Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (1): 15-32.DOI: 10.12211/2096-8280.2020-067
• Invited Review • Previous Articles Next Articles
Fan CAO, Yaoxi CHEN, Yangyang MIAO, Lu ZHANG, Haiyan LIU
Received:
2020-06-10
Revised:
2020-09-15
Online:
2021-03-12
Published:
2021-03-22
Contact:
Haiyan LIU
操帆, 陈耀晞, 缪阳洋, 张璐, 刘海燕
通讯作者:
刘海燕
作者简介:
操帆(1997—),男,硕士研究生,主要研究方向为蛋白质设计。E-mail:fancao@mail.ustc.edu.cn基金资助:
CLC Number:
Fan CAO, Yaoxi CHEN, Yangyang MIAO, Lu ZHANG, Haiyan LIU. Computational protein design: perspectives in methods and applications[J]. Synthetic Biology Journal, 2021, 2(1): 15-32.
操帆, 陈耀晞, 缪阳洋, 张璐, 刘海燕. 蛋白质计算设计:方法和应用展望[J]. 合成生物学, 2021, 2(1): 15-32.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-067
Fig. 1 Examples of changes in the amino acids sequence of a polypeptide chain forming a regular spatial structure(Hydrophilic and hydrophobic amino acids are alternated in a periodic pattern)
Fig. 2 Optimization of amino acids sequences and side-chain conformations for a given backbone(For the input target backbone structures, the sequences with the lowest energies were found by searching the sequence andside chain conformational space, considering them the most likely to form the target structures)
Fig. 3 Physical energy terms(Physical energy functions are generally constructed from the addition of covalent interaction terms as well as non covalent interaction terms)
Fig. 4 Statistical energy terms of various types(Different statistical energy functions are obtained by transforming the probability distributions obtained from statistical analysis of different kinds of data)
Fig. 5 Two backbone design strategies(Up, Splicing with the native fragment into a new backbone. Down, Main chain design methods for optimizing statistical energy functions)
Fig. 6 Basic steps of protein-protein interface design[The backbone conformation of the ligand protein (red) in complex with the target receptor (green) is first designed,then the residue types at the ligand protein interface are designed and optimized, resulting in the final design result (blue)]
Fig. 7 Positive design versus negative design(Positive design only considers decreasing target state energy and does not consider other states. Negative design then needs to raise the energy of the other states so that their energy differences from the target state increase)
1 | KUHLMAN B, BRADLEY P. Advances in protein structure prediction and design[J]. Nature Reviews Molecular Cell Biology, 2019, 20(11): 681-697. |
2 | HUANG P S, BOYKEN S E, BAKER D. The coming of age of de novo protein design[J]. Nature, 2016, 537(7620): 320-327. |
3 | MU Q, CUI Y, TIAN Y, et al. Thermostability improvement of the glucose oxidase from Aspergillus niger for efficient gluconic acid production via computational design[J]. International Journal of Biological Macromolecules, 2019, 136: 1060-1068. |
4 | LI R, WIJMA H J, SONG L, et al. Computational redesign of enzymes for regio- and enantioselective hydroamination[J]. Nature Chemical Biology, 2018, 14(7): 664-670. |
5 | ZHAN J, DING B, MA R, et al. Develop reusable and combinable designs for transcriptional logic gates[J]. Molecular Systems Biology, 2010, 6: 388. |
6 | PACKER M S, LIU D R. Methods for the directed evolution of proteins[J]. Nature Reviews Genetics, 2015, 16(7): 379-394. |
7 | LIU Y, YAN Z, LU X, et al. Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis[J]. Scientific Reports, 2016, 6: 24117. |
8 | COLUZZA I. Computational protein design: a review[J]. Journal of Physics-Condensed Matter, 2017, 29(14): 143001. |
9 | KISS G, CELEBI-OLCUM N, MORETTI R, et al. Computational enzyme design[J]. Angewandte Chemie International Edition, 2013, 52(22): 5700-5725. |
10 | GOLDENZWEIG A, FLEISHMAN S J. Principles of protein stability and their application in computational design[J]. Annual Review of Biochemistry, 2018, 87: 105-129. |
11 | BARAN D, PSZOLLA M G, LAPIDOTH G D, et al. Principles for computational design of binding antibodies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(41): 10900-10905. |
12 | SUN M G, SEO M H, NIM S, et al. Protein engineering by highly parallel screening of computationally designed variants[J]. Science Advances, 2016, 2(7): e1600692. |
13 | KORENDOVYCH I V, DEGRADO W F. De novo protein design, a retrospective [J]. Quarterly Reviews of Biophysics, 2020, 53:e3. |
14 | LUPAS A N, BASSLER J. Coiled coils - a model system for the 21st century[J]. Trends in Biochemical Sciences, 2017, 42(2): 130-140. |
15 | HARBURY P B, PLECS J J, TIDOR B, et al. High-resolution protein design with backbone freedom[J]. Science, 1998, 282(5393): 1462-1467. |
16 | HUANG P S, OBERDORFER G, XU C, et al. High thermodynamic stability of parametrically designed helical bundles[J]. Science, 2014, 346(6208): 481-485. |
17 | MURPHY G S, SATHYAMOORTHY B, DER B S, et al. Computational de novo design of a four-helix bundle protein-DND_4HB[J]. Protein Science, 2015, 24(4): 434-445. |
18 | JOH N H, WANG T, BHATE M P, et al. De novo design of a transmembrane Zn(2)(+)-transporting four-helix bundle[J]. Science, 2014, 346(6216): 1520-1524. |
19 | LIANG H, CHEN H, FAN K, et al. De novo design of a beta alpha beta motif[J]. Angewandte Chemie International Edition, 2009, 48(18): 3301-3303. |
20 | GRIGORYAN G, DE GRADO W F. Probing designability via a generalized model of helical bundle geometry[J]. Journal of Molecular Biology, 2011, 405(4): 1079-1100. |
21 | DAHIYAT B I, SARISKY C A, MAYO S L. De novo protein design: towards fully automated sequence selection[J]. Journal of Molecular Biology, 1997, 273(4): 789-796. |
22 | LAZARIDIS T, KARPLUS M. Effective energy functions for protein structure prediction[J]. Current Opinion in Structural Biology, 2000, 10(2): 139-145. |
23 | PARK H, BRADLEY P, GREISEN P, JR., et al. Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules[J]. Journal of Chemical Theory and Computation, 2016, 12(12): 6201-6212. |
24 | HUANG J, RAUSCHER S, NAWROCKI G, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins[J]. Nature Methods, 2017, 14(1): 71-73. |
25 | ALFORD R F, LEAVER-FAY A, JELIAZKOV J R, et al. The rosetta all-atom energy function for macromolecular modeling and design[J]. Journal of Chemical Theory and Computation, 2017, 13(6): 3031-3048. |
26 | BOAS F E, HARBURY P B. Potential energy functions for protein design[J]. Current Opinion in Structural Biology, 2007, 17(2): 199-204. |
27 | XIONG P, WANG M, ZHOU X Q, et al. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability[J]. Nature Communications, 2014, 5: 5330. |
28 | XIONG P, HU X H, HUANG B, et al. Increasing the efficiency and accuracy of the ABACUS protein sequence design method[J]. Bioinformatics, 2020, 36(1): 136-144. |
29 | KUHLMAN B, DANTAS G, IRETON G C, et al. Design of a novel globular protein fold with atomic-level accuracy[J]. Science, 2003, 302(5649): 1364-1368. |
30 | FRIEDLAND G D, KORTEMME T. Designing ensembles in conformational and sequence space to characterize and engineer proteins[J]. Current Opinion in Structural Biology, 2010, 20(3): 377-384. |
31 | DAVIS I W, ARENDALL W B, 3RD, RICHARDSON D C, et al. The backrub motion: how protein backbone shrugs when a sidechain dances[J]. Structure, 2006, 14(2): 265-274. |
32 | ZHOU X, XIONG P, WANG M, et al. Proteins of well-defined structures can be designed without backbone readjustment by a statistical model[J]. Journal of Structural Biology, 2016, 196(3): 350-357. |
33 | KOGA N, TATSUMI-KOGA R, LIU G, et al. Principles for designing ideal protein structures[J]. Nature, 2012, 491(7423): 222-227. |
34 | CHU H Y, LIU H Y. TetraBASE: a side chain-independent statistical energy for designing realistically packed protein backbones[J]. Journal of Chemical Information and Modeling, 2018, 58(2): 430-442. |
35 | FRAPPIER V, JENSON J M, ZHOU J, et al. Tertiary structural motif sequence statistics enable facile prediction and design of peptides that bind anti-apoptotic Bfl-1 and Mcl-1[J]. Structure, 2019, 27(4): 606-617, e5. |
36 | MACKENZIE C O, ZHOU J, GRIGORYAN G. Tertiary alphabet for the observable protein structural universe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): E7438-E7447. |
37 | OLLIKAINEN N, DE JONG R M, KORTEMME T. Coupling protein side-chain and backbone flexibility improves the re-design of protein-ligand specificity[J]. PLoS Computational Biology, 2015, 11(9): e1004335. |
38 | HALLEN M A, DONALD B R. CATS (Coordinates of Atoms by Taylor Series): protein design with backbone flexibility in all locally feasible directions[J]. Bioinformatics, 2017, 33(14): I5-I12. |
39 | ROUX B, SIMONSON T. Implicit solvent models[J]. Biophysical Chemistry, 1999, 78(1/2): 1-20. |
40 | LAZARIDIS T, KARPLUS M. Effective energy function for proteins in solution[J]. Proteins, 1999, 35(2): 133-152. |
41 | GAINZA P, NISONOFF H M, DONALD B R. Algorithms for protein design[J]. Current Opinion in Structural Biology, 2016, 39: 16-26. |
42 | NEGRON C, KEATING A E. Multistate protein design using CLEVER and CLASSY[J]. Methods in Protein Design, 2013, 523: 171-190. |
43 | GRIGORYAN G, ZHOU F, LUSTIG S R, et al. Ultra-fast evaluation of protein energies directly from sequence[J]. PLoS Computational Biology, 2006, 2(6): 551-563. |
44 | TRAORE S, ROBERTS K E, ALLOUCHE D, et al. Fast search algorithms for computational protein design[J]. Journal of Computational Chemistry, 2016, 37(12): 1048-1058. |
45 | SMITH C A, KORTEMME T. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction[J]. Journal of Molecular Biology, 2008, 380(4): 742-756. |
46 | LANOUETTE S, DAVEY J A, ELISMA F, et al. Discovery of substrates for a SET domain lysine methyltransferase predicted by multistate computational protein design[J]. Structure, 2015, 23(1): 206-215. |
47 | HILPERT K, WINKLER D F, HANCOCK R E. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion[J]. Nature Protocols, 2007, 2(6): 1333-1349. |
48 | MACKENZIE C O, GRIGORYAN G. Protein structural motifs in prediction and design[J]. Current Opinion in Structural Biology, 2017, 44: 161-167. |
49 | MRAVIC M, THOMASTON J L, TUCKER M, et al. Packing of apolar side chains enables accurate design of highly stable membrane proteins[J]. Science, 2019, 363(6434): 1418-1423. |
50 | LU P, MIN D, DIMAIO F, et al. Accurate computational design of multipass transmembrane proteins[J]. Science, 2018, 359(6379): 1042-1046. |
51 | THOMSON A R, WOOD C W, BURTON A J, et al. Computational design of water-soluble alpha-helical barrels[J]. Science, 2014, 346(6208): 485-488. |
52 | MACDONALD J T, MAKSIMIAK K, SADOWSKI M I, et al. De novo backbone scaffolds for protein design[J]. Proteins, 2010, 78(5): 1311-1325. |
53 | KARANICOLAS J, CORN J E, CHEN I, et al. A de novo protein binding pair by computational design and directed evolution[J]. Molecular Cell, 2011, 42(2): 250-260. |
54 | ZANGHELLINI A, JIANG L, WOLLACOTT A M, et al. New algorithms and an in silico benchmark for computational enzyme design[J]. Protein Science, 2006, 15(12): 2785-2794. |
55 | BOYKEN S E, CHEN Z, GROVES B, et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity[J]. Science, 2016, 352(6286): 680-687. |
56 | MAGUIRE J B, BOYKEN S E, BAKER D, et al. Rapid sampling of hydrogen bond networks for computational protein design[J]. Journal of Chemical Theory and Computation, 2018, 14(5): 2751-2760. |
57 | RICHARDSON J S, RICHARDSON D C. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(5): 2754-2759. |
58 | LOFFLER P, SCHMITZ S, HUPFELD E, et al. Rosetta:MSF: a modular framework for multi-state computational protein design[J]. PLoS Computational Biology, 2017, 13(6): e1005600. |
59 | WIJMA H J, FLOOR R J, JEKEL P A, et al. Computationally designed libraries for rapid enzyme stabilization[J]. Protein Engineering Design & Selection, 2014, 27(2): 49-58. |
60 | CORREIA B E, BATES J T, LOOMIS R J, et al. Proof of principle for epitope-focused vaccine design[J]. Nature, 2014, 507(7491): 201-206. |
61 | MARCANDALLI J, FIALA B, OLS S, et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus[J]. Cell, 2019, 176(6): 1420-1431, e17. |
62 | SESTERHENN F, YANG C, BONET J, et al. De novo protein design enables the precise induction of RSV-neutralizing antibodies[J]. Science, 2020, 368(6492): eaay5051. |
63 | SLOVIC A M, KONO H, LEAR J D, et al. Computational design of water-soluble analogues of the potassium channel KcsA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 1828-1833. |
64 | WANNIER T M, MOORE M M, MOU Y, et al. Computational design of the beta-sheet surface of a red fluorescent protein allows control of protein oligomerization[J]. PLoS One, 2015, 10(6): e0130582. |
65 | BANDA-VAZQUEZ J, SHANMUGARATNAM S, RODRIGUEZ-SOTRES R, et al. Redesign of LAOBP to bind novel l-amino acid ligands[J]. Protein Science, 2018, 27(5): 957-968. |
66 | GLASGOW A A, HUANG Y M, MANDELL D J, et al. Computational design of a modular protein sense-response system[J]. Science, 2019, 366(6468): 1024-1028. |
67 | POLIZZI N F, WU Y, LEMMIN T, et al. De novo design of a hyperstable non-natural protein-ligand complex with sub-A accuracy[J]. Nature Chemistry, 2017, 9(12): 1157-1164. |
68 | DOU J, VOROBIEVA A A, SHEFFLER W, et al. De novo design of a fluorescence-activating beta-barrel[J]. Nature, 2018, 561(7724): 485-491. |
69 | LEAVER-FAY A, FRONING K J, ATWELL S, et al. Computationally designed bispecific antibodies using negative state repertoires[J]. Structure, 2016, 24(4): 641-651. |
70 | FRONING K J, LEAVER-FAY A, WU X, et al. Computational design of a specific heavy chain/kappa light chain interface for expressing fully IgG bispecific antibodies[J]. Protein Science, 2017, 26(10): 2021-2038. |
71 | SILVA D A, YU S, ULGE U Y, et al. De novo design of potent and selective mimics of IL-2 and IL-15[J]. Nature, 2019, 565(7738): 186-191. |
72 | CHEN Z, BOYKEN S E, JIA M, et al. Programmable design of orthogonal protein heterodimers[J]. Nature, 2019, 565(7737): 106-111. |
73 | CHEN Z, KIBLER R D, HUNT A, et al. De novo design of protein logic gates[J]. Science, 2020, 368(6486): 78-84. |
74 | LANGAN R A, BOYKEN S E, NG A H, et al. De novo design of bioactive protein switches[J]. Nature, 2019, 572(7768): 205-210. |
75 | NG A H, NGUYEN T H, GOMEZ-SCHIAVON M, et al. Modular and tunable biological feedback control using a de novo protein switch[J]. Nature, 2019, 572(7768): 265-269. |
76 | SHEN H, FALLAS J A, LYNCH E, et al. De novo design of self-assembling helical protein filaments[J]. Science, 2018, 362(6415): 705-709. |
77 | KING N P, BALE J B, SHEFFLER W, et al. Accurate design of co-assembling multi-component protein nanomaterials[J]. Nature, 2014, 510(7503): 103-108. |
78 | FALLAS J A, UEDA G, SHEFFLER W, et al. Computational design of self-assembling cyclic protein homo-oligomers[J]. Nature Chemistry, 2017, 9(4): 353-360. |
79 | KILAMBI K P, REDDY K, GRAY J J. Protein-protein docking with dynamic residue protonation states[J]. PLoS Computational Biology, 2014, 10(12): e1004018. |
80 | KILAMBI K P, GRAY J J. Rapid calculation of protein pKa values using Rosetta[J]. Biophysical Journal, 2012, 103(3): 587-595. |
81 | ALFORD R F, KOEHLER LEMAN J, WEITZNER B D, et al. An integrated framework advancing membrane protein modeling and design[J]. PLoS Computational Biology, 2015, 11(9): e1004398. |
82 | BARTH P, SCHONBRUN J, BAKER D. Toward high-resolution prediction and design of transmembrane helical protein structures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(40): 15682-15687. |
83 | YAROV-YAROVOY V, SCHONBRUN J, BAKER D. Multipass membrane protein structure prediction using Rosetta[J]. Proteins, 2006, 62(4): 1010-1025. |
84 | BOGAN AA, THORN K S. Anatomy of hot spots in protein interfaces[J]. Journal of Molecular Biology, 1998, 280(1): 1-9. |
85 | KORTEMME T, BAKER D. Computational design of protein-protein interactions[J]. Current Opinion in Chemical Biology, 2004, 8(1): 91-97. |
[1] | Jingqin YE, Wenhua HUANG, Chao PAN, Li ZHU, Hengliang WANG. Applications of synthetic biology in developing polysaccharide conjugate vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 338-352. |
[2] | Jingyong ZHU, Junxiang LI, Xuhui LI, Jin ZHANG, Wenjing WU. Advances in applications of deep learning for predicting sequence-based protein interactions [J]. Synthetic Biology Journal, 2024, 5(1): 88-106. |
[3] | Wanqiu LIU, Xiangyang JI, Huiling XU, Yicong LU, Jian LI. Cell-free protein synthesis system enables rapid and efficient biosynthesis of restriction endonucleases [J]. Synthetic Biology Journal, 2023, 4(4): 840-851. |
[4] | Mengdan MA, Mengyu SHANG, Yuchen LIU. Application and prospect of CRISPR-Cas9 system in tumor biology [J]. Synthetic Biology Journal, 2023, 4(4): 703-719. |
[5] | Yidong SONG, Qianmu YUAN, Yuedong YANG. Application of deep learning in protein function prediction [J]. Synthetic Biology Journal, 2023, 4(3): 488-506. |
[6] | He HUANG, Tong WU, Wenda WANG, Jiashan LI, Daiwen SUN, Qiwei YE, Xinqi GONG. Prediction of protein complex structure: methods and progress [J]. Synthetic Biology Journal, 2023, 4(3): 507-523. |
[7] | Zhihang CHEN, Menglin JI, Yifei QI. Research progress of artificial intelligence in desiging protein structures [J]. Synthetic Biology Journal, 2023, 4(3): 464-487. |
[8] | Yiming TANG, Yifei YAO, Zhongyuan YANG, Yun ZHOU, Zichao WANG, Guanghong WEI. Pathological aggregation and liquid-liquid phase separation of proteins associated with neurodegenerative diseases [J]. Synthetic Biology Journal, 2023, 4(3): 590-610. |
[9] | Qiaozhen MENG, Fei GUO. Applications of foldability in intelligent enzyme engineering and design: take AlphaFold2 for example [J]. Synthetic Biology Journal, 2023, 4(3): 571-589. |
[10] | Sheng WANG, Zechen WANG, Weihua CHEN, Ke CHEN, Xiangda PENG, Fafen OU, Liangzhen ZHENG, Jinyuan SUN, Tao SHEN, Guoping ZHAO. Design of synthetic biology components based on artificial intelligence and computational biology [J]. Synthetic Biology Journal, 2023, 4(3): 422-443. |
[11] | Qingyun RUAN, Xin HUANG, Zijun MENG, Shu QUAN. Computational design and directed evolution strategies for optimizing protein stability [J]. Synthetic Biology Journal, 2023, 4(1): 5-29. |
[12] | Weiwei NI, Lingjia ZHOU, Hao WANG, Fei LI, Jinsong HAN. Research progress in the construction of nucleic acid and protein biomolecular sensor arrays and their applications for rapid detection [J]. Synthetic Biology Journal, 2023, 4(1): 185-203. |
[13] | Liya LIANG, Rongming LIU. Protein engineering of DNA targeting type Ⅱ CRISPR/Cas systems [J]. Synthetic Biology Journal, 2023, 4(1): 86-101. |
[14] | Xiaolong TENG, Shuobo SHI. Optimization and development of CRISPR/Cas9 systems for genome editing [J]. Synthetic Biology Journal, 2023, 4(1): 67-85. |
[15] | Renmei LIU, Leshi LI, Xiaoyan YANG, Xianjun CHEN, Yi YANG. Technologies for precise spatiotemporal control of post-transcriptional RNA metabolism [J]. Synthetic Biology Journal, 2023, 4(1): 141-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||