| 93 | BARIC R S, FU K S, SCHAAD M C, et al. Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups[J]. Virology, 1990, 177(2): 646-656. | 
| 94 | EDMONDS J, VAN GRINSVEN E, PROW N, et al. A novel bacterium-free method for generation of flavivirus infectious DNA by circular polymerase extension reaction allows accurate recapitulation of viral heterogeneity[J]. Journal of Virology, 2013, 87(4): 2367-2372. | 
| 95 | TAMURA T, FUKUHARA T, UCHIDA T, et al. Characterization of recombinant Flaviviridae viruses possessing a small reporter tag[J]. Journal of Virology, 2018, 92(2): e01582-17. | 
| 96 | PIYASENA T B H, NEWTON N D, HOBSON-PETERS J, et al. Chimeric viruses of the insect-specific flavivirus Palm Creek with structural proteins of vertebrate-infecting flaviviruses identify barriers to replication of insect-specific flaviviruses in vertebrate cells[J]. Journal of General Virology, 2019, 100(11): 1580-1586. | 
| 97 | SETOH Y X, AMARILLA A A, PENG N Y G, et al. Determinants of Zika virus host tropism uncovered by deep mutational scanning[J]. Nature Microbiology, 2019, 4(5): 876-887. | 
| 98 | TORII S, ONO C, SUZUKI R, et al. Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction[J]. Cell Reports, 2021, 35(3): 109014. | 
| 99 | AMARILLA A A, SNG J D J, PARRY R, et al. A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses[J]. Nature Communications, 2021, 12: 3431. | 
| 100 | MALICOAT J, MANIVASAGAM S, ZUÑIGA S, et al. Development of a single-cycle infectious SARS-CoV-2 virus replicon particle system for use in biosafety level 2 laboratories[J]. Journal of Virology, 2022, 96(3): e0183721. | 
| 101 | TANAKA T, SAITO A, SUZUKI T, et al. Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening[J]. Antiviral Research, 2022, 199: 105268. | 
| 102 | LIU S F, CHOU C K, WU W W, et al. Stable cell clones harboring self-replicating SARS-CoV-2 RNAs for drug screen[J]. Journal of Virology, 2022, 96(6): e0221621. | 
| [1] | YU Xuchang, WU Hui, LI Lei. Library construction and targeted BGC screening for more efficient discovery of microbial natural products [J]. Synthetic Biology Journal, 2024, 5(3): 492-506. | 
| [2] | LIU Zezhong, ZHOU Jie, ZHU Yun, LU Lu, JIANG Shibo. Applications of the recombinant human collagen type Ⅲ-based trimerization motif in the design of vaccines to fight against SARS-CoV-2 and influenza virus [J]. Synthetic Biology Journal, 2024, 5(2): 385-395. | 
| [3] | TAN Zibin, LIANG Kang, CHEN Youhai. Applications of synthetic biology in developing microbial-vectored cancer vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 221-238. | 
| [4] | YE Qing, QIN Chengfeng. Development of mRNA vaccines in response to the Public Health Emergency of International Concern [J]. Synthetic Biology Journal, 2024, 5(2): 310-320. | 
| [5] | ZHANG Jinyong, GU Jiang, GUAN Shan, LI Haibo, ZENG Hao, ZOU Quanming. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. | 
| [6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. | 
| [7] | LIU Duo, LIU Peiyuan, LI Lianyue, WANG Yaxin, CUI Yuhui, XUE Huimin, WANG Hanjie. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. | 
| [8] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. | 
| [9] | Jiawen CHEN, Jiandong HUANG, Haitao SUN. Current developments in the use of engineered bacteria for cancer therapy [J]. Synthetic Biology Journal, 2023, 4(4): 690-702. | 
| [10] | Kai WANG, Wan ZHANG, Yunhai HUANG, Lixin ZHANG, Chunbo LOU. Application of phage therapy in the treatment of intracellular pathogens [J]. Synthetic Biology Journal, 2023, 4(4): 676-689. | 
| [11] | Tiantian WANG, Hong ZHU, Chen YANG. Development of CRISPRa for metabolic engineering applications in cyanobacteria [J]. Synthetic Biology Journal, 2023, 4(4): 824-839. | 
| [12] | Mengdan MA, Mengyu SHANG, Yuchen LIU. Application and prospect of CRISPR-Cas9 system in tumor biology [J]. Synthetic Biology Journal, 2023, 4(4): 703-719. | 
| [13] | Yannan WANG, Yuhui SUN. Base editing technology and its application in microbial synthetic biology [J]. Synthetic Biology Journal, 2023, 4(4): 720-737. | 
| [14] | Ke LIU, Guihong LIN, Kun LIU, Wei ZHOU, Fengqing WANG, Dongzhi WEI. Mining, engineering and functional expansion of CRISPR/Cas systems [J]. Synthetic Biology Journal, 2023, 4(1): 47-66. | 
| [15] | Zhengxin DONG, Tao SUN, Lei CHEN, Weiwen ZHANG. Applications of regulatory engineering in photosynthetic cyanobacteria [J]. Synthetic Biology Journal, 2022, 3(5): 966-984. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||