Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (2): 256-273.DOI: 10.12211/2096-8280.2020-073
• Invited Review • Previous Articles Next Articles
Qian LIU1,2, Jingen LI1,2, Chenyang ZHANG1,2,3, Fangya LI1,2, Chaoguang TIAN1,2,3
Received:
2020-07-09
Revised:
2021-03-15
Online:
2021-04-30
Published:
2021-04-29
Contact:
Chaoguang TIAN
刘倩1,2, 李金根1,2, 张晨阳1,2,3, 李芳雅1,2, 田朝光1,2,3
通讯作者:
田朝光
作者简介:
基金资助:
CLC Number:
Qian LIU, Jingen LI, Chenyang ZHANG, Fangya LI, Chaoguang TIAN. Research progress of genome editing technologies for industrial filamentous fungi[J]. Synthetic Biology Journal, 2021, 2(2): 256-273.
刘倩, 李金根, 张晨阳, 李芳雅, 田朝光. 工业丝状真菌基因组编辑技术研究进展[J]. 合成生物学, 2021, 2(2): 256-273.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-073
丝状真菌 | Cas 类型 | Cas启动子 | sgRNA启动子 | 靶标基因 | 编辑效率 | 参考文献 |
---|---|---|---|---|---|---|
黑曲霉 | Cas9 | Ptef1 | PgpdA | albA | 高效 | [ |
Ptef1 | Af_U6-1p | albA | 高效 | [ | ||
Ptef1 | PanU6 | albA | 79% | [ | ||
PgpdA | 5S rRNA | alba, fum5, fum1 | 高达100% | [ | ||
Ptef1 | AoU6, AfU6 | fwnA, amyA, glaA | 单基因高达80% | [ | ||
Ptef1, PgpdA, PglaA | Anp | pyrG, moc, laeA | 高达97.2% | [ | ||
LbCpf1 | Ptef1 | Af_U3p | albA | 80% | [ | |
米曲霉 | Cas9 | PamyB | 米曲霉U6p | wA, pyrG, yA | 10%~100% | [ |
PAotef1, AMA1-自主复制质粒 | PU6p,AMA1-自主复制质粒 | wA, pyrG, yA | 55.6%~100% | [ | ||
里氏木霉 | Cas9 | Ppdc, Pcbh1 | 体外转录合成 | ura5, lae1, vib1, clr2 | 单基因高达93%~100%;多基因同时编辑效率4.2%~45% | [ |
体外转录合成 | 体外转录合成 | cbh-1 | 40% | [ | ||
Ppdc | 里氏木霉PU61, PU62 | ura5 | 高效 | [ | ||
体外转录合成 | 体外转录合成 | Trura5,Trlae1,Trcbh1, Trcbh2, Treg1 | 56.52%~100% | [ | ||
产黄青霉 | Cas9 | Pxyl或体外 转录合成 | U6, 145 tRNA, Utp25或体外转录合成 | pks17, roqA, lovF,pcbAB, penDE, hcpA | 高达60%~100% | [ |
嗜热毁丝霉 | Cas9 | Ptef1 | 嗜热毁丝霉MtU6p | amd S, cre1, res1, alp1, gh1-1, rca1, hcr1, ap3, prk6 | 单基因高达95%;双、三、四基因同时编辑效率22%~70% | [ |
SpCas9, FnCpf1, AsCpf1 | Ptef1或体外 转录合成 | U6p或体外 转录合成 | pks4.2, alp1, snc1, ptf1 | 单基因高达100%;多基因同时编辑时单基因效率5%~100% | [ | |
AsCas12a | Ptef1 | MtU6p | cre1, res1, alp1, gh1-1, rca1,neo, bar, hcr1, ap3, prk6 | 单基因高达90%;三、四基因同时编辑效率22%~41% | [ | |
棉阿舒囊霉 | SpCas9 | 酿酒酵母Ptef1 | Psnr52 | ade2, A754, fmp27 | 36%~80% | [ |
LbCpf1 | Ptsa1 | Psnr52 | his3, ade2, trp1, leu2, ura3 | 多基因编辑效率10.4%~77.2% | [ |
Tab. 1 Applycations of CRISPR-Cas systems in industrial filamentous fungi
丝状真菌 | Cas 类型 | Cas启动子 | sgRNA启动子 | 靶标基因 | 编辑效率 | 参考文献 |
---|---|---|---|---|---|---|
黑曲霉 | Cas9 | Ptef1 | PgpdA | albA | 高效 | [ |
Ptef1 | Af_U6-1p | albA | 高效 | [ | ||
Ptef1 | PanU6 | albA | 79% | [ | ||
PgpdA | 5S rRNA | alba, fum5, fum1 | 高达100% | [ | ||
Ptef1 | AoU6, AfU6 | fwnA, amyA, glaA | 单基因高达80% | [ | ||
Ptef1, PgpdA, PglaA | Anp | pyrG, moc, laeA | 高达97.2% | [ | ||
LbCpf1 | Ptef1 | Af_U3p | albA | 80% | [ | |
米曲霉 | Cas9 | PamyB | 米曲霉U6p | wA, pyrG, yA | 10%~100% | [ |
PAotef1, AMA1-自主复制质粒 | PU6p,AMA1-自主复制质粒 | wA, pyrG, yA | 55.6%~100% | [ | ||
里氏木霉 | Cas9 | Ppdc, Pcbh1 | 体外转录合成 | ura5, lae1, vib1, clr2 | 单基因高达93%~100%;多基因同时编辑效率4.2%~45% | [ |
体外转录合成 | 体外转录合成 | cbh-1 | 40% | [ | ||
Ppdc | 里氏木霉PU61, PU62 | ura5 | 高效 | [ | ||
体外转录合成 | 体外转录合成 | Trura5,Trlae1,Trcbh1, Trcbh2, Treg1 | 56.52%~100% | [ | ||
产黄青霉 | Cas9 | Pxyl或体外 转录合成 | U6, 145 tRNA, Utp25或体外转录合成 | pks17, roqA, lovF,pcbAB, penDE, hcpA | 高达60%~100% | [ |
嗜热毁丝霉 | Cas9 | Ptef1 | 嗜热毁丝霉MtU6p | amd S, cre1, res1, alp1, gh1-1, rca1, hcr1, ap3, prk6 | 单基因高达95%;双、三、四基因同时编辑效率22%~70% | [ |
SpCas9, FnCpf1, AsCpf1 | Ptef1或体外 转录合成 | U6p或体外 转录合成 | pks4.2, alp1, snc1, ptf1 | 单基因高达100%;多基因同时编辑时单基因效率5%~100% | [ | |
AsCas12a | Ptef1 | MtU6p | cre1, res1, alp1, gh1-1, rca1,neo, bar, hcr1, ap3, prk6 | 单基因高达90%;三、四基因同时编辑效率22%~41% | [ | |
棉阿舒囊霉 | SpCas9 | 酿酒酵母Ptef1 | Psnr52 | ade2, A754, fmp27 | 36%~80% | [ |
LbCpf1 | Ptsa1 | Psnr52 | his3, ade2, trp1, leu2, ura3 | 多基因编辑效率10.4%~77.2% | [ |
1 | POWERS-FLETCHER M V, KENDALL B A, GRIFFIN A T, et al. Filamentous fungi[J]. Microbiology Spectrum, 2016, 4(3): 1-29. |
2 | GILES C, LAMONT-FRIEDRICH S J, MICHL T D, et al. The importance of fungal pathogens and antifungal coatings in medical device infections[J]. Biotechnology Advances, 2018, 36(1):264-280. |
3 | WARD O P. Production of recombinant proteins by filamentous fungi[J]. Biotechnology Advances, 2012, 30(5): 1119-1139. |
4 | YANG L, LUBECK M, LUBECK P S. Aspergillus as a versatile cell factory for organic acid production[J]. Fungal Biology Reviews, 2017, 31(1):33-49. |
5 | KUN R S, GOMES A C S, HILDÉN K S, et al. Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation[J]. Biotechnology Advances, 2019, 37(6): 107361. |
6 | GUPTA V K, STEINDORFF A S, DE PAULA R G, et al. The post-genomic era of Trichoderma reesei: what's Next?[J]. Trends in Biotechnology, 2016, 34(12):970-982. |
7 | CAIRNS T C, NAI C, MEYER V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research[J]. Fungal Biology and Biotechnology, 2018, 5(1): 13. |
8 | HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. |
9 | DOUDNA J A, CHARPENTIER E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096. |
10 | SHALEM O, SANJANA N E, ZHANG F. High-throughput functional genomics using CRISPR-Cas9[J]. Nature Reviews Genetics, 2015, 16(5): 299-311. |
11 | WANG F Y, QI L S. Applications of CRISPR genome engineering in cell biology[J]. Trends in Cell Biology, 2016, 26(11):875-888. |
12 | WRIGHT A V, NUNEZ J K, DOUDNA J A. Biology and applications of CRISPR Systems: harnessing nature's toolbox for genome engineering[J]. Cell, 2016, 164(1-2):29-44. |
13 | BARRANGOU R, DOUDNA J A. Applications of CRISPR technologies in research and beyond[J]. Nature Biotechnology, 2016, 34(9): 933-941. |
14 | DOUDNA J A. The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578(7794):229-236. |
15 | HU J H, DAVIS K M, LIU D R. Chemical biology approaches to genome editing: understanding, controlling, and delivering programmable nucleases[J]. Cell Chemical Biology, 2016, 23(1): 57-73. |
16 | KOMOR A C, BADRAN A H, LIU D R. CRISPR-based technologies for the manipulation of eukaryotic genomes[J]. Cell, 2017, 168(1/2): 20-36. |
17 | SHRIVASTAV M, DE HARO L P, NICKOLOFF J A. Regulation of DNA double-strand break repair pathway choice[J]. Cell Research, 2008, 18(1):134-147. |
18 | MEYER V. Genetic engineering of filamentous fungi—progress, obstacles and future trends[J]. Biotechnology Advances, 2008, 26(2):177-185. |
19 | PORTEUS M H, BALTIMORE D. Chimeric nucleases stimulate gene targeting in human cells[J]. Science, 2003, 300(5620):763. |
20 | KLUG A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation[J]. Annual Review of Biochemistry, 2010, 79:213-231. |
21 | MOSCOU M J, BOGDANOVE A J. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501. |
22 | CHEN K L, GAO C X. TALENs: customizable molecular DNA scissors for genome engineering of plants[J]. Journal of Genetics and Genomics, 2013, 40(6):271-279. |
23 | ARAZOE T, OGAWA T, MIYOSHI K, et al. Tailor-made TALEN system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnology and Bioengineering, 2015, 112(7): 1335-1342. |
24 | ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12):5429-5433. |
25 | BARRANGOU R, FREMAUX C, DEVEAU H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712. |
26 | KUNIN V, SOREK R, HUGENHOLTZ P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats[J]. Genome Biology, 2007, 8(4): R61. |
27 | LILLESTOL R K, SHAH S A, BRUGGER K, et al. CRISPR families of the crenarchaeal genus sulfolobus: bidirectional transcription and dynamic properties[J]. Molecular Microbiology, 2009, 72(1): 259-272. |
28 | SAPRANAUSKAS R, GASIUNAS G, FREMAUX C, et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli[J]. Nucleic Acids Research, 2011, 39(21): 9275-9282. |
29 | DELTCHEVA E, CHYLINSKI K, SHARMA C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602-607. |
30 | DEVEAU H, GARNEAU J E, MOINEAU S. CRISPR/Cas system and its role in phage-bacteria interactions[J]. Annual Review of Microbiology, 2010, 64: 475-493. |
31 | GARNEAU J E, DUPUIS M È, VILLION M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature, 2010, 468(7320): 67-71. |
32 | MOHANRAJU P, MAKAROVA K S, ZETSCHE B, et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems[J]. Science, 2016, 353(6299): aad5147. |
33 | KOONIN E V, MAKAROVA K S, ZHANG F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 2017, 37: 67-78. |
34 | SHMAKOV S, SMARGON A, SCOTT D, et al. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2017, 15(3): 169-182. |
35 | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
36 | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
37 | MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. |
38 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. |
39 | ZETSCHE B, HEIDENREICH M, MOHANRAJU P, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array[J]. Nature Biotechnology, 2017, 35(1): 31-34. |
40 | TANG X, LOWDER L G, ZHANG T, et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants[J]. Nature Plants, 2017, 3: 17018. |
41 | JIANG Y, QIAN F, YANG J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum[J]. Nature Communications, 2017, 8: 15179. |
42 | LEI C, LI S Y, LIU J K, et al. The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro[J]. Nucleic Acids Research, 2017, 45(9): e74. |
43 | SWIAT M A, DASHKO S, RIDDER M DEN, et al. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2017, 45(21): 12585-12598. |
44 | JAVED M R, SADAF M, AHMED T, et al. CRISPR-cas system: history and prospects as a genome editing tool in microorganisms[J]. Current Microbiology, 2018, 75(12): 1675-1683. |
45 | DENG H, GAO R, LIAO X, et al. CRISPR system in filamentous fungi: current achievements and future directions[J]. Gene, 2017, 627(5): 212-221. |
46 | WANG S X, CHEN H Q, TANG X, et al. Molecular tools for gene manipulation in filamentous fungi[J]. Applied Microbiology and Biotechnology, 2017, 101(22): 8063-8075. |
47 | SHI T Q, LIU G N, JI R Y, et al. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art[J]. Applied Microbiology and Biotechnology, 2017, 101(20): 7435-7443. |
48 | SCHUSTER M, KAHMANN R. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes[J]. Fungal Genetics and Biology, 2019, 130: 43-53. |
49 | ZHANG S J, GUO F, YAN W, et al. Recent Advances of CRISPR/Cas9-based genetic engineering and transcriptional regulation in industrial Biology[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 459. |
50 | SONG R J, ZHAI Q, SUN L, et al. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective[J]. Applied Microbiology and Biotechnology, 2019, 103(17): 6919-6932. |
51 | MATSU-URA T, BAEK M, KWON J, et al. Efficient gene editing in Neurospora crassa with CRISPR technology[J]. Fungal Biology and Biotechnology, 2015, 2: 4. |
52 | NØDVIG C S, NIELSEN J B, KOGLE M E, et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi[J]. PLoS One, 2015, 10(7): e0133085. |
53 | NØDVIG C S, HOOF J B, KOGLE M E, et al. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli[J]. Fungal Genetics and Biology, 2018, 115: 78-89. |
54 | ZHENG X M, ZHENG P, SUN J, et al. Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger[J]. Fungal Biology and Biotechnology, 2018, 5: 2. |
55 | ZHENG X M, ZHENG P, ZHANG K, et al. 5S rRNA Promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger[J]. ACS Synthetic Biology, 2019, 8(7): 1568-1574. |
56 | DONG H, ZHENG J, YU D, et al. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes[J]. Journal of Microbiological Methods, 2019, 163: 105655. |
57 | DONG L B, LIN X, YU D, et al. High-level expression of highly active and thermostable trehalase from Myceliophthora thermophila in Aspergillus niger by using the CRISPR/Cas9 tool and its application in ethanol fermentation[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(1): 133-144. |
58 | HUANG L G, DONG H, ZHENG J, et al. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion[J]. Microbiological Research, 2019, 223-225: 44-50. |
59 | 田朝光, 李金根, 顾淑莹, 等. 一种调控sgRNA转录的启动子、表达载体,及其基因组编辑系统和应用: 201910834799.7[P]. 2019-12-10. |
TIAN C G, LI J G, GU S Y, et al. A promoter and expression vector that regulate the transcription of sgRNA and its genome editing system and application: 201910834799.7[P]. 2019-12-10. | |
60 | VANEGAS K G, JARCZYNSKA Z D, STRUCKO T, et al. Cpf1 enables fast and efficient genome editing in Aspergilli[J]. Fungal Biology and Biotechnology, 2019, 6: 6. |
61 | KATAYAMA T, TANAKA Y, OKABE T, et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae[J]. Biotechnology Letters, 2016, 38(4): 637-642. |
62 | KATAYAMA T, NAKAMURA H, ZHANG Y, et al. Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae[J]. Applied and Environmental Microbiology, 2019, 85(3): e01896-18. |
63 | LIU R, CHEN L, JIANG Y, et al. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system[J]. Cell Discovery, 2015, 1: 15007. |
64 | HAO Z Z, SU X Y. Fast gene disruption in Trichoderma reesei using in vitro assembled Cas9/gRNA complex[J]. BMC Biotechnology, 2019, 19(1): 2. |
65 | WU C, CHEN Y, QIU Y, et al. A simple approach to mediate genome editing in the filamentous fungus Trichoderma reesei by CRISPR/Cas9-coupled in vivo gRNA transcription[J]. Biotechnology Letters, 2020, 42(7):1203-1210. |
66 | ZOU G, XIAO M, CHAI S, et al. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents[J]. Microbial Biotechnology, 2020, 42(7):1203-1210. |
67 | POHL C, KIEL J A, DRIESSEN A J, et al. CRISPR/Cas9 based genome editing of Penicillium chrysogenum[J]. ACS Synthetic Biology, 2016, 5(7): 754-764. |
68 | POHL C, MOZSIK L, DRIESSEN A J M, et al. Genome editing in Penicillium chrysogenum using Cas9 ribonucleoprotein particles[J]. Methods in Molecular Biology, 2018, 1772: 213-232. |
69 | VISSER H, JOOSTEN V, PUNT P J, et al. Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1[J]. Industial Biotechnology, 2011, 7(3): 10. |
70 | BERKA R M, GRIGORIEV I V, OTILLAR R, et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris[J]. Nature Biotechnology, 2011, 29(10): 922-927. |
71 | KOLBUSZ M A, DI FALCO M, ISHMAEL N, et al. Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila[J]. Fungal Genetics and Biology, 2014, 72: 10-20. |
72 | WANG J, WU Y, GONG Y, et al. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(9): 1233-1241. |
73 | YANG F, GONG Y, LIU G, et al. Enhancing cellulase production in thermophilic fungus Myceliophthora thermophila ATCC42464 by RNA interference of cre1 gene expression[J]. Journal of Microbiology and Biotechnology, 2015, 25(7): 1101-1107. |
74 | XU J, LI J, LIN L, et al. Development of genetic tools for Myceliophthora thermophila[J]. BMC Biotechnology, 2015, 15: 35. |
75 | LIU Q, GAO R, LI J, et al. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering[J]. Biotechnology for Biofuels, 2017, 10: 1. |
76 | KWON M J, SCHUTZE T, SPOHNER S, et al. Practical guidance for the implementation of the CRISPR genome editing tool in filamentous fungi[J]. Fungal Biology and Biotechnology, 2019, 6: 15. |
77 | LIU Q, ZHANG Y, LI F, et al. Upgrading of efficient and scalable CRISPR-Cas-mediated technology for genetic engineering in thermophilic fungus Myceliophthora thermophila[J]. Biotechnology for Biofuels, 2019, 12: 293. |
78 | JIMENEZ A, MUNOZ-FERNANDEZ G, LEDESMA-AMARO R, et al. One-vector CRISPR/Cas9 genome engineering of the industrial fungus Ashbya gossypii[J]. Microbial Biotechnology, 2019, 12(6): 1293-1301. |
79 | JIMENEZ A, HOFF B, REVUELTA J L. Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1[J]. New Biotechnology, 2020, 57: 29-33. |
80 | ARAZOE T, MIYOSHI K, YAMATO T, et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus[J]. Biotechnology and Bioengineering, 2015, 112(12): 2543-2549. |
81 | FOSTER A J, MARTIN-URDIROZ M, YAN X, et al. CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus[J]. Scientific Reports, 2018, 8(1): 14355. |
82 | YAMATO T, HANDA A, ARAZOE T, et al. Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus[J]. Scientific Reports, 2019, 9(1): 7427. |
83 | FULLER K K, CHEN S, LOROS J J, et al. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus[J]. Eukaryotic Cell, 2015, 14(11): 1073-1080. |
84 | ZHANG C, MENG X, WEI X, et al. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus[J]. Fungal Genetics and Biology, 2016, 86: 47-57. |
85 | WEBER J, VALIANTE V, NØDVIG C S, et al. Functional reconstitution of a fungal natural product gene cluster by advanced genome editing[J]. ACS Synthetic Biology, 2017, 6(1): 62-68. |
86 | SCHUSTER M, SCHWEIZER G, REISSMANN S, et al. Genome editing in Ustilago maydis using the CRISPR-Cas system[J]. Fungal Genetics and Biology, 2016, 89: 3-9. |
87 | CHEN J J, LAI Y L, WANG L L, et al. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana[J]. Scientific Reports, 2017, 7(1): 45763. |
88 | QIN H, XIAO H, ZOU G, et al. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species[J]. Process Biochemistry, 2017, 56: 57-61. |
89 | SUGANO S S, SUZUKI H, SHIMOKITA E, et al. Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system[J]. Scientific Reports, 2017, 7(1): 1260. |
90 | CHEN B X, WEI T, YE Z W, et al. Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris[J]. Frontiers in Microbiology, 2018, 9: 1157. |
91 | DENG H, GAO R, LIAO X, et al. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system[J]. Journal of Biotechnology, 2017, 259: 228-234. |
92 | HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. |
93 | NISHIMASU H, SHI X, ISHIGURO S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259-1262. |
94 | MILLER S M, WANG T, RANDOLPH P B, et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs[J]. Nature Biotechnology, 2020, 38(4): 471-481. |
95 | WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296. |
96 | TENG F, CUI T, FENG G, et al. Repurposing CRISPR-Cas12b for mammalian genome engineering[J]. Cell Discovery, 2018, 4: 63. |
97 | STRECKER J, JONES S, KOOPAL B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nature Communications2019, 10(1): 21. |
98 | MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nature Reviews Microbiology, 2020, 18(2): 67-83. |
99 | DOMINGUEZ A A, LIM W A, QI L S. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation[J]. Nature Reviews Molecular Cell Biology, 2016, 17(1): 5-15. |
100 | JOUNG J, KONERMANN S, GOOTENBERG J S, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening[J]. Nature Protocols, 2017, 12(4): 828-863. |
101 | TAK Y E, KLEINSTIVER B P, NUNEZ J K, et al. Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors[J]. Nature Methods, 2017, 14(12): 1163-1166. |
102 | LU A R, WANG J, SUN W, et al. Reprogrammable CRISPR/dCas9-based recruitment of DNMT1 for site-specific DNA demethylation and gene regulation[J]. Cell Discovery, 2019, 5: 22. |
103 | LU Z H, YANG S, YUAN X, et al. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis[J]. Nucleic Acids Research, 2019, 47(7): e40. |
[1] | Yao DU, Hongdan GAO, Jiakun LIU, Xiaorong LIU, Zhihao XING, Tao ZHANG, Dongli MA. Research progress of the CRISPR-Cas system in the detecting pathogen nucleic acids [J]. Synthetic Biology Journal, 2024, 5(1): 202-216. |
[2] | Jicong LIN, Gen ZOU, Hongmin LIU, Yongjun WEI. Application of CRISPR/Cas genome editing technology in the synthesis of secondary metabolites of filamentous fungi [J]. Synthetic Biology Journal, 2023, 4(4): 738-755. |
[3] | Mengdan MA, Yuchen LIU. Potential application of synthetic biology in disease information recording and real-time monitoring [J]. Synthetic Biology Journal, 2023, 4(2): 301-317. |
[4] | Yi YANG, Yufeng MAO, Chunhe YANG, Meng WANG, Xiaoping LIAO, Hongwu MA. Recent progress in computational tools for designing editing sequences used in microbial genetic manipulations [J]. Synthetic Biology Journal, 2023, 4(1): 30-46. |
[5] | Xiaolong TENG, Shuobo SHI. Optimization and development of CRISPR/Cas9 systems for genome editing [J]. Synthetic Biology Journal, 2023, 4(1): 67-85. |
[6] | Qingzhuo WANG, Ping SONG, He HUANG. Synthetic biotechnology drives the development of natural eukaryotic lipid cell factories [J]. Synthetic Biology Journal, 2021, 2(6): 920-941. |
[7] | Han XIAO, Yixin LIU. Progress and challenge of the CRISPR-Cas system in gene editing for filamentous fungi [J]. Synthetic Biology Journal, 2021, 2(2): 274-286. |
[8] | Yong YU, Xinna ZHU, Xueli ZHANG. Construction and application of microbial cell factories for production of bulk chemicals [J]. Synthetic Biology Journal, 2020, 1(6): 674-684. |
[9] | Hui WANG, Junbiao DAI, Zhouqing LUO. Reading, editing, and writing techniques for genome research [J]. Synthetic Biology Journal, 2020, 1(5): 503-515. |
[10] | Zhongzheng CAO, Xinyi ZHANG, Yiyuan XU, Zhuo ZHOU, Wensheng WEI. Genome editing technology and its applications in synthetic biology [J]. Synthetic Biology Journal, 2020, 1(4): 413-426. |
[11] | Xuenian HUANG, Shen TANG, Xuefeng LV. Progress and prospect for synthetic biology research of the industrial filamentous fungi Aspergillus terreus [J]. Synthetic Biology Journal, 2020, 1(2): 187-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||