Synthetic Biology Journal ›› 2024, Vol. 5 ›› Issue (4): 813-830.DOI: 10.12211/2096-8280.2024-064
• Invited Review • Previous Articles Next Articles
Xiyue CHEN1,2, Yaqing WANG3,4, Fang BAO3,4, Jianhua QIN1
Received:
2024-08-16
Revised:
2024-08-30
Online:
2024-09-19
Published:
2024-08-31
Contact:
Jianhua QIN
陈汐玥1,2, 王亚清3,4, 包芳3,4, 秦建华1
通讯作者:
秦建华
作者简介:
基金资助:
CLC Number:
Xiyue CHEN, Yaqing WANG, Fang BAO, Jianhua QIN. Advances in the application of liver on a chip in biomedical research[J]. Synthetic Biology Journal, 2024, 5(4): 813-830.
陈汐玥, 王亚清, 包芳, 秦建华. 肝器官芯片在生物医学研究中的应用进展[J]. 合成生物学, 2024, 5(4): 813-830.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2024-064
1 | HUH D, MATTHEWS B D, MAMMOTO A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668. |
2 | BHATIA S N, INGBER D E. Microfluidic organs-on-chips[J]. Nature Biotechnology, 2014, 32(8): 760-772. |
3 | MAHLER G J, ESCH M B, GLAHN R P, et al. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity[J]. Biotechnology and Bioengineering, 2009, 104(1): 193-205. |
4 | WANG L, TAO T T, SU W T, et al. A disease model of diabetic nephropathy in a Glomerulus-on-a-chip microdevice[J]. Lab on a Chip, 2017, 17(10): 1749-1760. |
5 | 秦建华, 张敏, 于浩, 等. 人体器官芯片[J]. 中国科学院院刊, 2017, 32(12): 1281-1289. |
QIN J H, ZHANG M, YU H, et al. Human organs-on-a-chip[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(12): 1281-1289. | |
6 | LI Z Y, SU W T, ZHU Y J, et al. Drug absorption related nephrotoxicity assessment on an intestine-kidney chip[J]. Biomicrofluidics, 2017, 11(3): 034114. |
7 | MORADI E, JALILI-FIROOZINEZHAD S, SOLATI-HASHJIN M. Microfluidic organ-on-a-chip models of human liver tissue[J]. Acta Biomaterialia, 2020, 116: 67-83. |
8 | YOON NO D, LEE K H, LEE J, et al. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip[J]. Lab on a Chip, 2015, 15(19): 3822-3837. |
9 | BECKWITT C H, CLARK A M, WHEELER S, et al. Liver ‘organ on a chip’[J]. Experimental Cell Research, 2018, 363(1): 15-25. |
10 | MATERNE E M, TONEVITSKY A G, MARX U. Chip-based liver equivalents for toxicity testing: organotypicalness versus cost-efficient high throughput[J]. Lab on a Chip, 2013, 13(18): 3481-3495. |
11 | SØRENSEN K K, SIMON-SANTAMARIA J, MCCUSKEY R S, et al. Liver sinusoidal endothelial cells[J]. Comprehensive Physiology, 2015, 5(4): 1751-1774. |
12 | SENOO H. Structure and function of hepatic stellate cells[J]. Medical Electron Microscopy, 2004, 37(1): 3-15. |
13 | DIXON L J, BARNES M, TANG H, et al. Kupffer cells in the liver[J]. Comprehensive Physiology, 2013, 3(2): 785-797. |
14 | EHRLICH A, DUCHE D, OUEDRAOGO G, et al. Challenges and opportunities in the design of liver-on-chip microdevices[J]. Annual Review of Biomedical Engineering, 2019, 21: 219-239. |
15 | BAUDY A R, OTIENO M A, HEWITT P, et al. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry[J]. Lab on a Chip, 2020, 20(2): 215-225. |
16 | HUGHES D J, KOSTRZEWSKI T, SCEATS E L. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems[J]. Experimental Biology and Medicine, 2017, 242(16): 1593-1604. |
17 | BHUSHAN A, SENUTOVITCH N, BALE S S, et al. Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans[J]. Stem Cell Research & Therapy, 2013, 4(): S16. |
18 | ZHANG J W, ZHAO X, LIANG L G, et al. A decade of progress in liver regenerative medicine[J]. Biomaterials, 2018, 157: 161-176. |
19 | HEYDARI Z, NAJIMI M, MIRZAEI H, et al. Tissue engineering in liver regenerative medicine: insights into novel translational technologies[J]. Cells, 2020, 9(2): 304. |
20 | GEBHARDT R, MATZ-SOJA M. Liver zonation: novel aspects of its regulation and its impact on homeostasis[J]. World Journal of Gastroenterology, 2014, 20(26): 8491-8504. |
21 | HEWITT N J, LECHÓN M J, HOUSTON J B, et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies[J]. Drug Metabolism Reviews, 2007, 39(1): 159-234. |
22 | LECLUYSE E L. Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation[J]. European Journal of Pharmaceutical Sciences, 2001, 13(4): 343-368. |
23 | LÜBBERSTEDT M, MÜLLER-VIEIRA U, MAYER M, et al. HepaRG human hepatic cell line utility as a surrogate for primary human hepatocytes in drug metabolism assessment in vitro [J]. Journal of Pharmacological and Toxicological Methods, 2011, 63(1): 59-68. |
24 | WILKENING S, STAHL F, BADER A. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties[J]. Drug Metabolism and Disposition, 2003, 31(8): 1035-1042. |
25 | GUGUEN-GUILLOUZO C, GUILLOUZO A. General review on in vitro hepatocyte models and their applications[J]. Methods in Molecular Biology, 2010, 640: 1-40. |
26 | LECLUYSE E L, WITEK R P, ANDERSEN M E, et al. Organotypic liver culture models: meeting current challenges in toxicity testing[J]. Critical Reviews in Toxicology, 2012, 42(6): 501-548. |
27 | INOUE H, NAGATA N, KUROKAWA H, et al. iPS cells: a game changer for future medicine[J]. EMBO Journal, 2014, 33(5): 409-417. |
28 | ROBINTON D A, DALEY G Q. The promise of induced pluripotent stem cells in research and therapy[J]. Nature, 2012, 481(7381): 295-305. |
29 | SAMPAZIOTIS F, SEGERITZ C P, VALLIER L. Potential of human induced pluripotent stem cells in studies of liver disease[J]. Hepatology, 2015, 62(1): 303-311. |
30 | SCOTT C W, PETERS M F, DRAGAN Y P. Human induced pluripotent stem cells and their use in drug discovery for toxicity testing[J]. Toxicology Letters, 2013, 219(1): 49-58. |
31 | SCHWARTZ R E, FLEMING H E, KHETANI S R, et al. Pluripotent stem cell-derived hepatocyte-like cells[J]. Biotechnology Advances, 2014, 32(2): 504-513. |
32 | SI-TAYEB K, NOTO F K, NAGAOKA M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells[J]. Hepatology, 2010, 51(1): 297-305. |
33 | SONG Z H, CAI J, LIU Y X, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells[J]. Cell Research, 2009, 19(11): 1233-1242. |
34 | TAKATA A, OTSUKA M, KOGISO T, et al. Direct differentiation of hepatic cells from human induced pluripotent stem cells using a limited number of cytokines[J]. Hepatology International, 2011, 5(4): 890-898. |
35 | BANAEIYAN A A, THEOBALD J, PAUKŠTYTE J, et al. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform[J]. Biofabrication, 2017, 9(1): 015014. |
36 | CLEVERS H. Modeling development and disease with organoids[J]. Cell, 2016, 165(7): 1586-1597. |
37 | FATEHULLAH A, TAN S H, BARKER N. Organoids as an in vitro model of human development and disease[J]. Nature Cell Biology, 2016, 18(3): 246-254. |
38 | GUAN Y, XU D, GARFIN P M, et al. Human hepatic organoids for the analysis of human genetic diseases[J]. JCI Insight, 2017;2(17):e94954.. |
39 | SGODDA M, DAI Z, ZWEIGERDT R, et al. A scalable approach for the generation of human pluripotent stem cell-derived hepatic organoids with sensitive hepatotoxicity features[J]. Stem Cells and Development, 2017, 26(20): 1490-1504. |
40 | HUCH M, GEHART H, VAN BOXTEL R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160(1-2): 299-312. |
41 | SUDO R, MITAKA T, IKEDA M, et al. Reconstruction of 3D stacked-up structures by rat small hepatocytes on microporous membranes[J]. FASEB Journal, 2005, 19(12): 1695-1697. |
42 | SCOTT M J, LIU S B, SU G L, et al. Hepatocytes enhance effects of lipopolysaccharide on liver nonparenchymal cells through close cell interactions[J]. Shock, 2005, 23(5): 453-458. |
43 | OSTROVIDOV S, JIANG J L, SAKAI Y, et al. Membrane-based PDMS microbioreactor for perfused 3D primary rat hepatocyte cultures[J]. Biomedical Microdevices, 2004, 6(4): 279-287. |
44 | FOSTER E, YOU J, SILTANEN C, et al. Heparin hydrogel sandwich cultures of primary hepatocytes[J]. European Polymer Journal, 2015, 72: 726-735. |
45 | THOMAS R J, BHANDARI R, BARRETT D A, et al. The effect of three-dimensional co-culture of hepatocytes and hepatic stellate cells on key hepatocyte functions in vitro [J]. Cells, Tissues, Organs, 2005, 181(2): 67-79. |
46 | ZINCHENKO Y S, SCHRUM L W, CLEMENS M, et al. Hepatocyte and Kupffer cells co-cultured on micropatterned surfaces to optimize hepatocyte function[J]. Tissue Engineering, 2006, 12(4): 751-761. |
47 | FREVERT U, ENGELMANN S, ZOUGBÉDÉ S, et al. Intravital observation of Plasmodium berghei sporozoite infection of the liver[J]. PLoS Biology, 2005, 3(6): e192. |
48 | SHIH M C, TSENG S H, WENG Y S, et al. A microfluidic device mimicking acinar concentration gradients across the liver acinus[J]. Biomedical Microdevices, 2013, 15(5): 767-780. |
49 | HEGDE M, JINDAL R, BHUSHAN A, et al. Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform[J]. Lab on a Chip, 2014, 14(12): 2033-2039. |
50 | ASAI A, AIHARA E, WATSON C, et al. Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells[J]. Development, 2017, 144(6): 1056-1064. |
51 | TAKEBE T, SEKINE K, ENOMURA M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant[J]. Nature, 2013, 499(7459): 481-484. |
52 | ZHANG B Y, MONTGOMERY M, CHAMBERLAIN M D, et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis[J]. Nature Materials, 2016, 15(6): 669-678. |
53 | FRITSCHEN A, LINDNER N, SCHOLPP S, et al. High-scale 3D-bioprinting platform for the automated production of vascularized organs-on-a-chip[J]. Advanced Healthcare Materials, 2024, 13(17): e2304028. |
54 | HO C T, LIN R Z, CHEN R J, et al. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue[J]. Lab on a Chip, 2013, 13(18): 3578-3587. |
55 | POISSON J, LEMOINNE S, BOULANGER C, et al. Liver sinusoidal endothelial cells: physiology and role in liver diseases[J]. Journal of Hepatology, 2017, 66(1): 212-227. |
56 | HOEHME S, BRULPORT M, BAUER A, et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10371-10376. |
57 | DU K, LI S B, LI C P, et al. Modeling nonalcoholic fatty liver disease on a liver lobule chip with dual blood supply[J]. Acta Biomaterialia, 2021, 134: 228-239. |
58 | LEE P J, HUNG P J, LEE L P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture[J]. Biotechnology and Bioengineering, 2007, 97(5): 1340-1346. |
59 | PRODANOV L, JINDAL R, BALE S S, et al. Long-term maintenance of a microfluidic 3D human liver sinusoid[J]. Biotechnology and Bioengineering, 2016, 113(1): 241-246. |
60 | RENNERT K, STEINBORN S, GRÖGER M, et al. A microfluidically perfused three dimensional human liver model[J]. Biomaterials, 2015, 71: 119-131. |
61 | NAKAO Y, KIMURA H, SAKAI Y, et al. Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device[J]. Biomicrofluidics, 2011, 5(2): 22212. |
62 | MATSUMOTO K, IMASATO M, YAMAZAKI Y, et al. Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice[J]. Gastroenterology, 2014, 147(5): 1134-1145.e10. |
63 | DU Y, KHANDEKAR G, LLEWELLYN J, et al. A bile duct-on-a-chip with organ-level functions[J]. Hepatology, 2020, 71(4): 1350-1363. |
64 | LIU Q, MILLE L S, VILLALOBOS C, et al. 3D-bioprinted cholangiocarcinoma-on-a-chip model for evaluating drug responses[J]. Bio-Design and Manufacturing, 2023, 6(4): 373-389. |
65 | SMITH Q, BAYS J, LI L Q, et al. Directing cholangiocyte morphogenesis in natural biomaterial scaffolds[J]. Advanced Science, 2022, 9(3): e2102698. |
66 | HUCH M, DORRELL C, BOJ S F, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration[J]. Nature, 2013, 494(7436): 247-250. |
67 | NANTASANTI S, SPEE B, KRUITWAGEN H S, et al. Disease modeling and gene therapy of copper storage disease in canine hepatic organoids[J]. Stem Cell Reports, 2015, 5(5): 895-907. |
68 | KRUITWAGEN H S, OOSTERHOFF L A, VERNOOIJ I G W H, et al. Long-term adult feline liver organoid cultures for disease modeling of Hepatic steatosis[J]. Stem Cell Reports, 2017, 8(4): 822-830. |
69 | KAFTANOVSKAYA E M, NG H H, SOULA M, et al. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis[J]. FASEB Journal, 2019, 33(11): 12435-12446. |
70 | GÓMEZ-MARIANO G, MATAMALA N, MARTÍNEZ S, et al. Liver organoids reproduce alpha-1 antitrypsin deficiency-related liver disease[J]. Hepatology International, 2020, 14(1): 127-137. |
71 | NIE Y Z, ZHENG Y W, MIYAKAWA K, et al. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells[J]. EBioMedicine, 2018, 35: 114-123. |
72 | GURAL N, MANCIO-SILVA L, HE J, et al. Engineered livers for infectious diseases[J]. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5(2): 131-144. |
73 | PARK S E, GEORGESC A, HUH D E. Organoids-on-a-chip[J]. Science, 2019, 364(6444): 960-965. |
74 | WANG Y Q, WANG L, ZHU Y J, et al. Human brain organoid-on-a-chip to model prenatal nicotine exposure[J]. Lab on a Chip, 2018, 18(6): 851-860. |
75 | ZHU Y J, WANG L, YU H, et al. In situ generation of human brain organoids on a micropillar array[J]. Lab on a Chip, 2017, 17(17): 2941-2950. |
76 | TAKEBE T, ZHANG B Y, RADISIC M. Synergistic engineering: organoids meet organs-on-a-chip[J]. Cell Stem Cell, 2017, 21(3): 297-300. |
77 | WANG Y Q, WANG H, DENG P W, et al. In situ differentiation and generation of functional liver organoids from human iPSCs in a 3D perfusable chip system[J]. Lab on a Chip, 2018, 18(23): 3606-3616. |
78 | ARTEGIANI B, VAN VOORTHUIJSEN L, LINDEBOOM R G H, et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids[J]. Cell Stem Cell, 2019, 24(6): 927-943.e6. |
79 | YANG J D, HIRAI Y, IIDA K, et al. Integrated-gut-liver-on-a-chip platform as an in vitro human model of non-alcoholic fatty liver disease[J]. Communications Biology, 2023, 6(1): 310. |
80 | MASCHMEYER I, LORENZ A K, SCHIMEK K, et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents[J]. Lab on a Chip, 2015, 15(12): 2688-2699. |
81 | BOVARD D, SANDOZ A, LUETTICH K, et al. A lung/liver-on-a-chip platform for acute and chronic toxicity studies[J]. Lab on a Chip, 2018, 18(24): 3814-3829. |
82 | YIN F C, ZHANG X, WANG L, et al. HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs[J]. Lab on a Chip, 2021, 21(3): 571-581. |
83 | LUCCHETTI M, AINA K O, GRANDMOUGIN L, et al. An organ-on-chip platform for simulating drug metabolism along the gut-liver axis[J]. Advanced Healthcare Materials, 2024, 13(20): e2303943. |
84 | AIZENSHTADT A, WANG C C, ABADPOUR S, et al. Pump-less, recirculating organ-on-chip (rOoC) platform to model the metabolic crosstalk between islets and liver[J]. Advanced Healthcare Materials, 2024, 13(13): e2303785. |
85 | HASSAN S, SEBASTIAN S, MAHARJAN S, et al. Liver-on-a-chip models of fatty liver disease[J]. Hepatology, 2020, 71(2): 733-740. |
86 | LASLI S, KIM H J, LEE K J, et al. A human liver-on-a-chip platform for modeling nonalcoholic fatty liver disease[J]. Advanced Biosystems, 2019, 3(8): e1900104. |
87 | LEE J S, CHOI B H, NO D Y, et al. A 3D alcoholic liver disease model on a chip[J]. Integrative Biology, 2016, 8(3): 302-308. |
88 | KOSTRZEWSKI T, CORNFORTH T, SNOW S A, et al. Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease[J]. World Journal of Gastroenterology, 2017, 23(2): 204-215. |
89 | WANG Y Q, WANG H, DENG P W, et al. Modeling human nonalcoholic fatty liver disease (NAFLD) with an organoids-on-a-chip system[J]. ACS Biomaterials Science & Engineering, 2020, 6(10): 5734-5743. |
90 | SLAUGHTER V L, RUMSEY J W, BOONE R, et al. Validation of an adipose-liver human-on-a-chip model of NAFLD for preclinical therapeutic efficacy evaluation[J]. Scientific Reports, 2021, 11(1): 13159. |
91 | LIN C L, KAO J H. Review article: novel therapies for hepatitis B virus cure-advances and perspectives[J]. Alimentary Pharmacology & Therapeutics, 2016, 44(3): 213-222. |
92 | ORTEGA-PRIETO A M, CHERRY C, GUNN H, et al. In vivo model systems for hepatitis B virus research[J]. ACS Infectious Diseases, 2019, 5(5): 688-702. |
93 | ORTEGA-PRIETO A M, SKELTON J K, WAI S N, et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection[J]. Nature Communications, 2018, 9(1): 682. |
94 | SODUNKE T R, BOUCHARD M J, NOH H M. Microfluidic platform for hepatitis B viral replication study[J]. Biomedical Microdevices, 2008, 10(3): 393-402. |
95 | KANG Y, RAWAT S, DUCHEMIN N, et al. Human liver sinusoid on a chip for hepatitis B virus replication study[J]. Micromachines, 2017, 8(1): 27. |
96 | DU Y, DE JONG I E M, GUPTA K, et al. Human vascularized bile duct-on-a chip: a multi-cellular micro-physiological system for studying cholestatic liver disease[J]. Biofabrication, 2023, 16(1): 015004. |
97 | TAO T T, DENG P W, WANG Y Q, et al. Microengineered multi-organoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes[J]. Advanced Science, 2022, 9(5): e2103495. |
98 | LI L, KNUTSDOTTIR H, HUI K, et al. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity[J]. JCI Insight, 2019, 4(2): e121490. |
99 | BROUTIER L, MASTROGIOVANNI G, VERSTEGEN M M, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nature Medicine, 2017, 23(12): 1424-1435. |
100 | HENDRIKS D, BROUWERS J F, HAMER K, et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis[J]. Nature Biotechnology, 2023, 41(11): 1567-1581. |
101 | ZHU Y X, JIANG D M, QIU Y, et al. Dynamic microphysiological system chip platform for high-throughput, customizable, and multi-dimensional drug screening[J]. Bioactive Materials, 2024, 39: 59-73. |
102 | LI Z Y, JIANG L, ZHU Y J, et al. Assessment of hepatic metabolism-dependent nephrotoxicity on an organs-on-a-chip microdevice[J]. Toxicology in Vitro, 2018, 46: 1-8. |
103 | SUNG J H, KAM C, SHULER M L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip[J]. Lab on a Chip, 2010, 10(4): 446-455. |
104 | HERLAND A, MAOZ B M, DAS D, et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips[J]. Nature Biomedical Engineering, 2020, 4(4): 421-436. |
105 | RONALDSON-BOUCHARD K, TELES D, YEAGER K, et al. A multi-organ chip with matured tissue niches linked by vascular flow[J]. Nature Biomedical Engineering, 2022, 6(4): 351-371. |
106 | MA C, ZHAO L, ZHOU E M, et al. On-chip construction of liver lobule-like microtissue and its application for adverse drug reaction assay[J]. Analytical Chemistry, 2016, 88(3): 1719-1727. |
107 | KOSTADINOVA R, BOESS F, APPLEGATE D, et al. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity[J]. Toxicology and Applied Pharmacology, 2013, 268(1): 1-16. |
108 | LEE-MONTIEL F T, GEORGE S M, GOUGH A H, et al. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems[J]. Experimental Biology and Medicine, 2017, 242(16): 1617-1632. |
109 | VERNETTI L A, SENUTOVITCH N, BOLTZ R, et al. A human liver microphysiology platform for investigating physiology, drug safety, and disease models[J]. Experimental Biology and Medicine, 2016, 241(1): 101-114. |
110 | BIRCSAK K M, DEBIASIO R, MIEDEL M, et al. A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®[J]. Toxicology, 2021, 450: 152667. |
111 | JANG K J, OTIENO M A, RONXHI J, et al. Reproducing human and cross-species drug toxicities using a Liver-Chip[J]. Science Translational Medicine, 2019, 11(517): eaax5516. |
112 | EWART L, APOSTOLOU A, BRIGGS S A, et al. Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology[J]. Communications Medicine, 2022, 2(1): 154. |
113 | DEY S, BHAT A, JANANI G, et al. Microfluidic human physiomimetic liver model as a screening platform for drug induced liver injury[J]. Biomaterials, 2024, 310: 122627. |
114 | ZHANG C J, MEYER S R, O’MEARA M J, et al. A human liver organoid screening platform for DILI risk prediction[J]. Journal of Hepatology, 2023, 78(5): 998-1006. |
115 | 中国生物工程学会. 器官芯片通用术语: T/C [S]. 北京: 中国生物工程学会, 2024. |
Chinese Society of Biotechnology. General terminology of organs-on-chips: T/C [S]. Beijing: Chinese Society of Biotechnology, 2024. | |
116 | 中国生物工程学会. 器官芯片 肝 第1部分:模型构建规范: T/C [S]. 北京: 中国生物工程学会, 2024. |
Chinese Society of Biotechnology. Organs-on-chips: liver—Part 1: Specification of model construction. : T/C [S]. Beijing: Chinese Society of Biotechnology, 2024. |
[1] | Daqing WANG, Tingting TAO, Xu ZHANG, Hongjing LI. Advances in skeletal muscle-on-a-chip for biomedical research [J]. Synthetic Biology Journal, 2024, 5(4): 867-882. |
[2] | Rongkai CAO, Jianhua QIN, Yaqing WANG. Advances in placenta-on-a-chip for reproductive medicine research [J]. Synthetic Biology Journal, 2024, 5(4): 831-850. |
[3] | Yuan HONG, Yan LIU. Research progress of brain organoids in regenerative medicine [J]. Synthetic Biology Journal, 2024, 5(4): 754-769. |
[4] | Qianwen CHEN, Siqi ZHAO, Yaojin PENG. Organoids: technological innovation and ethical controversies [J]. Synthetic Biology Journal, 2024, 5(4): 898-907. |
[5] | Bingyu CAI, Xiangtian TAN, Wei LI. Advances in synthetic biology for engineering stem cell [J]. Synthetic Biology Journal, 2024, 5(4): 782-794. |
[6] | Bohang ZHANG, Xiaoxuan QI, Yan YUAN. Advancements in testicular organoids for in vitro spermatogenesis [J]. Synthetic Biology Journal, 2024, 5(4): 770-781. |
[7] | Shikai LI, Dong′ao ZENG, Fangzhou DU, Jingzhong ZHANG, Shuang YU. The construction approaches and biomaterials for vascularized organoids [J]. Synthetic Biology Journal, 2024, 5(4): 851-866. |
[8] | Ke’er HU, Hanqi WANG, Ruqi HUANG, Canyang ZHANG, Xinhui XING, Shaohua MA. Integrated design strategies for engineered organoids and organ-on-a-chip technologies [J]. Synthetic Biology Journal, 2024, 5(4): 883-897. |
[9] | Ziling CHEN, Yangfei XIANG. Integrated development of organoid technology and synthetic biology [J]. Synthetic Biology Journal, 2024, 5(4): 795-812. |
[10] | Zongyong AI, Chengting ZHANG, Baohua NIU, Yu YIN, Jie YANG, Tianqing LI. Early human embryo development and stem cells [J]. Synthetic Biology Journal, 2024, 5(4): 700-718. |
[11] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||