Synthetic Biology Journal ›› 2021, Vol. 2 ›› Issue (1): 91-105.DOI: 10.12211/2096-8280.2020-046
• Invited Review • Previous Articles Next Articles
Pan CHU1,2, Jingwen ZHU1, Wenqi HUANG1,2, Chenli LIU1,2, Xiongfei FU1,2
Received:
2020-04-12
Revised:
2020-11-10
Online:
2021-03-12
Published:
2021-03-22
Contact:
Xiongfei FU
储攀1,2, 朱静雯1, 黄文琦1,2, 刘陈立1,2, 傅雄飞1,2
通讯作者:
傅雄飞
作者简介:
储攀(1995—),男,硕士研究生,主要研究方向为系统生物学。E-mail:pan.chu@siat.ac.cn基金资助:
CLC Number:
Pan CHU, Jingwen ZHU, Wenqi HUANG, Chenli LIU, Xiongfei FU. Host-circuit coupling: toward a new framework for genetic circuit design[J]. Synthetic Biology Journal, 2021, 2(1): 91-105.
储攀, 朱静雯, 黄文琦, 刘陈立, 傅雄飞. 底盘-回路耦合:合成基因回路设计新挑战[J]. 合成生物学, 2021, 2(1): 91-105.
Add to citation manager EndNote|Ris|BibTeX
URL: https://synbioj.cip.com.cn/EN/10.12211/2096-8280.2020-046
1 | GARDNER T S, CANTOR C R, COLLINS J J. Construction of a genetic toggle switch in Escherichia coli [J]. Nature, 2000, 403(6767): 339-342. |
2 | ELOWITZ M B, LEIBIER S. A synthetic oscillatory network of transcriptional regulators [J]. Nature, 2000, 403(6767): 335-338. |
3 | LOU Chunbo, STANTON B, CHEN Y J, et al. Ribozyme-based insulator parts buffer synthetic circuits from genetic context [J]. Nature Biotechnology, 2012, 30(11): 1137-1142. |
4 | CHEN Y J, LIU P, NIELSEN A A, et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints [J]. Nature Methods, 2013, 10(7): 659-664. |
5 | RUDGE T J, BROWN J R, FEDERICI F, et al. Characterization of intrinsic properties of promoters [J]. ACS Synthetic Biology, 2016, 5(1): 89-98. |
6 | BONNET J, YIN P, ORTIZ M E, et al. Amplifying genetic logic gates [J]. Science, 2013, 340(6132): 599-603. |
7 | NIELSEN A A K, DER B S, SHIN Jonghyeon, et al. Genetic circuit design automation [J]. Science, 2016, 352(6281): 7341. |
8 | ZHENG Hai, Po-Yi HO, JIANG Meiling, et al. Interrogating the Escherichia coli cell cycle by cell dimension perturbations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15000-15005. |
9 | YOU Conghui, OKANO H, HUI Sheng, et al. Coordination of bacterial proteome with metabolism by cyclic AMP signalling [J]. Nature, 2013, 500(7462): 301-306. |
10 | ZHANG Weimin, ZHAO Guanghou, LUO Guanghou, et al. Engineering the ribosomal DNA in a megabase synthetic chromosome [J]. Science, 2017, 355(6329): 3981. |
11 | HUTCHISON C A, CHUANG R Y, NOSKOV V N, et al. Design and synthesis of a minimal bacterial genome [J]. Science, 2016, 351(6280): 6253-6253. |
12 | LUO Xiaozhou, REITER M A, D'ESPAUX L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast [J]. Nature, 2019, 567(7746): 123-126. |
13 | 赵国屏. 合成生物学: 开启生命科学“会聚”研究新时代[J]. 中国科学院院刊, 2018, 33(11): 1135-1149. |
ZHAO Guoping. Synthetic biology: unsealing the convergence era of life science research [J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(11): 1135-1149. | |
14 | ZONG Yeqing, ZHANG Haoqian M, Cheng LYU, et al. Insulated transcriptional elements enable precise design of genetic circuits [J]. Nature Communications, 2017, 8(1): 52. |
15 | GOROCHOWSKI T E, ESPAH BORUJENI A, PARK Yongjin, et al. Genetic circuit characterization and debugging using RNA-seq [J]. Molecular Systems Biology, 2017, 13(11): 952. |
16 | KOCHANOWSKI K, GEROSA L, BRUNNER S F, et al. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli [J]. Molecular Systems Biology, 2017, 13(1): 903. |
17 | CHUBUKOV V, GEROSA L, KOCHANOWSKI K, et al. Coordination of microbial metabolism [J]. Nature Reviews Microbiology, 2014, 12(5): 327-340. |
18 | BORUJENI A E, ZHANG Jing, DOOSTHOSSEINI H, et al. Genetic circuit characterization by inferring RNA polymerase movement and ribosome usage [J]. Nature Communications, 2020, 11(1): 5001. |
19 | CERONI F, ALGAR R, STAN G B, et al. Quantifying cellular capacity identifies gene expression designs with reduced burden [J]. Nature Methods, 2015, 12(5): 415-418. |
20 | CARDINALE S, ARKIN A P. Contextualizing context for synthetic biology - identifying causes of failure of synthetic biological systems [J]. Biotechnology Journal, 2012, 7(7): 856-866. |
21 | HUI Sheng, SILVERMAN J M, CHEN S S, et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria [J]. Molecular Systems Biology, 2015, 11(2): 784. |
22 | ERICKSON D W, SCHINK S J, PATSALO V, et al. A global resource allocation strategy governs growth transition kinetics of Escherichia coli [J]. Nature, 2017, 551(7678): 119-123. |
23 | BOADA Y, VIGNONI A, OYARZÚN D, et al. Host-circuit interactions explain unexpected behavior of a gene circuit [J]. IFAC-PapersOnline, 2018, 51(19): 86-89. |
24 | GRUNBERG T W, VECCHIO D DEL. Modular analysis and design of biological circuits [J]. Current Opinion in Biotechnology, 2020, 63: 41-47. |
25 | SCOTT M, GUNDERSON C W, MATEESCU E M, et al. Interdependence of cell growth and gene expression: origins and consequences [J]. Science, 2010, 330(6007): 1099-1102. |
26 | ZHENG Hai, BAI Yang, JIANG Meiling, et al. General quantitative relations linking cell growth and the cell cycle in Escherichia coli [J]. Nature Microbiology, 2020, 5(8): 995-1001. |
27 | BORKOWSKI O, CERONI F, STAN G B B, et al. Overloaded and stressed: whole cell considerations for bacterial synthetic biology [J]. Current Opinion in Microbiology, 2016, 33: 123-130. |
28 | TOWBIN B D, KOREM Y, BREN A, et al. Optimality and sub-optimality in a bacterial growth law [J]. Nature Communications, 2017, 8: 1-8. |
29 | BERTHOUMIEUX S, DE JONG H, BAPTIST G, et al. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell [J]. Molecular Systems Biology, 2013, 9(1): 634. |
30 | BLANCHARD A E, LIAO Chen, LU Ting. Circuit-host coupling induces multifaceted behavioral modulations of a gene switch [J]. Biophysical Journal, 2018, 114(3): 737-746. |
31 | SLEIGHT S C, SAURO H M. Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits [J]. ACS Synthetic Biology, 2013, 2(9): 519-528. |
32 | Suhyung CHO, CHOE Donghui, Eunju LEE, et al. High-level dCas9 expression induces abnormal cell morphology in Escherichia coli [J]. ACS Synthetic Biology, 2018, 7(4): 1085-1094. |
33 | CARDINALE S, JOACHIMIAK M P, ARKIN A P. Effects of genetic variation on the E. coli host-circuit interface [J]. Cell Reports, 2013, 4(2): 231-237. |
34 | VILANOVA C, TANNER K, DORADO-MORALES P, et al. Standards not that standard [J]. Journal of Biological Engineering, 2015, 9(1): 17. |
35 | MOSER F, BROERS N J, HARTMANS S, et al. Genetic circuit performance under conditions relevant for industrial bioreactors [J]. ACS Synthetic Biology, 2012, 1(11): 555-564. |
36 | LIU Qijun, SCHUMACHER J, WAN Xinyi, et al. Orthogonality and burdens of heterologous AND gate gene circuits in E. coli [J]. ACS Synthetic Biology, 2018, 7(2): 553-564. |
37 | BASAN M, HONDA T, CHRISTODOULOU D, et al. A universal trade-off between growth and lag in fluctuating environments [J]. Nature, 2020, 584(7821): 470-474. |
38 | HINTSCHE M, KLUMPP S. Dilution and the theoretical description of growth-rate dependent gene expression [J]. Journal of Biological Engineering, 2013, 7(1): 22. |
39 | BINTU L, BUCHLER N E, GARCIA H G, et al. Transcriptional regulation by the numbers: models [J]. Current Opinion in Genetics and Development, 2005, 15(2): 116124. |
40 | TAN Cheemeng, MARGUET P, YOU Lingchong. Emergent bistability by a growth-modulating positive feedback circuit [J]. Nature Chemical Biology, 2009, 5(11): 842-848. |
41 | KURLAND C G, DONG Henjiang H. Bacterial growth inhibition by overproduction of protein [J]. Molecular Microbiology, 1996, 21(1): 1-4. |
42 | CARBONELL-BALLESTERO M, GARCIA-RAMALLO E, MONTAÑEZ R, et al. Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law [J]. Nucleic Acids Research, 2016, 44(1): 496-507. |
43 | VIND J, SØRENSEN M A, RASMUSSEN M D, et al. Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes: expression from reporter genes does not always reflect functional mRNA levels [J]. Journal of Molecular Biology, 1993, 231(3): 678-688. |
44 | SHACHRAI I, ZASLAVER A, ALON U, et al. Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth [J]. Molecular Cell, 2010, 38(5): 758-767. |
45 | ZHU Manlu, DAI Xiongfeng. Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli [J]. Nucleic Acids Research, 2019, 47(9): 4684-4693. |
46 | ZHU Manlu, PAN Yige, DAI Xiongfeng. (p)ppGpp: the magic governor of bacterial growth economy [J]. Current Genetics, 2019, 65(5): 1121-1125. |
47 | ZHU Manlu, MORI M, HWA T, et al. Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination [J]. Nature Microbiology, 2019, 4(12): 2347-2356. |
48 | COOKSON N A, MATHER W H, DANINO T, et al. Queueing up for enzymatic processing: correlated signaling through coupled degradation [J]. Molecular Systems Biology, 2011, 7(1): 561. |
49 | GYORGY A, JIMÉNEZ J I, YAZBEK J, et al. Isocost lines describe the cellular economy of genetic circuits [J]. Biophysical Journal, 2015, 109(3): 639-646. |
50 | WEI Lei, YUAN Ye, HU Tao, et al. Regulation by competition: a hidden layer of gene regulatory network [J]. Quantitative Biology, 2019, 7(2): 110-121. |
51 | DAVEY J A, WILSON C J. Engineered signal-coupled inducible promoters: measuring the apparent RNA-polymerase resource budget [J]. Nucleic Acids Research, 2020, 48(17): 734-739. |
52 | QIAN Yili, HUANG Hsin-Ho, JIMÉNEZ J I, et al. Resource competition shapes the response of genetic circuits [J]. ACS Synthetic Biology, 2017, 6(7): 1263-1272. |
53 | GE Hao, QIAN Hong, XIE X S. Stochastic phenotype transition of a single cell in an intermediate region of gene state switching [J]. Physical Review Letters, 2014, 114(7): 078101eprint: 1312. 6776. |
54 | WANG Zhi, ZHANG Jianzhi. Impact of gene expression noise on organismal fitness and the efficacy of natural selection [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): E67-E76 |
55 | IYER S, LE Dai, PARK Bo Ryoung, et al. Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli [J]. Nature Microbiology, 2018, 3(6): 741-748. |
56 | THOMAS P, TERRADOT G, DANOS V, et al. Sources, propagation and consequences of stochasticity in cellular growth [J]. Nature Communications, 2018, 9(1): 4528. |
57 | KIM Juhyun, DARLINGTON A, SALVADOR M, et al. Trade-offs between gene expression, growth and phenotypic diversity in microbial populations [J]. Current Opinion in Biotechnology, 2020, 62: 29-37. |
58 | Jeong Wook LEE, GYORGY A, CAMERON D E, et al. Creating single-copy genetic circuits [J]. Molecular Cell, 2016, 63(2): 329-336. |
59 | KIMELMAN A, LEVY A, SBERRO H, et al. A vast collection of microbial genes that are toxic to bacteria [J]. Genome Research, 2012, 22(4): 802-809. |
60 | LAMBERTE L E, BANIULYTE G, SINGH S S, et al. Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase [J]. Nature Microbiology, 2017, 2(3): 16249. |
61 | STANTON B C, NIELSEN A A K, TAMSIR A, et al. Genomic mining of prokaryotic repressors for orthogonal logic gates [J]. Nature Chemical Biology, 2014, 10(2): 99105. |
62 | HASNAIN A, BECKER D, SIBA A, et al. A data-driven method for quantifying the impact of a genetic circuit on its host [C]// 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS): IEEE, 2019: 4245-4251. |
63 | CUI Lun, VIGOUROUX A, ROUSSET F, et al. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9 [J]. Nature Communications, 2018, 9(1): 1-10. |
64 | SHULER M L, LEUNG S, DICK C C. A mathematical model for the growth of a single bacterial cell [J]. Annals of the New York Academy of Sciences, 1979, 326(1): 35-52. |
65 | TOMITA M, HASHIMOTO K, TAKAHASHI K, et al. E-CELL: Software environment for whole-cell simulation [J]. Bioinformatics, 1999, 15(1): 72-84. |
66 | CARRERA J, COVERT M W. Why build whole-cell models? [J]. Trends in Cell Biology, 2015, 25(12): 719-722. |
67 | KARR J R, SANGHVI J C, MACKLIN D N, et al. A whole-cell computational model predicts phenotype from genotype [J]. Cell, 2012, 150(2): 389-401. |
68 | WEIßE A Y, OYARZÚN D A, DANOS V, et al. Mechanistic links between cellular trade-offs, gene expression, and growth [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(9): E1038-E1047. |
69 | LIAO Chen, BLANCHARD A E, LU Ting. An integrative circuit-host modelling framework for predicting synthetic gene network behaviours [J]. Nature Microbiology, 2017, 2(12): 1658-1666. |
70 | CARRERA J, ESTRELA R, LUO Jing, et al. An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli [J]. Molecular Systems Biology, 2014, 10(7): 735. |
71 | ATLAS J C, NIKOLAEV E V, BROWNING S T, et al. Incorporating genome-wide DNA sequence information into a dynamic whole-cell model of Escherichia coli: application to DNA replication [J]. IET Systems Biology, 2008, 2(5): 369-382. |
72 | ROBERTS E, MAGIS A, ORTIZ J O, et al. Noise contributions in an inducible genetic switch: a whole-cell simulation study [J]. PLoS Computational Biology, 2011, 7(3): e1002010. |
73 | PURCELL O, JAIN B, KARR J R, et al. Towards a whole-cell modeling approach for synthetic biology [J]. Chaos, 2013, 23(2): 025112. |
74 | BABTIE A C, STUMPF M P. How to deal with parameters for whole-cell modelling [J]. Journal of the Royal Society Interface, 2017, 14(133): 20170237. |
75 | MARR A G. Growth rate of Escherichia coli [J]. Microbiological Reviews, 1991, 55(2): 316-333. |
76 | MATHER W H, HASTY J, TSIMRING L S, et al. Translational cross talk in gene networks [J]. Biophysical Journal, 2013, 104(11): 2564-2572. |
77 | 崔金明, 张炳照, 马迎飞, 等. 合成生物学研究的工程化平台[J]. 中国科学院院刊, 2018, 3(11): 1249-1257. |
CUI Jinming, ZHANG Bingzhao, MAYingfei, et al. Engineering platforms for synthetic biology research [J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(11): 1249-1257. | |
78 | RACKHAM O, CHIN J W. A network of orthogonal ribosome-mRNA pairs [J]. Nature Chemical Biology, 2005, 1(3): 159-166. |
79 | VECCHIO D DEL. Modularity, context-dependence, and insulation in engineered biological circuits [J]. Trends in Biotechnology, 2015, 33(2): 111-119. |
80 | ISAACS F J, DWYER D J, DING Chunming, et al. Engineered ribo-regulators enable posttranscriptional control of gene expression [J]. Nature Biotechnology, 2004, 22(7): 841847. |
81 | MARTIN V J J, PITERA D J, WITHERS S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J]. Nature Biotechnology, 2003, 21(7): 796-802. |
82 | ATSUMI S, HANAI T, LIAO J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J]. Nature, 2008, 451(7174): 86-89. |
83 | LIU C C, JEWETT M C, CHIN J W, et al. Toward an orthogonal central dogma [J]. Nature Chemical Biology, 2018, 14(2): 103-106. |
84 | HAN Tiyun, CHEN Quan, LIU Haiyan. Engineered photoactivatable genetic switches based on the bacterium phage T7 RNA polymerase [J]. ACS Synthetic Biology, 2017, 6(2): 357366. |
85 | BAUMSCHLAGER A, AOKI S K, KHAMMASH M. Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control [J]. ACS Synthetic Biology, 2017, 6(11): 2157-2167. |
86 | MCCUTCHEON S R, CHIU Kwan Lun, LEWIS D D, et al. CRISPR-Cas expands dynamic range of gene expression from T7RNAP promoters [J]. Biotechnology Journal, 2018, 13(5): 1700167. |
87 | RHODIUS V A, SEGALL-SHAPIRO T H, SHARON B D, et al. Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters [J]. Molecular Systems Biology, 2013, 9(1): 702. |
88 | FREDENS J, WANG Kaihang, DE LA TORRE D, et al. Total synthesis of Escherichia coli with a recoded genome [J]. Nature, 2019, 569(7757): 514-518. |
89 | AN Wenlin, CHIN J W. Synthesis of orthogonal transcription translation networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8477-8482. |
90 | MEYER A J, SEGALL-SHAPIRO T H, GLASSEY E, et al. Escherichia coli "Marionette" strains with 12 highly optimized small-molecule sensors [J]. Nature Chemical Biology, 2019, 15(2): 196-204. |
91 | ZHANG Shuyi, VOIGT C A. Engineered dCas9 with reduced toxicity in bacteria:implications for genetic circuit design [J]. Nucleic Acids Research, 2018, 46(20): 11115-11125. |
92 | ENDY D. Foundations for engineering biology [J]. Nature, 2005, 438(7067): 449-453. |
93 | MANGAN S, ALON U. Structure and function of the feed-forward loop network motif [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 11980-11985. |
94 | SHOPERA T, HE Lian, OYETUNDE T, et al. Decoupling resource-coupled gene expression in living cells [J]. ACS Synthetic Biology, 2017, 6(8): 1596-1604. |
95 | HUANG Hsin-Ho, QIAN Yili, VECCHIO D DEL. Aquasi-integral controller for adaptation of genetic modules to variable ribosome demand [J]. Nature Communications, 2018, 9(1): 5415. |
96 | AOKI S K, LILLACCI G, GUPTA A, et al. A universal biomolecular integral feedback controller for robust perfect adaptation [J]. Nature, 2019, 570(7762): 533-537. |
97 | DARLINGTON A P S, KIM Juhyun, JIMÉNEZ J I, et al. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes [J]. Nature Communications, 2018, 9(1): 695. |
98 | CERONI F, BOO A, FURINI S, et al. Burden-driven feedback control of gene expression [J]. Nature Methods, 2018, 15(5): 387-393. |
99 | RUGBJERG P, SARUP-LYTZEN K, NAGY M, et al. Synthetic addiction extends the productive life time of engineered Escherichia coli populations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 23472352. |
100 | XIAO Yi, BOWEN C H, LIU Di, et al. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis [J]. Nature Chemical Biology, 2016, 12(5): 339-344. |
101 | SEGALL-SHAPIRO T H, SONTAG E D, VOIGT C A. Engineered promoters enable constant gene expression at any copy number in bacteria [J]. Nature Biotechnology, 2018, 36(4): 352-358. |
[1] | Xuejing MA, Chang GUO, Zhaolin HUA, Baidong HOU. Dawn of the rational design of nanoparticle vaccines aided by the advance of synthetic biology techniques [J]. Synthetic Biology Journal, 2024, 5(2): 353-368. |
[2] | Busen WANG, Jinghan XU, Zhiqiang GAO, Lihua HOU. Advances in virus-vectored vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 281-293. |
[3] | Jinyong ZHANG, Jiang GU, Shan GUAN, Haibo LI, Hao ZENG, Quanming ZOU. Synthetic biology promotes the development of bacterial vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 321-337. |
[4] | Weifeng YUAN, Yongliang ZHAO, Zhixuan WU, Ke XU. Applications of synthetic biology in the development of SARS-CoV-2 broad-spectrum vaccines [J]. Synthetic Biology Journal, 2024, 5(2): 369-384. |
[5] | Yanyan YUAN, Huifang CHEN, Sihui YANG, Honghui WANG, Zhou NIE. Engineering artificial receptor cluster: chemical synthetic biology strategies and emerging applications [J]. Synthetic Biology Journal, 2024, 5(1): 53-76. |
[6] | Jingyu ZHAO, Jian ZHANG, Qingsheng QI, Qian WANG. Research progress in biosensors based on bacterial two-component systems [J]. Synthetic Biology Journal, 2024, 5(1): 38-52. |
[7] | Qian MENG, Cong YIN, Weiren HUANG. Tumor organoids and their research progress in synthetic biology [J]. Synthetic Biology Journal, 2024, 5(1): 191-201. |
[8] | Xiaojie GUO, Xingjin JIAN, Liyan WANG, Chong ZHANG, Xinhui XING. Progress in bioreactors and instruments for phenotype testing with synthetic biology research [J]. Synthetic Biology Journal, 2024, 5(1): 16-37. |
[9] | Duo LIU, Peiyuan LIU, Lianyue LI, Yaxin WANG, Yuhui CUI, Huimin XUE, Hanjie WANG. Design and synthesis of engineered extracellular vesicles and their biomedical applications [J]. Synthetic Biology Journal, 2024, 5(1): 154-173. |
[10] | Han SUN, Jin LIU. Research progress and prospects in lipid metabolic engineering of eukaryotic microalgae [J]. Synthetic Biology Journal, 2023, 4(6): 1140-1160. |
[11] | Huili SUN, Jinyu CUI, Guodong LUAN, Xuefeng LYU. Progress of cyanobacterial synthetic biotechnology for efficient light-driven carbon fixation and ethanol production [J]. Synthetic Biology Journal, 2023, 4(6): 1161-1177. |
[12] | Xiongying YAN, Zhen WANG, Jiyun LOU, Haoyu ZHANG, Xingyu HUANG, Xia WANG, Shihui YANG. Progress in the construction of microbial cell factories for efficient biofuel production [J]. Synthetic Biology Journal, 2023, 4(6): 1082-1121. |
[13] | Chenyue ZHANG, Yingqun MA, Xing WANG, Rongzhan FU, Jiwei HUANG, Xiufu HUA, Daidi FAN, Qiang FEI. Progress in the bioconversion of biogas into sustainable aviation fuel [J]. Synthetic Biology Journal, 2023, 4(6): 1246-1258. |
[14] | Zhidian DIAO, Xixian WANG, Qing SUN, Jian XU, Bo MA. Advances and applications of single-cell Raman spectroscopy testing and sorting equipment [J]. Synthetic Biology Journal, 2023, 4(5): 1020-1035. |
[15] | Hui LU, Fangli ZHANG, Lei HUANG. Establishment of iBioFoundry for synthetic biology applications [J]. Synthetic Biology Journal, 2023, 4(5): 877-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||