| 1 | Dictionary of natural products[EB/OL]. . | 
																													
																							| 2 | CHRISTIANSON D W. Structural and chemical biology of terpenoid cyclases[J]. Chemical Reviews, 2017, 117(17): 11570-11648. | 
																													
																							| 3 | GERSHENZON J, DUDAREVA N. The function of terpene natural products in the natural world[J]. Nature Chemical Biology, 2007, 3(7): 408-414. | 
																													
																							| 4 | CHEN M B, CHOU W K W, TOYOMASU T, et al. Structure and function of fusicoccadiene synthase, a hexameric bifunctional diterpene synthase[J]. ACS Chemical Biology, 2016, 11(4): 889-899. | 
																													
																							| 5 | GAO J, KO T P, CHEN L, et al. "Head-to-Middle" and "Head-to-Tail" cis-Prenyl transferases: structure of isosesquilavandulyl diphosphate synthase[J]. Angewandte Chemie-International Edition, 2018, 57(3): 683-687. | 
																													
																							| 6 | SALLAUD C, RONTEIN D, ONILLON S, et al. A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites [J]. The Plant Cell, 2009, 21(1): 301-317, | 
																													
																							| 7 | CHRISTIANSON D W. Roots of biosynthetic diversity[J]. Science, 2007, 316(5812): 60-61. | 
																													
																							| 8 | THOLL D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism[J]. Current Opinion in Plant Biology, 2006, 9(3): 297-304. | 
																													
																							| 9 | THOLL D. Biosynthesis and biological functions of terpenoids in plants[J]. Biotechnology of Isoprenoids, 2015, 148: 63-106 | 
																													
																							| 10 | MITSUHASHI T, ABE I. Chimeric terpene synthases possessing both terpene cyclization and prenyltransfer activities[J]. ChemBioChem, 2018, 19(11): 1106-1114. | 
																													
																							| 11 | KANG W, MA T, LIU M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10(1): 4248. | 
																													
																							| 12 | FAYLO J L, EEUWEN T VAN, KIM H J, et al. Structural insight on assembly-line catalysis in terpene biosynthesis[J]. Nature Communications, 2021, 12(1): 3487. | 
																													
																							| 13 | MINAMI A, OZAKI T, LIU C W, et al. Cyclopentane-forming di/sesterterpene synthases: widely distributed enzymes in bacteria, fungi, and plants[J]. Natural Product Reports, 2018, 35(12): 1330-1346. | 
																													
																							| 14 | TOYOMASU T, TSUKAHARA M, KANEKO A, et al. Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(9): 3084-3088. | 
																													
																							| 15 | CHIBA R, MINAMI A, GOMI K, et al. Identification of ophiobolin F synthase by a genome mining approach: a sesterterpene synthase from Aspergillus clavatus [J]. Organic Letters, 2013, 15(3): 594-597. | 
																													
																							| 16 | CHEN R, JIA Q D, MU X, et al. Systematic mining of fungal chimeric terpene synthases using an efficient precursor-providing yeast chassis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(29): e2023247118. | 
																													
																							| 17 | YE Y, MINAMI A, MANDI A, et al. Genome mining for sesterterpenes using bifunctional terpene synthases reveals a unified intermediate of di/sesterterpenes[J]. Journal of the American Chemical Society, 2015, 137(36): 11846-11853. | 
																													
																							| 18 | MATSUDA Y, MITSUHASHI T, LEE S, et al. Astellifadiene: structure determination by NMR spectroscopy and crystalline sponge method, and elucidation of its biosynthesis[J]. Angewandte Chemie-International Edition, 2016, 55(19): 5785-5788. | 
																													
																							| 19 | ZHU F Y, ZHONG X F, HU M Z, et al.  In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli [J]. Biotechnology and Bioengineering, 2014, 111(7): 1396-1405. | 
																													
																							| 20 | RO D K, PARADISE E M, OUELLET M . et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943. | 
																													
																							| 21 | KAMPRANIS S C, MAKRIS A M. Developing a yeast cell factory for the production of terpenoids[J]. Computational and Structural Biotechnology Journal, 2012, 3: e201210006. | 
																													
																							| 22 | PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532. | 
																													
																							| 23 | SIEMON T, WANG Z Q, BIAN G K, et al. Semisynthesis of plant-derived englerin A enabled by microbe engineering of guaia-6,10(14)-diene as building block[J]. Journal of the American Chemical Society, 2020, 142(6): 2760-2765. |